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Abstract
A role for inflammation in the pathogenesis of Alzheimer's disease (AD) has been a matter of debate since 

the beginning of AD research in 1907. Over the past three decades immunohistochemical studies demonstrated 
that amyloid plaques are co-localized with activated microgliaas well as a broad spectrum of inflammation-related 
proteins (complement factors, acute-phase proteins, pro-inflammatory cytokines) spurring the hypothesis that 
amyloid plaques may benests of a non-immune mediated inflammatory reactions induced by fibrillar Aβ deposits. 
However, molecular studies also suggest that inflammation-related proteins are involved in Aβ generation and 
clearance, gliosis and increased phosphorylation of tau with accelerated tangle formation, i.e. several events 
considered key pathogenic steps in AD. In line with both notions, neuropathological studies show a close relation 
between fibrillar  Aβ deposits, inflammation and neuroregeneration in relatively early stages preceding extensive 
tau-related neurofibrillary changes. Genetic studies address the issue of reverse causation and thus can help clarify 
the temporal relation between inflammatory changes and AD. In this review article we summarize the findings on 
inflammatory genes from the large scale genetic studies in AD and discuss directions for future research.
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Introduction
A role for inflammation in the pathogenesis of Alzheimer's 

disease (AD) has been a matter of debatesince the beginning of AD 
research. In 1910, although lacking the tools to pursue this hypothesis 
experimentally, Oskar Fischer suggested that senile plaques form as 
the result of an extracellular deposition of an abnormal substance in 
the cortex. He proposed that accumulation of this substance induces 
a local inflammatory reaction followed by an attempted but doomed 
regenerative response of the surrounding nerve fibers. Seven decades 
later, the presence of complement factors and activated microglia in 
plaques has been demonstrated using monoclonal antibodies stipulating 
the notion that Aβ itself can stimulate a local inflammatory response 
[1]. This views supported by in vitro studies showing that fibrillar  Aβ 
can bind complement factor C1 and activate the classical complement 
pathway in an antibody-independent fashion [2]. Such activated early 
complement factors could play an important role in the local recruitment 
and activation of microglial cells expressing the complement receptors 
CR3 and CR4 [3]. Aβ activates microglia by binding to the receptor 
for advanced glycation end products (RAGE) [4] as well as other 
scavenger receptors [5]. In addition, the LPS receptor, CD14, interacts 
with fibrillar Aβ [6] and microglia destroys Aβ1–42 damaged neurons 
by a CD14 dependent process [7]. Fibrillar Aβ has been shown to 
increase cytokine and nitric oxide production in microglia dependent 
on CD14, TLR2 and TLR4 [8]. Aβ also triggers inflammatory signaling 
through heterodimer formation of Toll-like receptor 4 and 6 [9]. 
However, molecular studies also suggest that inflammation-related 
proteins are involved in several events considered key pathogenic 
steps in AD [10]. Chronic inflammation and cytokine up-regulation 
induce tau hyperphosphorylation in prepathological 3xTg-AD mice 
[11]. In addition, studies [12-14] indicate that inflammatory processes 
are involved in clearing or degrading Aβ depositions. The deficiency 
of CCR2, a chemokine receptor, impairs microglia accumulation and 
increases Aβ deposition in amyloid precursor protein (APP)-transgenic 

mice, indicating a role for microglia in regulating Aβ accumulation 
[15,16]. On the other hand, chronic lipopolysaccharide (LPS)–induced 
neuroinflammation increases intraneuronal Aβ load in transgenic 
mice, [17] possibly through the release of proinflammatory cytokines 
and other toxic speciesand the subsequent exacerbation of AD-related 
pathological features.

Based on these findings, inflammation could be both cause or 
consequence of the disease process. Clinicopathological studies show 
that the presence of activated microglia and inflammation-related 
mediators in the cerebral neocortex of patients with a low Break 
stage for AD pathology precedes extensive tau-related neurofibrillary 
pathology [18]. Studies using positron emission tomography (PET) 
with the peripheral benzodiazepine receptor ligand PK-11195 as a 
marker for activated microglia indicate that activation of microglia 
occurs before cerebral atrophy in AD patients [19]. In line with this 
notion of an early involvement of inflammation and immune response 
in the disease etiology, aPET study using the Pittsburg compound B 
(PIB) for visualization of fibrillar amyloid and the PK-11195 ligand 
for microglia activation detected amyloid deposition with microglia 
activation in ~50% of patients with mild cognitive impairment [20]. 
Of note, there is evidence that brain Aβ loadas measured by PIB 
labeling is correlated with peripheral acetylcholinesterase (AChE) 
levels [21]. Elevated AChE levels, in turn, are prevalent in AD and 
lead to the commonly seen decreased acetylcholine levels. The fact that 
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In the periphery, CD33 appears to inhibit proliferation of myeloid cells 
[35]. The MS4A4A/MS4A4E/MS4A6E locus is part of a cluster of 15 
MS4A genes on chromosome 11 and encodes proteins with multiple 
membrane-spanning domains that were initially identified by their 
homology to CD20, a B-lymphocyte cell surface molecule. Little is 
known about the function of MS4A4A gene products; however, like 
CD33, MS4A4A is expressed on myeloid cells and monocytes and 
likely has an immune-related function. EPHA1 encodes a member of 
the ephrin family of cell surface receptors which interact with ephrin 
ligands on adjacent cells to modulate cell adhesion, migration, and 
axon guidance and synapse formation and plasticity. While there 
is a substantial body of research on the function of ephrin receptors 
in general, little is known about the EPHA1 gene product. Like 
other ephrin receptors, it regulates cell morphology and motility 
[36] and early work implicated this receptor in regulating vascular 
morphogenesis and angiogenesis [37]. EPHA1 knockout in mouse 
results in abnormal tail and reproductive tract development, [38] but no 
effects on the brain. Consistent with this notion, in mouse, expression is 
restricted to epithelial tissue. In humans, EPHA1 is expressed by CD4-
positive T- lymphocytes [39], monocytes, [40] intestinal epithelium, 
and colon. Combined with the lack of evidence for brain expression 
this may suggest that, like CD33, CR1, and MS4A4/MS4A6E, the 
role of the EPHA1gene product in AD may be mediated though the 
immune system.The CD2 associated protein gene (CD2AP) encodes 
a scaffolding protein that binds directly to actin [41], nephrin and 
other proteins involved in cytoskeletal organization. In the immune 
system, CD2AP is required for synapse formation [42] in a process 
that involves clathrin-dependent actin polymerization. ABCA7 is an 
integral transmembrane ATP-binding cassette transporter belonging 
to the ABC family proteins that mediate the biogenesis of high-density 
lipoprotein with cellular lipid and helical apolipoproteins [43]. It binds 
APOA-I and functions in apolipoprotein-mediated phospholipid and 
cholesterol efflux from cells [44]. However, ABCA7also affects the 
transport of other important proteins, including APP, [44] through 
the cell membrane and is involved in host defense through effects on 
phagocytosis by macrophages of apoptotic cells [43].

In the largest GWAS performed to date in Caribbean Hispanics 
[45] associations in CLU,PICALM, and BIN1 were replicated and 
several additional loci on 2p25.1, 3q25.2, 7p21.1 and 10q23.1 - which 
could be replicated in an independent cohort of non-Hispanic Whites 
of European ancestry from the National Institute on Aging Late-Onset 
Alzheimer's Disease Family Study (NIA-LOAD) were observed. In the 
largest GWAS of African Americans performed to date, Reitz et al. [46] 
identified ABCA7 as a major susceptibility locus in this ethnic group 
and replicated CR1. 

acetylcholine blocks inflammatory mechanisms suggests that ACH 
inhibitors, which constitute four out of the five drugs approved for 
treatment, may also be beneficial through an effect on this this pathway.
In summary, it is likely that some components of the molecularly and 
cellularly inflammation pathway are promoting pathological processes 
leading to AD, whereas other components serve to do the opposite (in 
more detail reviewed in [22,23]). 

Through Mendelian randomization, genetic studies address the 
issue of reverse causation and thus can help clarify the causal and 
temporal relation between inflammatory changes/immune response 
and AD. In this review article we summarize findings on inflammatory 
genes from large scale genetic studies in AD and discuss directions for 
future research.

Findings from Genetic Studies 
In the beginning of the century, thousands of candidate-gene-based 

association studies aiming to identify susceptibility loci for late-onset 
AD were performed but only one gene, the sortilin-related receptor 
(SORL1) which is implicated in intracellular trafficking of APP, could 
be consistently replicated in independent datasets and implicated in 
the disease. The main reasons for these inconsistencies between studies 
are sample heterogeneity with differences in linkage disequilibrium 
(LD) patterns and allele frequencies, and small sample sizes leading to 
limited power to detect small or moderate effect sizes. In the past five 
years, technological advances in high-throughput genome-wide arrays 
allowed the hypothesis-free simultaneous examination of thousands 
to millions of polymorphisms across the genome.Large collaborative 
efforts capitalizing on this technology have significantly advanced the 
knowledge on the genetic underpinnings of late-onset Alzheimer’s 
disease (LOAD) and pathways involved by identifying several 
novel risk loci. Of note, besides genes clearly clustering in the lipid 
metabolism, intracellular trafficking and APP metabolism pathways, 
several of the identified genes cluster in the inflammation/immune 
response pathway. 

Most genome-wide association studies (GWAS) contributing to 
this gained knowledge were performed in non-Hispanic Whites of 
European ancestry. The first set of studies identified four genes (CLU, 
PICALM, CR1 and BIN1) as AD susceptibility loci [24-26]. While CLU, 
also known as a polipoprotein J (ApoJ), is similar to APOE involved in 
lipid transport [27] and is also hypothesized to act as an extracellular 
chaperone that influences Aβ-aggregation and receptor-mediated 
Aβ clearance by endocytosis [28], and BIN1 [29] and PICALM [30] 
are involved in clathrin-mediated endocytosis, CR1 is a cell-surface 
receptor that is part of the complement system.It has binding sites for 
complement factors C3b and C4b and is involved in clearing immune-
complexes containing these two proteins. Since Aβ oligomers can bind 
C3b as described above, CR1 may participate in the clearance of Aβ and 
play a role in neuroinflammation in AD [31]. Interestingly, Clu may 
play a role in this process as an inhibitor [32]. 

The second set of large GWA studies identified five additional 
susceptibility genes (CD33, MS4A4A/MS4A4E/MS4A6E cluster, 
ABCA7, CD2AP and EPHA1 [33,34] out of which all are likely involved 
in the immune system (Table 1). The CD33 gene encodes a protein 
that is a member of a family of cell surface immune receptors that bind 
extracellular sialylatedglycans and signal via a cytoplasmic domain 
called the immune receptor tyrosine inhibitory motif [33,34]. CD33 
has primarily been studied in the peripheral immune system where it is 
expressed on myeloid progenitors and monocytes and also in the brain. 

Gene Chr Position Disease-associated SNP

CR1 1 207692049 rs6656401

CD2AP 6 47487762 rs10948363

EPHA1 7 143110762 rs11771145

CLU 8 27467686 rs9331896

MS4A6A 11 59923508 rs983392

ABCA7 19 1063443 rs4147929

CD33 19 51727962 rs3865444

TREM2 6 41129252 rs75932628

Table 1: Inflammatory pathway genes associated with Alzheimer’s disease.
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Based on genotyping chip and quality control design, GWAS by 
definition capture mostly common genetic variation with small to 
moderate effect sizes. In line with this notion, all abovementioned AD-
associated variants outside the APOE locus that have been identified by 
GWAS are common and have small effect sizes (1.0<OR<1.2) leaving 
a large part of the genetic contribution to the disease unexplained. It is 
likely that much of the ‘missing heritability’ is explained by rare genetic 
variants with a minor allele frequency (MAF) below 1% [47]which 
are commonly excluded from GWAS. Moreover, imputation, which 
is used to infer non genotyped variants, often fails to show acceptable 
accuracy at low MAF (i.e. MAF<0.3) [48]. 

In line with this notion, two recent studies that performed 
genome sequencing followed by imputation of identified variants in 
independent datasets implicated the triggering receptor expressed 
on myeloid cells 2 (TREM2) gene in AD by identifying a causative 
rare missense mutation (rs75932628) which results in an R47H 
substitution and confers a threefold increase in risk. The TREM2 gene 
istranslated into a type-I membrane protein with an extracellular Ig-
like domain and was first described as potentially involved in chronic 
inflammation response [49]. TREM2 is widely expressed in the brain, 
on myeloid and natural killer cells, some T and B cells and osteoclasts. 
Its signaling capacity is carried out through coupling with DAP12, 
a cytosolic adapter with dual function (activation and inhibition of 
several immune cell types)resulting in cytokine production regulation 
[50]. This regulatory effect is thought to be fundamental for regulating 
microglia activity which in turn enhances development ofamyloid 
plaques, the key pathological hallmark in AD [51]. Of note, a loss of 
function of TREM2 had been previously described to be associated 
with an autosomal recessive form of early-onset dementia presenting 
with bone cysts and quasi-spontaneous fractures called “polycystic 
lipomembranous osteodysplasia with sclerosing leukoencephalopathy” 
or “Nasu–Hakola disease” [52]. Other homozygous TREM2 mutations 
have been described in patients presenting with frontotemporal-like 
dementia [53]. Besides implicating this gene in the disease, these two 
studies provided significant confirmation that not only common but 
also rare variants are involved in late-onset AD.

Conclusions and Future Perspective
The genetic studies from the past decade have added a significant 

body of evidence for a causative involvement of inflammation and 
the immune system in AD etiology through identification of several 
disease-associated genes functioning in this pathway. The recent 
advances in next generation whole exome (WES) and whole genome 
sequencing (WGS) will help to identify specific disease-associated 
alleles in these genes. In addition, it is likely that, besides identifying 
additional genes that are part of other pathways involved including 
lipid metabolism, intracellular trafficking and APP metabolism, they 
will identify further common and rare variants in inflammation- and 
immune response-related genes that will explainpart of the heritability 
still missing. 

It is important to note that before the known information on genes 
involved is used in clinical settings several additional issues have to 
be clarified. First, it has to be clarified at what stage of the AD disease 
process the inflammation-related risk genes might exert its effect. 
Recent high throughput transcriptome studies based on hippocampal 
neurons indicate an early-stage involvement of inflammatory 
regulators [54]. Second, more functional validation of these genes 
is needed. Before any of the identified genes can be safely used as a 
target for prevention, treatment or diagnostic testing, it has to be fully 

clarified through which mechanisms theyexert their effects on AD risk, 
in which other pathways they are involved and interact with, and which 
effects a modulation of their function would have. 
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