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Introduction
To deal with effluents, the traditional end-of-pipe solutions 

coming out of the production plant have gradually been substituted for 
an increased decentralized approach to treat the selected wastewater 
streams in the most effective and economical way [1]. Further, 
additional goals like reducing the overall effluent emissions by recycling 
the treated wastewater towards zero-discharge strategies or minimizing 
waste generation and disposal costs have gradually been incorporated 
to both water and wastewater management approach. The future of 
industrial wastewater treatment has two main targets:

a. Monitoring and abatement of trace pollutants;

b. Further development of the existing and new wastewater
treatment technologies in order to minimize the costs and
optimize resource consumption.

Environmental pollution is the most atrocious ecological crisis 
that man is facing today. Pollution is a global intimidation to the 
environment and it becomes an alarm word of today’s world. The swift 
growth of human populations fulled by scientific developments in 
health and agriculture has led to a speedy increase in the environmental 
pollution. Water has a major impact on all aspects of human life, 
including but not limited to health, food, energy and the economy. The 
unprecedented inhabitants’ multiplies and the industrial development 
during the 20th century has not only increased the conventional solid 
and liquid waste pollutants to critical levels but also produced a range 
of previously unknown pollution problems for which the society was 
unprepared. Of the total 220 million deaths per year it was estimated 
that the causes of death in 12-20 million are due to water and non-
fatal infections which is very high [2]. The run- off flow is considered 
to be the freshwater source on which the people depend. The steady 
flow of fresh water was estimated at 12.700 to 16.000 km3 year which 
is 4200 km3 per year. It is used for freshwater irrigation, industrial and 
domestic purposes, and that is estimated to increase by a number of 
4350-5200 km3 per year. Alternatively, the available fresh water is only 
0.5% of the worlds 1.4 billion km3 water, which is also poorly distributed 
throughout the world [3]. There is a limited ability to increase the 
supply of drinking water due to the competing demands of the growing 
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populations worldwide and, the problems related to water. It is expected 
to further increase due to climatic changes and population growth 
over the next two decades. The most common method of wastewater 
treatment in the developed countries is centralized aerobic wastewater 
treatment plants and lagoons for both domestic and industrial waste 
water. It is estimated that the world's population increases roughly 
by 2.9 billion people between now and 2050. The lack of delivery of 
drinking water is the result of the use of water resources for domestic, 
industrial and irrigation purposes by many due to growing global 
demand for food, energy, etc. and will be much more increased as a 
result population growth and the further threat of climate changes 
[4]. The polluted surface/ground water resources, is another cause of 
reduced fresh water supplies. The aquifers worldwide are thinner and 
are contaminated as a result of many problems of intrusion of salt water, 
soil erosion, lack of hygiene, contamination of soil/surface water algae 
growth, detergents, fertilizers, pesticides, chemicals, heavy metals, and 
so on. The domestic wastewater can also be treated on site using septic 
systems. It is an advanced system which can treat wastewater from one 
or more households. It consists of an anaerobic underground tank 
and the drainage field for the treatment of effluent from the tank. The 
quantity of wastewater treatment varies in many developing countries 
[5]. In some instances, the industrial waste water is discharged directly 
into water bodies, while large industrial facilities can have a full race 
treatment. In some coastal cities, the domestic wastewater is discharged 
directly into the ocean. Waste pits are lined or unlined holes to a depth 
of several meters, which can be equipped for comfort. Figure 1 shows 
the different ways for wastewater treatment and discharge.
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Wastewater treatment technologies

In waste water treatment technology, various physical, chemical 
and biological pre-treatment and after treatment can be used to treat 
raw wastewater. Physico-chemical techniques include membrane 
filtration, coagulation, flocculation, precipitation, flotation, adsorption, 
ion exchange, mineralization, advanced oxidation, electrolysis and 
chemical reduction. Biological treatment systems effectively remove 
toxic pollutants of large volumes of wastewater at low costs and are 
preferred alternatives [6]. Biological techniques, including biosorption 
and bio degradation in aerobic, anaerobic or combined aerobic/
anaerobic treatment processes of bacteria, fungi, plants, yeasts, algae 
and enzymes are known. Generally, the wastewater is highly colored 
with high biological oxygen demand and chemical oxygen demand 
and has high conductivity and is alkaline in nature [7]. For this reason, 
several factors determine the technical and economic feasibility of each 
removal techniques such as pigment type dyes, wastewater composition, 
dose and cost of the necessary chemicals, operating costs (energy and 
materials), environmental fate, and handling costs of generated waste 
products. Usually, it may not be sufficient to obtain full use of one of 
the individual processes, because each method has its limitations. The 
type treatment is choosed based on several factors such as the type of 
pollutants that should be treated, composition of the wastewater, the 
cost of the necessary chemicals and operation costs, handling and 
costs of the waste product generated [8]. Contemporaneous with the 
in-house multi-dimensional pollution minimization efforts, a number 
of emerging material recovery/reuse and end-of-pipe wastewater 
treatment technologies are being projected and explored at different 
stages of commercialization. Accordingly, despite the fact that 
virtually all the known physico-chemical and biological techniques 

have been explored for wastewater treatment, none has emerged as 
a panacea. Cost-competitive biological options are rather ineffective 
while physico-chemical processes are restricted in scale of operation 
and pollution profile of the effluent [9]. Figure 2 depicts a simplified 
representation of the proposed combinations.

This article gives an inclusive overview of the impending of 
hybrid technology for treating wastewater. Analogously to the above 
trends, the combinations were placed in the three broad categories, 
i.e., a combination of the advanced oxidation process, a combination
of physico-chemical treatments between themselves and those with
advanced oxidation process, and the one of primary importance, is the
combination of biological systems with conventional physico- chemical 
processes and advanced oxidation process (Figure 3).

The hazardous organic waste that is widely spread in water by 
industrial and domestic sources is an emerging issue [10]. Advanced 
Oxidation Processes (AOP) are efficient methods that remove the 
non degradable organic pollutants by means of biological processes. 
They involve the production of extremely reactive oxygen species 
that are able to obliterate a broad choice of organic compounds [11]. 
AOP are driven by an external energy sources such as electric power, 
ultraviolet radiation or solar light, so these processes are often more 
costly than traditional biological wastewater treatment. Furthermore, 
the AOP can be applied for the disinfection of water, air and for 
remediation of contaminated soils [12-15]. Table 1 lists the advantages 
and disadvantages of different individual techniques. It appears that 
a single, universally applicable end-of-pipe solution is unrealistic, and 
combination of different techniques is required to devise a technically 
and economically viable choice. In light of this, the researchers have 
put forward a wide range of hybrid decolorization techniques.

Figure 1: Domestic/industrial wastewater treatment system and discharge scheme.
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Process Advantages Disadvantages References

(A) Biological Cost-competitive option. Direct, disperse and basic dyes 
have high level of adsorption on to activated sludge

Dyes are generally toxic and very resistant to bio 
degradation. Acid and reactive dyes are highly water-
soluble and have poor adsorption on to sludge.

[16]

(B) Coagulation Economically feasible; satisfactory removal of disperse, 
sulphur and vat dyes.

Removal is pH dependent; produces large 
quantity of sludge. May not remove highly soluble 
dyes; unsatisfactory result with azo, reactive, acid 
and basic dyes.

[17-19]

(C) Activated C adsorption Good removal of wide variety of dyes, namely, azo, 
reactive and acid dyes; especially suitable for basic dye.

Removal is pH dependent; unsatisfactory result 
for disperse, sulfur and vat dyes.

Regeneration is expensive and involves 
adsorbent loss; necessitates costly disposal.

[20]

(D) Ion exchange Adsorbent can be regenerated without loss, dye 
recovery conceptually possible.

Ion exchange resins are dye-specific; 
regeneration is expensive; large-scale dye 
recovery cost-prohibitive.

[21,22]

(E) Chemical oxidation Initiates and accelerates azo-bond cleavage.

Thermodynamic and kinetic limitations along 
with secondary pollution are associated with 
different oxidants. Not applicable for disperse 
dyes. Negligible mineralization possible, release 
of aromatic amines and additional contamination 
with chlorine (in case of NaOCl) is suspected.

[23]

(F) Advanced oxidation processes (AOP)
Generate a large number of highly reactive free 
radicals and by far surpass the conventional oxidants 
in decolorization

AOPs in general may produce further undesirable 
toxic byproducts and complete mineralization may 
not be possible. Presences of radical scavengers 
reduce efficiency of the processes some of 
which are pH dependent. Cost-prohibitive at their 
present stage of development. 

[23,24]

(1) UV/O3

Applied in gaseous state, no alteration of volume. 
Good removal of almost all types of dyes; especially 
suitable for reactive dyes. Involves no sludge formation, 
necessitates short reaction times.

Removal is pH dependent (neutral to slightly 
alkaline); poor removal of disperse dyes. 
Problematic handling, impose additional loading 
of water with ozone.

Negligible or no COD removal. High cost of 
generation coupled with very short half-life and 
gas-liquid mass transfer limitation

[25-30]

(2) UV/H2O2
Involves no sludge formation, necessitates short 
reaction times and COD reductionmay be possible to 
some extent.

Not applicable for all dye types, requires 
separation of suspended solid and suffers from 
UV light penetration limitation. Lower pH required 
to nullify effect of radical scavengers.

[31]

(3) Fenton’s reagent

Effective decolorization of both soluble and insoluble 
dyes; applicable even with high suspended solid 
concentration. Simple equipment and

easy implementation. Reduction of COD (except with 
reactive dyes) possible.

Effective within narrow pH range of <3.5; and 
involves sludge generation.

Comparatively longer reaction time required
[32]

(4) Photocatalysis No sludge production, considerable reduction of COD, 
potential of solar light utilization.

Light penetration limitation, fouling of catalysts, 
and problem of fine catalyst separation from the 
treated liquid (slurry reactors)

[33]

(5) Electrochemical
Effective decolorization of soluble/insoluble dyes; 
reduction of COD possible. Not affected by presence of 
salt in wastewater.

Sludge production and secondary pollution 
(from chlorinated organics, heavy metals) are 
associated with electrocoagulation and indirect 
oxidation, respectively.

Direct anodic oxidation requires further 
development for industrial acceptance.

High cost of electricity is an impediment. 
Efficiency depends on dye nature.

[34]

Table 1: Advantages and shortcomings of individual dye wastewater treatment techniques.

AOP refer to a set of oxidative water treatments that can be used 
to treat toxic effluents at industrial level and wastewater treatment 
plants. AOP are flourishing to transform toxic organic compounds into 
biodegradable substances. In general AOP are economical to set up but 
comprise high operating fixed cost due to the input of chemicals and 
requirement of the power required [35-40]. To limit the costs, AOP are 
often used as pre-treatment mixed with biologic treatment. Advanced 
oxidation was recently used as quaternary action or a shining step to 
remove micro-pollutants from the effluents of municipal wastewater 
treatment plants and for the disinfection of water. The combination 
of several AOP is an efficient way to increase the removal of pollutants 
and in reducing the costs [41-43].

Advanced oxidation process system

Advanced oxidation involves several steps represented 
schematically in the figure below and explained as follows:

1. Formation of strong oxidants.

2. The reaction of these oxidants with organic substances in water
to produce biodegradable intermediates.

3. Further reaction of biodegradable intermediates with oxidants
leading to mineralization.
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Figure 3: Advanced Oxidation Process Scheme.

Figure 2: Simplified representation of broad spectrum of combinations proposed in the literature.

Advanced oxidation process combination

AOS have been calculated extensively for wastewater treatment but 
their commercialization has not yet been realized because of prevailing 

barriers. These processes are prohibitively expensive and complex at 
the current level of development. Additional obstacle in the waste water 
treatment is the existence of relatively high concentration of colorants, 
and AOS are the only effective ways for wastewater treatment [44-50]. 

Adv Recycling Waste Manag, an open access journal
ISSN: 2475-7675



Citation: Shah MP (2016) Industrial Wastewater Treatment: A Challenging Task in the Industrial Waste Management. Adv Recycling Waste Manag 
2: 115. DOI: 10.4172/2475-7675.1000115 

Page 5 of 11

Volume 2 • Issue 1 • 1000115

Thus, significant dilution is necessary, as a requirement of the device. 
The presence of dye additives/impurities such as synthetic precursors, 
by-products, salts and dispersing agents in a commercial dye bath 
formulation, cause further reduction in the process efficiency. Although 
small laboratory investigations reveal encouraging results, such studies 
are not sufficient to explain the practical feasibility of AOP [51,52].

Photochemical process

The photo-activated chemical reactions are characterized by a 
free radical mechanism initiated by the interaction of photons of 
appropriate energy level with the chemical species present in the 
solution. The UV radiation generated radicals through photochemical 
degradation of homogeneous oxidizing compounds such as hydrogen 
peroxide, ozone or Fenton’s reagent has been reported to be superior 
to the sole use of ultraviolet (UV) radiation or the sole use of such 
oxidants [53-60]. Highly absorbent UV dye wastewater can inhibit the 
effectiveness of the process by limiting the penetration of UV radiation, 
which requires the use of high- intensity UV lamps and/or a specially 
designed reactor. Photocatalytic mechanism occurring at the surface 
of the semiconductors is the other way of obtaining free radicals.. 
Titanium dioxide in the anatase form has reasonable photoactivity and 
is the most commonly used photo catalyst. It also has the advantages 
of being insoluble, relatively inexpensive, non- toxic, as well as having 
resistance to photocorrosion and biological immunity [61,62]. The 
photocatalytic process can be performed by simply using the slurry 
of fine catalyst particles dispersed in liquid phase in a reactor or by 
using supported/immobilized catalysts. The limitations of the slurry 
reactors include the low efficiency of radiation due to the opacity of 
the suspension, fouling of the surface of the radiation source due to the 
decomposition of the catalyst and the requirement of ultrafine catalyst 
particles to be separated from the treated liquid [63-68].

Besides single photocatalysis, there are also reports on the use 
of photocatalysis in the presence of O3 or H2O2 having improved 
bleaching and mineralization. Considering the total mineralization 
of compounds, the photocatalytic ozonation has specific energy 
consumption much lower than conventional photocatalysis and 
ozonation. The Fenton’s reagent and its alterations, such as the 
thermal Fenton process or the photo- Fenton reaction using Fe (II)/
Fe (III) oxalate ion, H2O2 and UV radiation have established much 
consideration as a means for the whitening of synthetic dyes [69,70]. In 
the photo - Fenton technique, H2O2 is used swiftly in three synchronized 
reactions and the shortest action of Fenton, photo - reduction of Fe 
(III) ions to Fe (II) and H2O2 photolysis. Thus, this process produces
more hydroxyl radicals compared with the conventional Fenton
method or photolysis. Few reports suggest that in case of comparable
pollutant removal performance, the Fenton process can be gainful,
in conjunction with the use of advanced oxidation alternatives
reducing the energy consumption, the consumption of H2O2, lower
cost of sludge disposal, higher flexibility and lower requirement of
maintenance. Fenton reagent requires the use of large amounts of
acidic and alkaline chemicals [71,72]. In order to take advantage of
Fenton oxidizing agents role in eliminating the separation of iron salts, 
the usage of H2O2/iron powder solution system was recommended.
This process can provide better stain removal than the " H2O2/Fe+2" due 
to chemisorptions of iron powder addition to the usual type of reaction 
(203). Though the Fenton Fenton -type reactions based on different
transition metals, was less explored to date, they have been described to 
be insensitive to pH and effective for the degradation of synthetic dyes. 
Among the AOP, the photo-Fenton reaction and titanium dioxide
(TiO2) mediated heterogeneous photo catalytic treatment processes
are proficient of absorbing the light in the near-UV spectral region

for initiating the radical reactions. Their application would virtually 
eliminate major operating costs when solar radiation is used instead 
of artificial UV light. The ferrioxalate solution that has long been used 
as a chemical actinomètre can be used in the process of photo Fenton 
to derive further benefit by replacing UV light with solar radiation 
[73-80]. Recently, several attempts have been made to increase the 
photocatalytic efficiency of TiO2 that include the deposition of noble 
metal doping ions, addition of inorganic adsorbent, catalysts of the 
coupling, the use of nonporous films, and so on. In addition to this, 
new catalysts, such as metallo porphyrins polymers were reported to 
be easily excited by violet or visible light, with only 3% usage of the 
avaialable solar energy for the the commonly used TiO2 [81].

Combination of electrochemical and photochemical process

In the electrochemical treatment, the oxidation is carried out by 
means of electrodes, where determined potential difference is applied. 
Based on this principle, many different processes were developed as 
direct and indirect electrochemical processes that include cathodic and 
anodic oxidation, electrocoagulation, electrodialysis, electromembrane, 
and electrochemical ion exchange. Sometimes the combination of 
electrochemical technology and photocatalysis has been adopted for 
avail unique advantages. For example, the chemical synergy process of 
photocatalysis and electrochemicals can give increased discoloration 
and the added benefit of the removal of chemical oxygen demand that 
may be derived from existence of the salt in solution, which otherwise 
is harmful to perform sole photo catalysis [82-90]. Conversely, electro-
Fenton process requires no addition of chemicals other than the 
catalytic amount of Fe+2, that is produced from H2O2 in situ, thereby 
avoiding the transportation of the dangerous oxidant. With high 
pulsed voltage electrical discharge process, more oxidants such as H2O2 
give rise to highly reactive free radical species by photo-dissociation of 
H2O2 and thus improves the overall process [91,92].

Sonolysis process

The use of sono chemical methods for treating a variety of chemical 
contaminants in an aqueous solution have been conducted in many 
studies. These studies mainly reported the systems and the basic theory 
of sonochemical reactions for environmental applications. Sonolysis 
is mainly based on acoustic cavitation including training, growth and 
implosion of bubbles in a liquid collapse as depicted in Figure 4. For 
detailed information of cavitation training, the readers are requested 
to refer to previous references. The positive and negative pressures are 
exerted on a liquid, by the compression and expansion of ultrasonic 
wave cycles, respectively [93-100]. When the negative pressure applied 
on the liquid is sufficiently high, the average distance between the 
molecules would exceed the critical molecular distance necessary 
to maintain the intact liquid and the liquid will break down to form 
cavities in vapor and gas-filled micro bubbles. The gases and vapors 
are compressed inside the heat generating cavity which ultimately 
produces a localized hot spot of short duration, creating local pressures 
and high temperatures [101-103]. Among the sonochimie theories, the 
hot spot theory is widely accepted to explain the sonochemical reactions 
in the field of environment, which suggests that the collapse is so rapid 
and that the compression of the gas and steam inside the bubble is 
an adiabatic process. Ultrasonic energy affects chemical reactions 
releasing enormous heat or production of reactive free radicals, there 
by increasing the mass transfer rate in an aqueous solution through 
turbulence. Inside the cavitation the breakdown of the water molecules 
to bubbles forming pyrolysis OH· and H· radicals in the gas phase of the 
reaction [104-106]. The substrate reacts with either · OH or undergoes 
pyrolysis. In the interface region, a similar reaction occurs but in an 
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aqueous phase, the · OH radicals recombine to form H2O2. In bulk 
solution, a small number of free radicals produced from the cavities or 
the interface can move to the liquid phase in the mass, and the reactions 
are essentially between the substrate and ·OH and H2O2 [107].

2
9 1 1

2 2 , 5.5 10

H O OH H
OH OH H O k M s− −

→ ⋅ + ⋅

⋅ + ⋅ → = ×

Physico-chemical process combination with advanced 
oxidation process

Coagulation based combinations: Many studies have examined 
different combinations of physicochemical systems for textile processing 
and dyeing wastewater. The combinations of classical physicochemical 
and AOP techniques have thus emerged as an attractive option. 
Flocculation/coagulation precipitation methods have been extensively 
used for decolorizing dye containing industrial wastewater [107-110]. 
For pretreatment of raw wastewater before discharging to public capital 
processing factories, these processes may be satisfactory with respect to 
the reduction of the chemical oxygen demand, and partial discoloration. 
Their standalone application in the treatment of textile waste/dye is 
however relatively ineffective; for example, only 50% of the removal 
was performed using either alum or ferrous sulfate to a yellow azo dye 
reagent. In the coagulation process, it is difficult to remove the highly 
soluble dyes in water, and more importantly, this process produces 
large amount of sludge. However, the researchers are persistent in their 
pursuit to minimize the limitations of this technology. For example, 
polyaluminium ferric chloride, a new type of composite coagulant, was 
reported to have the advantages of high stability and good coagulating 
effect of hydrophobic and hydrophilic dyes. The discoloration capacity 
exceeded that of the poly polyferric sulfate and aluminum chloride. 
On the other hand, to avoid any problem of the disposal of solid 
sludge, different innovative approaches have been proposed. These 
include clotting separate volume low dye bath alum sludge recycling, 
recovery of chemical coagulant textile sludge, reuse of sludge in textile 
building materials, and processes such as vermicomposting textile mill 
sludge, coagulation followed by carbon adsorption. The coagulation 
followed by adsorption has been reported to produce effluent reuse 
standard compared with the shoot coagulant consumption by 50%, 
thereby lowering the formed sludge volume compared to induce 
coagulation alone [111-115]. Coagulation in combination with AOP, 
whether sequential or simultaneously, has been reported for dyeing 
wastewater. For example, simultaneous application of coagulation 
and Fenton oxidation showed improved performance over one of 

their autonomous applications. Chemical coagulation of fenton after 
treatment was found to reduce floc-settling time, improvement in 
the discoloration and in the reduction of the soluble iron effluent. 
Conversely photo-Fenton subsequent to coagulation process was 
reported to finish fading and produce better DCO, with the added 
benefit of reducing the load on the AOP thus reducing the chemical 
usage. The studies in the sequential use of coagulation and ozonation 
revealed the superiority of this arrangement preceded by ozonation 
coagulation. Reverse multistage coagulation followed by ozonation was 
shown to be superior to their sequential application of single pass. The 
advantages of this application in several steps was more convincing if 
the wastewater is with recalcitrant composition [116-120].

Adsorption: Adsorption techniques are especially used for the 
bleaching of dyes in industrial effluents. The activated carbon, either 
in the powder or granular form is the most widely used adsorbent 
due to its extensive surface micro porous structure, high adsorption 
capacity and high surface reactivity. It is very effective to adsorb 
cationic, mordant and acid dyes and to a lesser extent dispersed, 
direct, vat, pigment and reactive dyes. The use of carbon adsorption for 
decolorization of the crude wastewater is impractical as a consequence 
of the competition between the colored molecules, and other organic/
inorganic compounds. Hence, its use is recommended as a polishing 
step or used at the end of an emergency unit treatment stage to meet 
the discharge color duration. The weight loss is inevitable during its 
expensive onsite regeneration and hampers its widespread use. The use 
of non-conventional, economical sources as precursors for activated 
carbon has been proposed to achieve the cost-effectiveness in the 
application. As previously stated, adsorption is a non-destructive 
method in which there is only the change in the phase of the removed 
impurities and, therefore impose further problems in the form of sludge 
[121-124]. The high cost also necessitates the adsorbent regeneration. 
On the contrary, some catalytic oxidation /reduction systems seem to 
be more effectively focused on the treatment of the small volume dyes. 
So it seems attractive to combine other adsorption process in a system 
where the contaminants are pre-concentrated on the absorbent, and 
then separated from the water. The thus separated contaminants can 
subsequently be mineralized (example wet air oxidation) or degraded 
to a certain extent (example, azo bond reduction with bisulfite mediated 
borohydride to regenerate the adsorbent and re-use). In this manner, an 
economic process can be developed linking two processing techniques 
that can eliminate their inherent disadvantages. The application of 
partial degradation to regenerate the adsorbent leaves behind a small 
amount of wastewater to treat. Again, this can be easily taken care 
of by the application of some AOP. Adsorption simultaneously with 

Figure 4: The formation and collapse of a cavitation bubble, and three reaction zones in the cavitation process.
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ozonation, UV-H2O2 or microwave has induced oxidation. The mutual 
reported improvements such as catalysis of AOP yield by adsorbent 
and simultaneous regeneration of adsorbent. A rather complicated 
method involving solvent extraction and catalytic oxidation has been 
documented in the literature. This method involves dye extraction 
by means of an economical solvent, followed by recovery with dye 
chemical stripping [125-127].

Combination with membrane technology: Membrane separation 
gives the possibilities of either the concentration of the dyes and 
adjuvants and producing purified water, or the removal of the dye and 
allowing the re-use of water along with extra chemicals, or even the 
realization of the recovery of the substantial part of the dye, admixtures 
and water all together [128]. This recovery/reuse practice reduces many 
folds the recurring costs for the treatment of waste streams. The fact 
that the behavior of the paint residual dye ideally identical to that of the 
fresh dye may restrict recovery and the re-use of specific dye classes. 
Accordingly, water and/or electrolytic recovery of dye bath effluent 
have become the focus of contemporary literature [129]. However, 
the production of concentrated sludge and the occurrence of frequent 
membrane fouling that involves expensive membrane replacement 
hinder the widespread use of this technology. Two different trends are so 
evident among the reported studies that link the membrane separation 
and other technologies. Some studies focused on the reduction of the 
membrane concentrated disposal problem, while others concentrated 
on the full-hybrid systems, which might eliminate the limitations of 
the membrane technology, and/or that of the counterpart technologies 
[130,131].

Hybrid processes based on membrane and photocatalysis were 
reported to eradicate the problem of the ultrafine catalyst to be separated 
from the treated liquid in the case of slurry reactors. Further they 
also have the added advantage of the membrane acting as a selective 
barrier for the species to be degraded. In case of immobilized catalysis, 
the membrane may play a role in connecting the photocatalyst with 
photocatalysis and membrane distillation. However it was reported to 
be more advantageous compared with the pressure-driven membrane 
process, because it may be associated with significant fouling. It is 
proposed that the pretreatment of photo- oxidation (UV/TiO2/H2O2) 
before membrane filtration to partially decompose high molecular 
weight compounds that cause fouling of the membrane. The relatively 
smaller fragments that were produced were still retainable within the 
membrane, and unlike the parent compound does not affect the charge 
of the membrane surface [132]. The membrane contactors encompass 
mass transfer by diffusion through the pores and offer advantages for 
higher contact area. They involve lower cost and help in the easy scale-
up process without foam formation [133].

Combination with biological treatment

Combination among biological process: A conventional chemical 
coagulation step that is preceded by or antecedent to biological treatment 
is applied in the treatment of dye wastewater. This is also combined 
with municipal wastewater treatment and usually favored wherever 
applicable [134]. Various biological processes such as activated sludge, 
liquid biofilm, different solid film systems or combinations thereof 
have been applied. Although aerobic bacteria mediated co-metabolic 
reductive cleavage of azo dyes and use of azo compounds as sole source 
of carbon and energy has been reported, the dyes are generally very 
resistant to degradation under aerobic conditions. The toxicity of the 
dye waste water and the factors inhibiting the permeation of the dye by 
the microbial cell membrane reduces the effectiveness of the biological 
degradation. A combined treatment of anaerobic-aerobic system 

of azo dye appears to be attractive as the azo bond reduction can be 
performed under reducing conditions in anaerobic bioreactors and 
colorless aromatic amines thus obtained can be mineralized in aerobic 
conditions [133]. The biotic process, dominates high rate anaerobic 
bioreactors. The addition of anthraquinone compounds such as redox 
mediator sulfonate, di-anthraquinone sulfonate were reported to greatly 
enhance both biotic and abiotic processes. After anaerobic treatment, 
the post-treatment of the azo dye containing encompasses competition 
between the biodegradation and auto oxidation of aromatic amines. 
The biological therapy is a competitive and environmentally friendly 
alternative [134]. The researchers are therefore persevering their efforts 
to minimize the inherent limitations of biological dye wastewater 
treatment. There are several innovative attempts that have been tried 
and documented in the literature to achieve a better design of the 
reactor and/or use of the special dye-degrading microorganisms for 
integrated textile manufacturing wastewater treatment. Some of these 
innovative efforts include- two stages activated sludge process; high-
rate anaerobic systems disconnect the hydraulic retention time of the 
solids retention time [135]. 

Hybrid biological process

Physico-chemical and biological treatment: As mentioned above, 
the literature is replete with examples of using the additional coagulation 
organic discoloration. The choice between the coagulation - biological 
or biological-coagulation system depends on the type and dosage of the 
coagulant, the amount of sludge, and the degree of inhibitory and non-
biodegradable substances in the wastewater [136]. Coagulation before 
biological treatment may be advantageous for the alkaline wastewater. 
After biological treatment, the ferrous sulfate treatment cannot be used 
as the pH becomes close to neutral. On the other hand, the dose of 
coagulants and the amount of the bio-sludge after chemical treatment 
are smaller compared to those of the coagulation followed biological 
treatment [137]. Besides coagulation, a variety of other treatments can 
be combined with a biological treatment. Very often certain physico-
chemical process is located before and /or after AOP. The biological 
method is either applied as a penultimate or the last treatment unit. 
Given the abundance of the bio resistant toxic substances in wastewater 
dyes, the physico-chemical pre-treatment and advanced oxidation before 
biological treatment seems to be a rational choice. The choice between 
the physico-chemical and oxidative pretreatment depends on the specific 
wastewater and, usually bright-stream separation would facilitate the 
application of appropriate treatment or different streams [138]. 

Biodegradation: The conventional pre or post treatment concepts 
includes the the design process containing individual components that 
are independent of each other. In contrast to this, a more innovative 
"integrated- process" approach was developed which combined the 
efficacy of the biological and other treatments that are synergistic in 
their effect [139]. A typical example of this processes is the advanced of 
an activated sludge treatment where chemical oxidation was specifically 
designed to partially degrade recalcitrant contaminants to readily 
biodegradable intermediates. In the recent years, the studies that dealt 
with the partial pre-oxidation of myriads of dye wastewater reported 
the involvement of all kinds of PDO. Some of these studies included 
the partial oxidation ozonation, H2O2 photocatalysis, photography 
-Fenton moist air oxidation combined with photocatalysis and
ozonation/H2O2, photo-electrochemical process [6] under oxidation,
and water and supercritical electron beam bulk of treatment [140].
These studies reported on the improvement of the biodegradability
and the reduction of toxicity following PDO treatment without the
biological reactor. However, the complete results were not obtained.
The combined oxidation and subsequent biodegradation make it
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necessary to adjust the optimum oxidation treatment point. Further the 
oxidation cannot lead to significant changes in the molecular weight 
distribution, but resulted in the increase of thelow molecular weight 
mineralization substances. Therefore, the rationale is to adopt the 
shortest possible preoxidizing period and remove the biodegradable 
fraction using organic profitable process. However, the degree of COD 
removal obtained from combining with this strategy can be limited in 
some cases, making the use of an oxidation period [141]. An internal 
biological process between oxidation and recycling biological step 
has been recommended to reduce the dose of the chemicals in such 
circumstances. If there are considerable amount of biodegradable 
compounds that initially exist in the wastewater, the pre-oxidation step 
does not lead to a significant improvement in the biodegradability but 
rather cause unnecessary consumption of chemicals. In such cases the 
biological pre-treatment is followed by a PDO, and biological polishing 
step, can be more useful [142].

Adsorption with biodegradation: Conventional biological 
treatments have limited effectiveness in the treatment of rebellious 
textiles wastewater that is mostly composed of recalcitrant chemicals. 
Due to this reason the textile dyes, various adsorbents and chemicals 
that predominantly include the activated carbon were directly added 
to the activated sewage systems in some studies [143]. The fact that 
the additional removal of soluble organic substances (chemical oxygen 
demand and and total organic carbon), in such a system compared 
to the conventional system cannot explain the likely contribution 
of adsorbent as it was predicted that the adsorption isotherms 
assume a synergistic relationship between the activated carbon and 
microorganism [144]. Enhanced biodegradation was attributed to 
the ability of the adsorbent that acts as a modulator by immediately 
adsorbing the high concentrations of toxic substances, thereby 
managing the free concentration of toxic substances. This provides an 
enriched environment for the microbial metabolism that takes place 
at the liquid-solid surface onto which the microbial cells, enzymes, 
organic materials and oxygen are adsorbed [145]. The main step in dye 
removal for activated carbon amended biological process is microbial 
degradation, which is higher than the adsorption on both activated 
carbon as well as on biomass [146-155].

Membrane bioreactors: A membrane bioreactor exhibits more 
improvement over conventional activated sludge treatment, and was 
shown to be promising in the color treatment of wastewater [156]. 
For discoloration, a membrane bioreactor for is frequently introduced 
in conjunction with the charcoal amended digester that involves the 
current adsorption scheme of treatment. This is preceded by the aerobic 
membrane bioreactor that comprehends stable discoloration together 
with the elimination of high total organic carbon. Rarely the membrane 
bioreactors were used as major treatment process before the polishing 
of the nano filtration step or in the complicated treatments that include 
anaerobic/aerobic pretreatment before membrane bioreactor ozonation 
[157]. The current literature includes an innovative approach of using 
the membrane separated fungus reactor which helps in the excellent 
degradation ability of white-mold [158,159].
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