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Introduction to Inflammatory Breast Cancer 
Inflammatory breast cancer (IBC) is arguably the most aggressive 

and persistent form of breast cancer known with 5- and 10-year 
disease-free survival rates of <42% and <20%, respectively [1-4].  IBC 
is extremely unique in its manifestation, presentation and molecular 
pathology [5-7]. This form of breast cancer affects younger women 
with a mean age of ~ 46 years old and is reported in girls as young as 
12 years old [8-10].

The term inflammatory breast cancer was first coined by Drs. Lee 
and Tannenbaum in 1924 to unite what was thought to be a number of 
individual cancers that affected younger women, under a single term 
[11]. However, the term “inflammatory” breast cancer is a misnomer, 
as the tumor lacks the conspicuous presence of immune effector cells 
[8,12]. The appearance of the disease does resemble that of an infection 
with a number of primary skin changes that occur including redness, 
thickening of the skin, erythema, peau d’ orange and warmth to the 
touch [7,8,11,12].  In addition, the breast size increases and can be sore, 
the nipple can invert and if advanced, the breast can become necrotic 
[7,8,11,12]. Patients report that the onset of these symptoms can occur 
within a very short period of time 24-48 hours.

A palpable mass is often missing in IBC.  Instead the primary 
tumor presents as diffuse cords or sheets in the breast [7,8,11,12].  IBC 
is highly lymph invasive and the main hallmark of the disease is lympho 
vascular invasion of the dermal lymphatic vessels of the skin overlying 
the breast [7,13,14].  It is suggested that the presence of the tumor 
emboli within the dermal lymphatic vessels cause edema and the skin 
changes described above.  However, physicians report a persistence 
of symptoms after treatment and apparent complete pathological 
response [15]. Unfortunately, due to the nature of these symptoms 
coupled with the rapidity of onset, IBC is often misdiagnosed as an 
infection and inappropriately treated [15,16].  IBC experts estimate 
that nearly 90% of IBC cases are initially misdiagnosed.

It is also suggested that the presence of tumor emboli in the dermal 

lymphatic vessels are responsible for the prolific metastasis associated 
with IBC.  By definition, IBC is a T4d tumor and is always diagnosed 
as a stage IIIb or IV tumor, with all women having lymph node 
involvement and nearly 1/3 having gross distant metastases in visceral 
organ, bone and brain [2,7,8,17]. The progression to advanced disease 
is extremely rapid, progressing from what appears to be normal breast 
to advanced disease within 6 months [7].

As stated above, IBC is molecularly distinct from other forms of 
breast cancer [5]. Our laboratory was the first to identify genes uniquely 
altered in IBC, particularly RhoC GTPase, which is over expressed in 
over 90% of IBC patient specimens [19]. We demonstrated that active 
RhoC GTPase is required to drive the invasive IBC phenotype through 
reorganization of the actin cytoskeleton [20,21]. Extensive analysis 
has shown that IBC expresses a unique gene profile compared to cell-
type of origin matched, stage matched or receptor status (eg. estrogen 
receptor/progesterone receptor (ER/PR) +, Her2+ or triple negative) 
non-IBCs [14,22]. Interestingly, many gene changes that are observed 
during progression of non-IBC are opposite for IBC [5,6]. For example, 
E-cadherin and caveolin-1 and -2 are over expressed in IBC compared
to non-IBC [13,26,27].

In addition to the unique molecular signature and route of 
dissemination, IBC tends to be resistant to therapy [3,28].  Recurrences, 
including chest wall recurrences, are common and often occur in soft 
tissue and visceral organ [29]. Because of this, many people believe that 
IBC emboli contain a large number of breast cancer cells with stem cell-
like properties. The SUM149 IBC cell line, emboli from the Mary-X 

Inflammatory Breast Cancer Stem Cells: Contributors to Aggressiveness, 
Metastatic Spread and Dormancy
Cynthia M. van Golen1 and Kenneth L.van Golen 2*
1Department of Biological Science, Delaware State University, USA
2Department of Biological Science, University of Delaware and The Helen F. Graham Cancer Center, USA

Abstract
Cancer stem cell populations have been identified for several types of cancers and suggest a way for tumor cells 

to be resistant to therapies.  Further, because of the longevity, endurance and replicative potential of cancer cells 
with stem-like properties, other malignant attributes such as recurrence after long periods of dormancy can also be 
explained. Inflammatory breast cancer (IBC) is a unique and aggressive form of breast cancer that has a clinical 
course unlike other forms of breast cancer.  The main hallmark of IBC is prolific invasion of the dermal lymphatic 
vessels by tumor emboli leading to rapid metastasis of the disease.  Despite an extremely aggressive treatment 
approach, the majority of women with IBC present with disease recurrence suggesting the presence of chemo 
resistant and/or dormant breast cancer cells.  Current evidence suggests that IBC tumor emboli contain distinct 
populations of cells with stem cell-like properties.  Thus, specific targeting of these stem cell-like cancer cells may 
be the key to effectively treating IBC.

Journal of Molecular 
Biomarkers & DiagnosisJo

ur
na

l o
f M

ole
cular Biomarkers &

Diagnosis

ISSN: 2155-9929



Citation: van Golen CM, van Golen KL (2012) Inflammatory Breast Cancer Stem Cells: Contributors to Aggressiveness, Metastatic Spread and 
Dormancy. J Mol Biomarkers Diagn S8:002. doi:10.4172/2155-9929.S8-002

Page 2 of 4

J Mol Biomarkers Diagn 								                  ISSN:2155-9929 JMBD an open access journal Potential Biomarkers and Therapeutic 
Targets in Cancer Stem Cells

xenograft model and IBC patient emboli are shown to contain a large 
population of cancer cells with a stem cell signature [30,31]. 

Cancer Stem Cells in Inflammatory Breast Cancer 
Cancer stem cells became a wide spread interest with the 

identification of putative stem cells in leukemia [32]. Since that time, 
cancer stem cells have been identified for multiple hematologic and 
solid tumors, including breast, prostate, brain, skin, liver, and lung 
tumors [33]. As with all stem cells, tumor stem cells have prolonged 
self-renewal capacity and the potential to produce progeny that will 
differentiate into specialized cells of the tissue of origin [34]. The original 
determination of a cancer stem cell population was based upon the 
ability of those cells to reform a tumor in vivo, usually experimentally 
determined through serial injection into immune compromised 
experimentally [34,35].  Based upon these criterion, tumor stem cells 
are also known as tumor-initiating cells [33]. However, cancer stem 
cells are also closely linked to more advanced tumor phenotypes, 
including angiogenesis, chemo resistance, and metastases [33,36,37].

Several markers have been identified in cancer stem cells, including 
those from breast carcinoma.  CD44 is considered a stem cell marker 
for several tumors, including bladder, breast, colon, and head and 
neck.  CD133 is another common marker, found in stem cells from 
colon carcinoma, Ewing’s sarcoma, and pancreatic cancer.  In breast 
carcinomas, the absence of CD24 is also indicative of a stem cell 
phenotype [34,38]. In addition to these markers, signal transduction 
pathways involved in the breast cancer stem cell phenotype have been 
elucidated. Notch signaling, involved in differentiation and cell fate 
determination during development, is up-regulated in breast cancer 
stem cells and correlates with the CD44+/CD24- marker phenotype 
[39].  Furthermore, inhibition of Notch signaling abrogates cancer 
stem cell self-renewal [39]. Tumor necrosis factor alpha (TNF), acting 
through the nuclear factor kappa B (NF-κB) signaling pathway, up-
regulates SLUG, a mediator of the epithelial to mesenchymal transition 
in breast cancer cells.  SLUG up-regulation in turn promotes a stem 
cell phenotype within breast cancer cells [40]. Additional pathways 
implicated in the breast cancer stem cell phenotype include those of 
aldehyde dehydrogenase [41], bone morphogenic protein (BMP), Wnt 
[42] and ganglioside GD2 [43].

As previously discussed, IBCs are highly aggressive and metastatic 
at diagnosis. Given the aggressive nature of this tumor, it is not 
surprising that experimental evidence supports the involvement of 
breast cancer stem cells in its progression.  Tumor cells isolated from 
the MARY-X model of human IBC express both embryonal stem cell 
markers (Nestin, Rex1, and Stellar) and the classic breast cancer stem 
cell signature (CD44+/CD24-/CD133+/aldehyde dehydrogenase1 
(ALDH1)+) [31]. Furthermore, 74% of human IBC samples contain a 
genetic signature indicative of a high cancer stem cell composition, as 
opposed to 44% of non-IBC samples [42]. Stem cell-related signaling, 
particularly through Hedgehog and transforming growth factor 
beta (TGFβ), is also more active in IBC vs. non-IBC samples [42]. 
Nestin, a protein primarily associated with neural stem cells, is highly 
expressed in both triple negative and IBC tumors [44]. As with other 
types of breast tumors, ALDH1 is highly up-regulated in IBC, and its 
expression correlates with increased metastasis and decreased survival 
[30]. Finally, IBCs express a unique microRNA (miRNA) profile, and 
several of these miRNAs are also expressed in tumor stem cells [45]. 
Therefore, the presence of high stem cell content in IBC may contribute 
to the aggressive nature of this disease, but may also offer attractive 
therapeutic targets.

Farnesyl Transferase Inhibitors as Potential Cancer 
Stem Cell-Targeted IBC Therapeutics

Farnesyl transferase inhibitors (FTIs) were originally developed 
to target Ras-based tumors [46]. However, their performance in the 
clinic was disappointing thus, attention turned to non-Ras targets, 
specifically Rho GTPases [47,48].  In a study of the effects of FTIs on 
the SUM149 IBC cell line, we observed a significant, but reversible, loss 
of RhoC GTPase-mediated motility and invasion [49]. These results 
strongly suggest that FTIs could be used as novel adjuvant therapy for 
IBC [49].

Interestingly, FTI-treated IBC cells exhibited a unique spread 
and flattened morphology with pronounced actin stress fibers [49]. 
This unique morphology is reminiscent of what is described for an in 
vitro model of breast cancer cell dormancy [51]. Interestingly in this 
model, RhoA GTPase activity was decreased [52,53]. RhoA and RhoC 
GTPases tended to have opposing actions in tumor cells, exhibiting a 
balance between inactive and active forms of the two GTPases [54,55]. 

The mechanisms of tumor cell dormancy are currently not well 
understood.  In a recent study from our laboratory we demonstrated 
that treatment of MCF-7 non-IBC cells with FTI L-422,831, leads to a 
phenotype reminiscent of dormancy [56,57]. Further, FTI treatment 
of the MCF-7 cell line leads to profound changes in Rho GTPase 
activation [56,57].  Specifically, RhoA GTPase becomes hypoactivated 
while RhoC GTPase becomes hyperactivated, producing radical 
changes in the cell cytoskeleton and cellular morphology identical to 
what was observed in the FTI-treated SUM149 IBC cells [49]. 

Similar to what is observed for the in vitro model [51,52], FTI-
induced dormancy is reversible [49,56,58]. Upon FTI withdrawal 
cells grow normally after exiting from nearly two weeks of dormancy 
[56]. FTI-treated cells have minimal metabolic activity and undergo 
autophagy [56]. Autophagy is the process where a cell degrades 
organelles such as mitochondria to expend less energy avoiding 
apoptosis [59]. Autophagy is regulated through the extracellular matrix 
and is suggested to be required for dormancy [60-62].  In addition, 
activation of the c-jun NH2 terminal kinase (JNK/SAPK) signaling 
pathway occurs during autophagy [63,64]. Increased RhoC GTPase 
activation during FTI treatment increases JNK/SAPK signaling leading 
to breast tumor cell dormancy [56].

Stem cell associated markers such as ALDH1 and CD44 are shown 
to be expressed by a subpopulation of cancer cells in both tumors and 
cells lines [65-67]. It is suggested that breast cancer cells with stem 
cell-like properties are responsible for metastatic spread [68,69], while 
RhoC GTPase is expressed by highly metastatic cancer cells that exhibit 
“stemness” properties [30,70]. Cancer stem cells have also been linked 
to dormancy.  It is thought that a metastatic stem cell, arriving in a 
non-conducive microenvironment undergo prolonged dormancy until 
an event such as a cytokine storm or extracellular matrix remodeling 
re-activate cancer cells [68]. Breast cancer cells undergoing post-FTI-
treatment dormancy, express ALDH1 and CD44, suggesting that breast 
cancer stem cells are susceptible to FTI-induced dormancy [57]. This 
phenotype is due to the activation of JNK/SAPK signaling resulting 
from increased RhoC activation. The activation of JNK/SAPK signaling 
in turn may lead to induction of autophagy allowing the breast cancer 
cells to remain inactive.  These studies may have profound implications 
for the use of FTIs in the clinic.  Potentially, FTI-induced dormancy 
could synchronize tumor cells; with FTI withdrawal would allow 
growth making the cells more susceptible to chemotherapeutics.  
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Conclusions
The presence of cancer stem cells in epithelial tumors, including 

IBCs, is now widely accepted, and laboratories are now therapeutically 
targeting several of the proteins associated with stem cell phenotypes.  
Breast cancer stem cells are highly resistant to traditional radio- and 
chemotherapy. ALDH1 can metabolize chemotherapeutic drugs, and 
CD44+/CD24- cells are enriched in remaining breast tumor tissue 
following chemotherapy [71].  Targeting HER2, a receptor thought to 
aid in the stem cell phenotype, may decrease this particular population 
of cells [69,70]. Small hairpin (sh) RNA targeting CD44 induces breast 
cancer stem cells to differentiate, resulting in a lower tumorigenic 
potential [70]. This putatively could reintroduce chemo-susceptibility 
in these breast cancer cells.  In melanoma, antibodies targeting CD20 
are effective at reducing the stem cell population and causing metastases 
to regress [71]. Therefore, antibodies or specific inhibitory agents 
targeting CD44, ALDH1, or other stem cell-like markers in IBC could 
be beneficial at reducing the aggressive progression of this disease.
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