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Abstract
Primary Ovarian Failure (POF) is an ovarian defect characterized by the premature depletion of ovarian follicles. 

It causes infertility in ~1% of women <40 years of age and it has important health consequences for affected patients. 
POF is a heterogeneous disease, which can develop as a result of a broad variety of pathogenic mechanisms 
including genetic, autoimmune and iatrogenic causes. However, the mechanisms that cause ovarian dysfunction are 
poorly understood. Focus on genetic component of the disease has revealed the existence of several causal genetic 
defects, thus indicating that in addition to some monogenic forms, POF may frequently be a multifactorial disease 
involving several gene abnormalities and chromosome aberrations. Moreover, most recent studies have highlighted 
that epigenetic mechanisms may give an additional contribution to POF pathogenesis. This review gives a picture 
of the state of the art of the complex genetic and epigenetic defects associated with POF, being it clear that a deep 
comprehension of the molecular etiology of POF may in future early identify those women with higher risk of POF.
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Introduction
Ovarian aging process is characterized by a gradual decrease in the 

quantity and the quality of the oocytes [1] due to the depletion of the 
endowment of primordial, intermediate and primary follicles, starting 
in utero and extending through the menopause. During fetal life, germ 
cells proliferate by mitosis to reach approximately 6-7 million oogonia 
by the fourth month of pregnancy. From that point forward, the atresia 
of primordial follicle pool begins via gene-regulated apoptosis. It has 
been estimated that the number of germ cells falls to 1-2 million at 
birth and to 300,000-400,000 by the onset of puberty. During the 
reproductive life, through a combination of atresia and ovulation, 
around ~1000 follicles per month are depleted [2]. 

Employing mathematical models, it has been theorized that the 
primordial follicle pool decay rate is exponential and biphasic with a 
significant acceleration in depletion when the number of follicles is 
below 25,000 (physiologically at the age of 37-38 years). Approximately 
13 years later, when the primordial follicles number drops below a 
critical threshold (estimated to be 1000), ovulation ceases and the 
menopause ensues [3-5].

More recently, a new model has been proposed combining data 
from fractionator and optical dissector techniques, ultrasound Antral 
Follicle Count (AFC) and serum anti-Mullerian hormone (AMH) 
measurement. This new model predicts that the decay of follicle pool 
is constantly accelerating rather than suddenly increasing at ∼38 
years [6-8]. Although this theory is more biologically plausible, inter-
individual variation in primordial follicle number cannot be explained 
by the age alone. In Caucasian population the median age of natural 
menopause occurrence is 50 ± 1 years, but about 10% of women 
become menopausal by the age of 45 years, thus showing a low ovarian 
reserve considerably before the age of 37-38 years [9]. 

This review summarizes the state of the knowledge of Premature 
Ovarian Failure (POF), with the main purpose to illustrate the genetic 
and epigenetic mechanisms associated with its pathogenesis. 

Premature Ovarian Failure: The Terminology 
Premature ovarian failure is classically defined as the development 

of amenorrhea in women under the age of 40 years associated with 

follicle stimulating hormone (FSH) levels exceeding 40 mIU/ml 
[10,11]. The incidence of POF is 1% in women under the age of 40 
years and 0.1% under the age of 30 years [12-14]. Depending on the 
age of onset, the disorder occurs as primary amenorrhea, without 
menarche, or secondary amenorrhea after the puberty [15]. Since POF 
has a variable clinical course, it has been recently proposed the term of 
primary ovarian insufficiency (POI), as a more scientifically accurate 
definition of the progression toward the cessation of ovarian function 
[16].

In the last decades, the spread of assisted reproduction 
technologies has given a significant contribution to the understanding 
of the mechanisms of ovarian aging [17]. About 5% of patients who 
go through standard in vitro fertilization treatments show a poor 
ovarian response (POR) to gonadotropin stimulation [5]. This subset 
of patients, who are young women (<35 years old) within explained 
infertility, highlights a premature declining ovarian function (PDOF) 
and they probably represent the “tip of the iceberg” of those women 
with a premature ovarian aging (POA) who are not identified as 
being asymptomatic and not desirous to their conception. Moreover, 
although robust epidemiological data defining a relationship between 
PDOF-POA and POF are missing, current understanding of premature 
ovarian senescence suggests that POA may be a milder precursor stage 
to POF [18-20]. Table 1 summarizes the different acronyms referring 
to the pathology discussed in the present review. 

Etiopathogenesis of POF 
The possible mechanisms leading to a premature impairment of 
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the ovarian reserve are: i) decreased pool of primordial follicles, due to 
alteration in mechanism regulating germ cell migration, proliferation 
of oogonia and meiosis occurring before birth; ii) accelerated rate of 
follicle atresia by deregulation of those factors that control the rate of 
apoptosis (i.e., gonadotropins, estrogens, androgens, growth factors, 
cytokines, reorganisation of the actin cytoskeleton, nitric oxide, 
tumour necrosis factor-a, Fas ligand and activated peripheral T cells); 
iii) dysfunction in follicular recruitment or maturation [21]. 

The causes that may activate such mechanisms are highly 
heterogeneous. About 25% of POF cases are iatrogenic, being related to 
postsurgical ovarian failure and cancer treatments (radiotherapy and 
chemotherapy) [21-23]. It has been also hypothesized that POF may 
be induced by environmental factors, such as cigarette smoking, heavy 
metals, solvents, pesticides, plastics, industrial chemicals [21]. Moreover, 
there is evidence that POF can be secondary to infections (mumps, 
herpes zoster, cytomegalovirus), autoimmune (i.e., systemic lupus 
erythematosus, Hashimoto's thyroiditis, Addison's disease, rheumatoid 
arthritis, autoimmune poly-endocrinopathy-candidiasis-ectodermal 
dystrophy) and metabolic diseases (galactosemia) [21,24,25]. Some 
cases of POF are syndromic, i.e., in Turner syndrome, carbohydrate-
deficient glycoprotein syndromes, pseudohypoparathyroidism type 
1a, progressive external ophthalmoplegia, autoimmune polyglandular 
syndrome type I, and ovarian leukodystrophy [21]. In more than 50% 
of cases the etiology is idiopathic and probably genetic. The POF can 
result from different genetic mechanisms. To date, mutations associated 
with POF have been identified in a small number of genes and none of 
the mutations are associated with >10% of cases. Therefore, it supports 
the view of POF as a complex multifactorial disease probably involving 
many different loci. 

Chromosome X Defects in POF
About 9% of POF are related to X chromosome aberrations 

that comprise both numerical (monosomy and trisomy) and 
segmental (deletions, isochromosomes and balanced X: autosomal 
translocations) abnormalities [26-28]. The complete or partial 
absence of one X chromosome is associated with Turner syndrome 
characterized by defective ovarian function and gonadal dysgenesis 
[29]. The clinical features in 45,X0 females may primarily be 
determined by the impairment of X chromosomes at meiosis [30] and 
the haploinsufficiency of X-linked genes (such as SHOX/PHOG) that 
physiologically escape from X-inactivation as their diploid dosage is 
required for oogenesis [31]. X trisomy is the most frequent aneuploidy 
which affects 1 in 900 women in general population and association 
between the 47,XXX genotype and hypergonadotropic POF has been 
reported. 

As regarding segmental defects, deletions in POF patients are 
commonly at Xq21.3–q27 (POF1 region), whereas breakpoints of 
balanced X:autosomal translocations are preferentially localized to 
Xq13.3–q21.1 (POF2 region) [32,33]. To date, no single gene on 
the X chromosome in these regions has consistently been found to 
be involved in POF. Therefore, it may be that any structural defect 
involving the X chromosome may alter normal chromosome pairing 

during meiosis, leading to accelerated follicular atresia.

Recently, Quilter et al.  and Jin and Warren [34,35] performed a 
large analysis using a complete X tiling path array to detect cryptic 
copy number variations (CNV) in idiopathic cytogenetically normal 
POF patients. The new data reported in this study revealed unknown 
polymorphic CNV not previously associated with the disease. These 
chromosome amplifications and deletions are likely to alter the 
expression of novel clusters of POF-candidate X-linked sequences, 
including genes involved in chromosome pairing and segregation 
(POF1, CENPI, USP9X), hormone-dependent oocytes development 
and maturation (STS), and apoptotic responses (AIFM1, BCORL1). 

As a consequence, there are multiple discrete intervals on the 
human X chromosome that may impact on those cellular processes 
that are important for normal ovarian function.

Candidate Genes on the X Chromosome
Identification of deletions and translocations in POF1 and POF2 

regions has suggested several POF-candidate genes, such as CHM 
(Xq21.2), POF1B (Xq21.2), DACH2 (Xq21.3), DIAPH2 (Xq22), 
XPNPEP2 (Xq25) [36-38], although very few mutations have actually 
been detected in these loci [39,40].

Another “POF critical region”, where several Turner syndrome traits 
are located, maps to the short arm of X chromosome and includes zinc 
finger protein, X-linked (ZFX, Xp22.1–21.3) and bone morphogenetic 
protein 15 (BMP15, Xp11.2) [26]. The BMP15, as one of the member of 
TGFβ superfamily, encodes a growth and differentiation factor, which 
regulates follicle maturation, follicular germ cells sensitivity to FSH 
action, germ cells apoptosis, oocyte developmental competence, and 
ovulation [41-44]. In humans, several missense variations in BMP15 
gene have been found in association with POF with a frequency 
between 1.5 and 12% [45-47]. A reduced production of bioactive 
BMP15 protein, probably due to a mechanism of haploinsufficiency, 
may lead to ovarian dysgenesis through: i) an impairment of the anti-
apoptotic effects on germinal cells, then favoring follicle atresia; ii) an 
altered recruitment of pre-antral follicles by gonadotropins [33].

A X-linked mutation leading to an increased risk for POF is the 
fragile X premutation [48]. It is characterized by a large CGG repeat 
track (55-199 repeats) in the 5' untranslated region of the fragile X 
mental retardation 1 (FMR1) gene located at Xq27.3. Premutation 
carriers have been identified in 0.8% to 7.5% of women with sporadic 
POF and in up to 13% of women with familial forms [49]. The small 
expansions (55-79 repeats) are unmethylated and a FMR1 mRNA 
gain-of-function toxicity may underlie the altered ovarian function 
occurring in premutation carriers [50], since the accumulation of 
the RNA-binding FMR protein may impair the expression of genes 
required for oocyte development in fetal ovary [35,51]. On the other 
hand, longer repeats are hypermethylated and the expression of the 
FMR1 gene is repressed, thus favoring follicle atresia [52].

Autosomal Candidate Genes of POF
In the last decades, researchers focused on classic gene-specific 

candidate-driven studies, mostly based on genetically modified mouse 

OVARIAN RESPONSE OVARIAN RESERVE OVARIAN FUNCTION OVARIAN AGE

POR=Poor Ovarian Response DOR=Diminished Ovarian Reserve PDOF=Premature Declining Ovarian Function
POA=Premature Ovarian Aging
POF=Premature Ovarian Failure
POI=Primary Ovarian Insufficiency

Table 1: Acronyms used referring to the pathology discussed in the present review.
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models [53-55]. Putative POF-associated genes have been reviewed in 
detail elsewhere [33,56,57]. Briefly, they can be categorized as follows: 
i) genes that primarily affect follicle function by exerting hormonal 
effects (FSH, FSHR, LH, LHR, CYP17 and CYP19); ii) genes that affect 
the rate of initial recruitment from the primordial follicle pool into 
growing follicles (BMP15, GDF9, FOXL2 and GPR3); iii) DNA binding 
proteins, transcription factors like NOBOX and LHX8, and RNA 
binding proteins like NANOS. 

Hormones such as FSH, LH and their receptors, play an important 
role in follicular development. Although follicle stimulating hormone 
receptor (FSHR) is the only well characterized autosomal recessive 
gene that causes non-syndromic POF [58], heterozygous polymorphic 
variants involving the gonadotropin receptors have been detected in 
both patients and control individuals, thus they do not appear to be the 
cause of POF [59-61]. Similarly, polymorphisms in Estrogen Receptor 
(ER) gene have been associated with POF, but further validation studies 
in larger groups of patients are needed [62].

Meiotic events play an essential role in establishment of the 
primordial pool of follicles. Interestingly, mutations of DMC1 (a DNA 
strand exchange protein that acts on double-strand breaks in meiosis 
[63]), MSH5 (a meiosis-specific protein [64]), and ATM (involved in 
DNA damage checkpoint control and activated in response to double-
strand breaks [65]) have been associated with POF [66,67]. 

The long survival of primordial quiescent follicles is necessary for 
preservation of the length of reproductive life. It has been thus supposed 
that dysfunction of molecules that maintain the primordial follicles 
may cause POF by damaging the primordial pool or over-activating 
primordial follicles. An oocyte-specific gene, essential for primordial 
follicle formation, is factor in germline alpha (FIGLA) that has been 
found mutated in POF women [68]. Other oocyte-specific factors 
-FOXL2 (forkhead box protein L2) and NOBOX (newborn ovary 
homeo box-encoding gene) -are important for transition of primordial 
follicles to primary follicles. Interestingly, mutations in FOXL2 and in 
the homeobox domain of the NOBOX gene are associated with POF 
in humans [69-71], although conflicting results have been reported by 
other studies [72,73].

Recently, several genes have been identified as negative regulators 
of follicular activation. In their absence-as in mice lacking PTEN, 
FOXO3a, or P27KIP1- the pool of prematurely activated, primordial 
follicles undergo atresia [74-76]. These studies support the idea that 
deregulated activation of primordial follicles may be a cause for POF. 
Consistently, mutation screenings in POF patients revealed two 
potentially pathogenic variations in FOXO3a and FOXO1a forkhead 
transcription factors [77,78].

Defects in follicular development lead to lack of functional ovarian 
follicles and anovulation. In this context, mutations in BMP15 have 
been associated with POF, as mentioned above. Besides BMP15, 
other TGFb family members have arelevant role in the progression of 
folliculogenesis. Among them, there are GDF9, which is expressed in 
the oocyte and forms BMP15/GDF9 heterodimers [79], and inhibin A 
(INHA), that acts as a negative modulator of pituitary FSH synthesis 
or as a paracrine factor [80]. Rare insertion/deletion and missense 
variations in GDF9 [81-84] and INHA [85-89] have been observed in 
POF patients. 

Genome-Wide association Studies of POF
Over the last ten years Genome-Wide Association Studies 

(GWAS) have evolved as an alternative approach for finding novel 

candidate genes and chromosomal loci of human diseases. In contrast 
to methods which specifically test one or a few genetic regions, the 
GWAS investigate the entire genome. The approach is therefore said 
to be non-candidate-driven. GWAS typically focus on associations 
between single-nucleotide polymorphisms (SNPs) and complex traits, 
by comparing DNA of cases and controls groups.

The first GWAS in POF was reported by Kang et al. [90]. This 
two-stage association study in Korean women (101 cases and 87 
controls) suggested that PTHB1 gene may be associated with POF. 
In another study (99 cases and 235 controls) a possible association 
with ADAMTS19, a gene expressed in female mouse gonads, has been 
suggested [39]. However, replication in an independent cohort of 
60 POF patients and 90 controls did not confirm a clear association. 
Moreover, the Authors did not observe strong evidence for any of 74 
selected POF candidate regions being associated with idiopathic POF 
in Caucasian females, although suggestive association was observed for 
SNPs that mapped in BDNF, CXCL12, LHR, USP9X and TAF4B, all 
possible candidate genes on the basis of animal models. The weakness 
of both these studies is the small sample size, thus replications in 
independent larger cohorts are warranted to obtain a significant 
statistical power.

CNV in POF
Recent developments and applications of genome-wide 

structural variation technologies, such as array comparative genomic 
hybridization (aCGH), have led to the identification of CNV. The CNV, 
defined as regions of DNA larger than 1 kb that display copy number 
differences in the normal population, contribute to genetic variation 
associated with diseases or susceptibility to diseases [40]. Indeed, CNV 
can influence transcriptional and translational levels of overlapping or 
nearby genes [91]. Thus, in addition to GWAS based on SNPs, there is 
increasing interest toward the association of structural variants with 
complex traits.

The first study aimed to assess the presence and the prevalence of 
CNV in sporadic and familiar POF was performed by Aboura et al. [92] 
by DNA microarrays comprising 4500 bacterial artificial chromosome 
(BAC) clones spread on the entire genome. The authors reported 
eight statistically significantly different CNV on the X chromosome 
and autosomes and, within them, they identified genes involved in 
reproductive disease (DNAH5 and NAIP), reproductive endocrinology 
(DUSP22 and NUPR1), and folliculogenesis (AKT1), thus representing 
five potential candidate genes in POF.

Oligonucleotide-microarrays with higher resolution allowed the 
identification of 44 micro-deletions and microduplications potentially 
causative for POF [93]. Intriguingly, these aberrant chromosome 
regions harbor genes involved in meiosis (PLCB1, RB1CC1, MAP4K4), 
DNA repair (RBBP8), and folliculogenesis (IMMP2L, FER1L6, MEIG1) 
pathways.

Very recently, a SNP array-based study confirmed that CNV 
associate with POF and that the majority of candidate genes for ovarian 
failure are located on autosomes [94]. In fact, in addition to only 
one novel microdeletion located on the X chromosome, the authors 
discovered seven novel autosomal microdeletions and seventeen novel 
autosomal microduplications among 88 successfully arrayed POF 
women.

Future studies in larger cohorts of patients are warranted to validate 
whether recurring CNV are present in women with POF and to discern 
the clinical utility of molecular karyotyping methods, such as high-
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resolution aCGH, in replacing conventional karyotyping. Moreover, 
animal models that target novel human deletions and/or duplications 
may be useful in elucidating the functional role of such genetic variants 
in reproductive biology.

Genetics of Familial Idiopathic POF
Although epidemiological evidence based on mother-daughter 

pairs supports the heritability of menopausal age [95,96] and some 
Authors reported cases of familial premature menopause [97,98], 
very little is known about the inheritance pattern of the idiopathic 
POF. The overall incidence of familial POF ranges between 4% and 
31% depending on the inclusion criteria adopted and the availability 
of a detailed family history [95,96,98]. However, due to rare familial 
cases with full pedigrees, few genome-wide linkage analyses have been 
performed so far. The first two studies on relatively large pedigrees 
established linkage to the POF critical region Xq21.1-q21.3.3 [99] 
and to a 15.8 Mb region on chromosome 5 (5q14.1-q15) [100] which 
harbors novel candidate POF susceptibility genes. Sequencing of POF2 
region identified a point mutation in the exon 10 of POF1B gene. The 
disruption of mutated POF1B binding to nonmuscle actin filaments 
may lead to up-regulation of primordial oocytes apoptosis through 
a loss of function of POF1B in pairing meiotic chromosomes or in 
cytoskeletal dynamics [99].

On one hand, the most accepted theory suggests an either maternal 
or paternal dominant transmission of POF [98,100]. It is often difficult 
to distinguish an autosomal dominant pattern of inheritance from an 
X-linked one since transmitting males with both affected and unaffected 
daughters, while expected for autosomal dominant inheritance can 
also occur with X-linkage if penetrance is incomplete. In families with 
maternal transmission the risk of recurring POF is always 50% (39.5% 
corrected by incomplete penetrance), where as in families with paternal 
transmission the risk is 100% (79.1% corrected by penetrance) when 
the disorder has an X-linked pattern of inheritance, and it decreases 
to 50% (39.5% corrected by penetrance) when the dominant pattern 
of inheritance is autosomal. Therefore, a specific genetic counseling is 
necessary to properly assess the reproductive risk [98].

On the other hand, very recently Caburet et al. [101] reported a 
recessive autosomal pattern of inheritance in one large consanguineous 
Middle-Eastern POF-affected family. In particular, the Authors 
identified two regions with a LODmax of 3.26 on 7p21.1-15.3 and 
7q21.3-22.2, which were supported as candidate loci by homozygosity 
mapping. The region on 7q21.3-22.3 includes DLX5 and DLX6 genes 
that are involved in steroidogenesis, and SHFM1 which is required for 
oogenesis and normal female fertility in animal models. Although these 
three genes are implicated in the etiology of the Split Hand/Split Foot 
Malformation Type I syndrome, that is not associated with POF, their 
possible function in the ovary led the Authors to sequence them, but 
they did not detected any causal mutations. 

Epigenetics of POF
A genetic disease is classically caused by changes in DNA sequence 

due to point mutations and/or chromosome aberrations. Additional 
molecular mechanisms involved in genetic diseases are functionally 
modifications of the genome-the so called “epigenetic abnormalities” – 
which comprise DNA methylation, histone modifications, chromatin 
structure and non-coding RNAs. They can all regulate proximal 
promoter activity as well as distal gene expression. 

According to a first model, chromatin structure alterations may 
be responsible of an epigenetic origin of POF. Firstly, rearrangements 

involving X chromosome (X: autosome translocations, terminal 
deletions) have been suggested to adversely affect X chromosome 
structure leading to defective meiotic pairing, that might increase 
apoptosis of germ cells at meiotic checkpoints [102]. The importance of 
chromatin structure in the pathogenesis of X-linked POF has been then 
confirmed by Rizzolio et al. [103] who reported that heterochromatin 
rearrangements of the Xq12-q21 region may down regulate oocyte-
expressed genes during oocytes and follicle maturation. 

Starting from the observation that in POF patients most X:autosome 
balanced translocation break points map in “critical regions” that do 
not contain transcribed sequences (i.e.; Xq13.3-q26) [104-106], the 
same group postulated that key genes may be not necessarily included 
in regions of deletion or amplification or disrupted by translocations. 
Specifically, Rizzolio et al. [107] proposed that autosomal genes, 
expressed in the oocytes, when translocated to the active X chromosome 
undergo their down expression driven by the epigenetic mechanisms 
regulating X-linked genes. Therefore, two different mechanisms may be 
responsible of X-linked POF. One, acting in Turner syndrome and in 
POF with partial X monosomies, is dependent on haploinsufficiency of 
X-linked genes for ovarian function. The second one acts on autosomal 
ovary-expressed genes when translocated to the X chromosome critical 
region and may result in their down regulation by a position effect of 
cis regulatory sequences. 

More recently, a new paradigm has been considered for the 
etiology of ovarian diseases such as POF: epigenetic abnormalities can 
be induced by exposure to a variety of environmental toxins [108]. 
Moreover, if the exposure occurs during fetal gonadal development, 
these epigenetic abnormalities can be fixed into the germ line and 
be passed to offspring, thus increasing susceptibility to an ovarian 
adult-onset disease. Molecular analyses disclosed that the effect of 
the environmental compound exposure on germ cells consists of 
differential expression of more than 500 genes and alterations in only 
43 DNA methylated regions (DMR) [108]. Since this relatively low 
number of epigenetic DMR sites could not explain the large number 
of differentially expressed genes observed, the Authors stated that the 
epigenetic regulatory sites associated with the DMR may influence 
distal gene expression through non-coding RNAs. Therefore, the 
hypothesis developing is that also the epigenetic pathogenesis of POF 
is a multifactorial phenomenon. 

Summary and Future Perspectives
In recent years, the candidate gene approach allowed identification 

of many genes and pathways involved in POF. However, known 
genetic alterations in POF patients are detected in only 20-25% of 
the cases originally classified as idiopathic. Therefore, the pathogenic 
mechanism of POF is still largely unknown. Certainly, high-throughput 
genome-wide studies are giving a large contribution for discovery 
novel POF genes and in the near future application of innovative next 
generation sequencing technology may open new prospects to decipher 
the multifactorial genetic etiology of POF. The final aim of this effort 
should be the development of a genetic test for early prediction of 
menopausal age, after further validation of candidate genes, linkage 
and association studies.

Presently, subtle changes in ovarian function with advancing 
age (i.e., serum concentrations of estradiol, progesterone, luteinizing 
hormone and activin as well as follicle dynamics) seem interesting 
but they are not clinically useful as predictive test. More long term 
prognostic ability has been attributed to family history, serum levels 
of AMH and FSH, and AFC [109]. To date, none of these markers is 
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able to early predict the evolution toward POF with a good diagnostic 
accuracy and only karyo type and FMR1 premutation testing are 
routinely used in counseling of infertility for women with idiopathic 
POI or belonging to POF families. 

Feasibility of a high quality, well powered genetic test may open the 
possibility of an efficient counseling service for female infertility and 
establish “ad hoc” interventions for the prevention of the consequences 
of POF. Moreover, those women being identified with a high risk of 
suffering from POF might make important decisions concerning their 
conception and eventually apply for fertility preservation techniques.
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