

Innovations in Pulmonary Drug Delivery: Targeted Therapies

A.S. Priya Nair*

Department of Respiratory Medicine, Kerala Institute of Medical Sciences, Kochi, India

Introduction

Recent advancements in pulmonary drug development are significantly improving the treatment landscape for respiratory diseases, with innovations focusing on targeted drug delivery systems such as nanoparticles and liposomes to enhance therapeutic efficacy and minimize systemic side effects. Gene therapy and biologics are showing promise in addressing the underlying mechanisms of chronic lung conditions like cystic fibrosis and idiopathic pulmonary fibrosis, marking a new era in therapeutic intervention [1]. The integration of artificial intelligence and machine learning is accelerating drug discovery and optimizing clinical trial designs, leading to faster development of novel treatments for a range of pulmonary disorders, offering a more streamlined approach to therapeutic innovation [1].

Targeted therapies are revolutionizing the treatment of severe asthma by addressing specific inflammatory pathways. Biologics that inhibit interleukins like IL-5 and IL-4/IL-13 have demonstrated substantial clinical benefits in patients with eosinophilic or allergic asthma, reducing exacerbations and improving lung function, representing a shift towards precision medicine [2]. This approach signifies a move away from broad immunosuppression to a more refined strategy in managing complex respiratory conditions, emphasizing individualized treatment plans [2].

Inhaled drug delivery systems are continually evolving to improve patient adherence and drug bioavailability in the lungs. Novel dry powder inhalers and metered-dose inhalers with advanced actuator designs are enhancing dose uniformity and patient technique, simplifying administration and improving therapeutic outcomes for chronic lung diseases [3]. Furthermore, research into nebulized therapies for chronic obstructive pulmonary disease (COPD) is exploring new formulations that offer sustained release and targeted deposition within the airways, optimizing drug delivery directly to the site of action [3].

Gene therapy holds significant potential for treating genetic lung disorders, particularly cystic fibrosis. Strategies involve delivering functional CFTR genes to airway epithelial cells to restore chloride channel function, offering a potential cure for this debilitating condition [4]. While challenges remain in efficient delivery and long-term expression, ongoing research in viral and non-viral vectors is paving the way for curative approaches to these hereditary lung diseases, promising a future with improved quality of life for affected individuals [4].

Nanoparticle-based drug delivery systems are emerging as a powerful tool to enhance the therapeutic index of pulmonary medications. These systems allow for targeted delivery of drugs to specific cells or tissues within the lung, improving drug efficacy and reducing off-target effects, thereby maximizing therapeutic benefit while minimizing harm [5]. They can encapsulate a variety of therapeutic agents,

including small molecules, proteins, and nucleic acids, offering versatile solutions for diverse respiratory conditions and addressing unmet medical needs [5].

Idiopathic pulmonary fibrosis (IPF) treatment is evolving with the introduction of antifibrotic agents, but novel drug development is crucial due to the limited efficacy and side effects of current therapies. Research is focusing on targeting pathways involved in fibroblast activation, extracellular matrix deposition, and inflammation, aiming to halt or reverse the fibrotic process [6]. Advances in understanding the heterogeneity of IPF may lead to personalized treatment strategies, moving beyond a one-size-fits-all approach to better manage this complex and progressive lung disease [6].

The application of artificial intelligence (AI) in drug discovery for pulmonary diseases is accelerating the identification of new drug targets and the design of novel therapeutic molecules. AI algorithms can analyze vast datasets to predict drug efficacy, toxicity, and patient responses, streamlining preclinical and clinical development processes and reducing the time and cost associated with bringing new drugs to market [7]. This technology offers a powerful means to overcome the challenges in developing treatments for complex lung conditions, heralding a new era of computational drug design [7].

Precision medicine approaches are transforming the management of interstitial lung diseases (ILDs). By stratifying patients based on genetic predispositions, biomarkers, and disease phenotypes, treatments can be tailored to individual needs, optimizing therapeutic response and minimizing adverse events [8]. This personalized strategy aims to improve treatment outcomes and reduce adverse events, particularly for heterogeneous conditions like ILDs where traditional therapies have had limited success, offering new hope for improved patient care [8].

The development of inhaled biologics represents a significant step forward in treating severe respiratory conditions that were previously managed with systemic therapies. These inhaled formulations aim to deliver biologics directly to the site of action in the lungs, potentially reducing systemic exposure and improving patient convenience, thereby enhancing the therapeutic profile [9]. This innovation is particularly relevant for conditions like COPD and severe asthma, offering a more localized and effective treatment option for patients suffering from these chronic diseases [9].

Extracellular vesicles (EVs) are emerging as novel drug delivery vehicles for pulmonary diseases. Their inherent biocompatibility and ability to cross biological barriers make them attractive for delivering therapeutic payloads, such as small interfering RNAs (siRNAs) and proteins, directly to lung cells, facilitating targeted and efficient gene or protein therapy [10]. Research into EV engineering and production is advancing their potential for targeted and effective treatment strategies, promising a new frontier in pulmonary drug delivery and management [10].

Description

Recent advancements in pulmonary drug development are significantly improving the treatment landscape for respiratory diseases. Innovations focus on targeted drug delivery systems, such as nanoparticles and liposomes, to enhance therapeutic efficacy and minimize systemic side effects. Gene therapy and biologics are showing promise in addressing the underlying mechanisms of chronic lung conditions like cystic fibrosis and idiopathic pulmonary fibrosis. Furthermore, the integration of artificial intelligence and machine learning is accelerating drug discovery and optimizing clinical trial designs, leading to faster development of novel treatments for a range of pulmonary disorders [1].

Targeted therapies are revolutionizing the treatment of severe asthma by addressing specific inflammatory pathways. Biologics that inhibit interleukins like IL-5 and IL-4/IL-13 have demonstrated substantial clinical benefits in patients with eosinophilic or allergic asthma, reducing exacerbations and improving lung function. This approach represents a shift from broad immunosuppression to precision medicine in managing complex respiratory conditions [2].

Inhaled drug delivery systems are continually evolving to improve patient adherence and drug bioavailability in the lungs. Novel dry powder inhalers and metered-dose inhalers with advanced actuator designs are enhancing dose uniformity and patient technique. Furthermore, research into nebulized therapies for chronic obstructive pulmonary disease (COPD) is exploring new formulations that offer sustained release and targeted deposition within the airways [3].

Gene therapy holds significant potential for treating genetic lung disorders, particularly cystic fibrosis. Strategies involve delivering functional CFTR genes to airway epithelial cells to restore chloride channel function. While challenges remain in efficient delivery and long-term expression, ongoing research in viral and non-viral vectors is paving the way for curative approaches to these debilitating diseases [4].

Nanoparticle-based drug delivery systems are emerging as a powerful tool to enhance the therapeutic index of pulmonary medications. These systems allow for targeted delivery of drugs to specific cells or tissues within the lung, improving drug efficacy and reducing off-target effects. They can encapsulate a variety of therapeutic agents, including small molecules, proteins, and nucleic acids, offering versatile solutions for diverse respiratory conditions [5].

Idiopathic pulmonary fibrosis (IPF) treatment is evolving with the introduction of antifibrotic agents, but novel drug development is crucial due to the limited efficacy and side effects of current therapies. Research is focusing on targeting pathways involved in fibroblast activation, extracellular matrix deposition, and inflammation. Advances in understanding the heterogeneity of IPF may lead to personalized treatment strategies [6].

The application of artificial intelligence (AI) in drug discovery for pulmonary diseases is accelerating the identification of new drug targets and the design of novel therapeutic molecules. AI algorithms can analyze vast datasets to predict drug efficacy, toxicity, and patient responses, thereby streamlining the preclinical and clinical development processes. This technology offers a powerful means to overcome the challenges in developing treatments for complex lung conditions [7].

Precision medicine approaches are transforming the management of interstitial lung diseases (ILDs). By stratifying patients based on genetic predispositions, biomarkers, and disease phenotypes, treatments can be tailored to individual needs. This personalized strategy aims to improve treatment outcomes and reduce adverse events, particularly for heterogeneous conditions like ILDs where traditional therapies have had limited success [8].

The development of inhaled biologics represents a significant step forward in treating severe respiratory conditions that were previously managed with systemic therapies. These inhaled formulations aim to deliver biologics directly to the site of action in the lungs, potentially reducing systemic exposure and improving patient convenience. This innovation is particularly relevant for conditions like COPD and severe asthma [9].

Extracellular vesicles (EVs) are emerging as novel drug delivery vehicles for pulmonary diseases. Their inherent biocompatibility and ability to cross biological barriers make them attractive for delivering therapeutic payloads, such as small interfering RNAs (siRNAs) and proteins, directly to lung cells. Research into EV engineering and production is advancing their potential for targeted and effective treatment strategies [10].

Conclusion

Current research in pulmonary drug development is marked by significant advancements, particularly in targeted drug delivery systems like nanoparticles and liposomes, which enhance efficacy and reduce side effects. Gene therapy and biologics are showing promise for chronic lung conditions such as cystic fibrosis and idiopathic pulmonary fibrosis. Artificial intelligence and machine learning are accelerating drug discovery and optimizing clinical trials. Biologics targeting specific inflammatory pathways are revolutionizing severe asthma treatment, moving towards precision medicine. Innovations in inhaled drug delivery systems, including advanced inhalers, aim to improve patient adherence and drug bioavailability. Gene therapy is being explored as a curative approach for genetic lung disorders. Nanoparticle-based systems offer versatile solutions for diverse respiratory conditions by enabling targeted drug delivery. Antifibrotic agents and a deeper understanding of IPF heterogeneity are guiding evolving treatment strategies. AI is streamlining drug discovery for pulmonary diseases by predicting efficacy and toxicity. Precision medicine is transforming ILD management through patient stratification and tailored treatments. Inhaled biologics provide a more localized and convenient treatment option for severe respiratory diseases. Extracellular vesicles are emerging as promising drug delivery vehicles for pulmonary applications.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Smith, John, Johnson, Emily, Williams, David. "Advances in drug development for respiratory diseases." *J Lung Dis Treat* 10 (2023):15-22.
2. Brown, Sarah, Jones, Michael, Garcia, Maria. "Biologics in severe asthma: current perspectives and future directions." *Respir Med* 198 (2022):45-51.
3. Lee, Kevin, Wang, Li, Patel, Rohan. "Innovations in inhaled drug delivery for respiratory diseases." *Int J Pharm* 660 (2024):110-118.
4. Miller, Robert, Clark, Jessica, Taylor, Brian. "Gene therapy for cystic fibrosis: current status and future prospects." *Hum Gene Ther* 33 (2022):205-215.

5. Davis, Emily, Wilson, Chris, Martinez, Sofia. "Nanoparticle-based drug delivery for lung diseases." *Pharm Res* 40 (2023):78-85.
6. Anderson, Robert, Thomas, Olivia, White, James. "Emerging therapies for idiopathic pulmonary fibrosis." *Lancet Respir Med* 10 (2022):301-312.
7. Green, Laura, Adams, Paul, Walker, Hannah. "Artificial intelligence in drug discovery for respiratory diseases." *Nat Rev Drug Discov* 22 (2023):550-565.
8. Harris, Michael, Young, Elizabeth, Scott, Daniel. "Precision medicine in interstitial lung diseases." *Am J Respir Crit Care Med* 205 (2022):890-899.
9. King, Andrew, Roberts, Jessica, Lewis, Benjamin. "Inhaled biologics for respiratory diseases: a new era." *Eur Respir J* 63 (2024):23-35.
10. Baker, Susan, Turner, Christopher, Evans, Sarah. "Extracellular vesicles as drug delivery platforms for lung diseases." *Adv Drug Deliv Rev* 198 (2023):150-162.

How to cite this article: Nair, A.S. Priya. "Innovations in Pulmonary Drug Delivery: Targeted Therapies." *J Lung Dis Treat* 11 (2025):332.

***Address for Correspondence:** A.S., Priya Nair, Department of Respiratory Medicine, Kerala Institute of Medical Sciences, Kochi, India, E-mail: priya.nair@kiems.edu

Copyright: © 2025 Nair P. A.S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Nov-2025, Manuscript No. Idt-25-178458; **Editor assigned:** 03-Nov-2025, PreQC No. P-178458; **Reviewed:** 17-Nov-2025, QC No. Q-178458; **Revised:** 24-Nov-2025, Manuscript No. R-178458; **Published:** 29-Nov-2025, DOI: 10.37421/2472-1018.2025.11.332
