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Abstract
Embryonic stem (ES) cells are used in various fields for diverse purposes, including gene targeting, cell therapy, 

tissue repair, organ regeneration, and so on. However, studies on and applications of ES cells are hindered by 
ethical disputes regarding cell source. To circumvent ethical issues, scientists have attempted to generate ES cell-
like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka first 
reprogrammed mouse embryonic fibroblasts into ES cell-like cells, which were called induced pluripotent stem (iPS) 
cells. Nearly a year later, the Yamanaka and Thomson laboratories independently reprogrammed human somatic 
cells into iPS cells. Since the establishment of the first iPS cell line, iPS cells have been derived from a number of 
different cell types and have been used for cell therapy, human disease modeling, and drug discovery. The use of 
peripheral blood facilitates research on iPS cells and enables the establishment of patient-specific iPS cells. With the 
improvement in iPS cell technology, clinical therapy based on iPS cells will rapidly develop.

Keywords: Induced pluripotent stem cells; Origin; Peripheral blood;
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Introduction
Embryonic stem (ES) cells are totipotent cells derived from 

the inner cell mass of blastocyst-stage embryos. Totipotency is the 
potential to differentiate into various kinds of cells, such as muscle 
cells, neural cells, and even germ cells. Due to this property, ES cells 
can be used to generate any type of cell to meet the requirements of 
different applications. ES cells are also capable of self-renewal; they can 
be semi-permanently cultured using feeder cells, which provide them 
with necessary growth factors. 

In 1981, mouse ES cells were established by Evans and Kaufman 
[1]. At present, mouse ES cells are widely used to generate gene-
targeted animals. These animal models have made great contributions 
to basic research on gene functions. Unfortunately, although human 
ES cells were established back in 1998 [2], research on these cells 
and their clinical application have been restricted by ethical disputes 
regarding cell source and immunological rejection in cell therapy. 
Most debates on ethics primarily focus on the morality of destroying 
human embryos for the benefit of other people. Obtaining stem cell 
lines from oocytes and embryos is fraught with disputes regarding 
the onset of personhood and reproduction. Moreover, ES cells from 
different donors have different immunizing antigens. Somatic cells 
differentiated from human ES cells and transplanted into a recipient 
may be rejected by the recipient’s immune system. Therefore, making 
patient-specific pluripotent stem cells is necessary.

To develop a new kind of stem cell with self-renewal properties 
and pluripotency, scientists have tried to reprogram somatic cells 
through many methods, such as nuclear transfer [3,4], cell fusion [5], 
and so on. In 2006, a breakthrough was made by a Japanese group. 
Yamanaka Laboratory generated induced pluripotent stem (iPS) cells 
by over-expressing a few types of transcription factors. In this review, 
we focus on the origins, differentiation, and applications of iPS cells. In 
addition, we provide a discussion on the potential issues on and future 
perspectives for iPS cells.

The origin of iPS Cells

The nuclei of mouse somatic cells can be reprogrammed if they 
are hybridized with mouse ES cells. The hybridized somatic cells were 

observed to be capable of differentiating into endoderm, mesoderm, 
and ectoderm cells. These findings demonstrated that reprogramming 
factors, which are expressed in ES cells, could induce pluripotency in 
somatic cells. The most difficult part in reprogramming somatic cells is 
finding these reprogramming factors which can convert somatic cells 
to pluripotent stem cells. 

How to solve this problem? 

Fbx15 is a gene expressed specifically in ES cells. Normal fibroblasts 
cannot survive in the presence of Geneticin (G418), an analog of 
Neomycin (Neo) used for screening ES cells. Therefore, fibroblasts 
with a Neo resistance gene in their Fbx15 locus are used to screen for 
candidate reprogramming factors. Fibroblast reprogramming by the 
candidate reprogramming factors activates the Fbx15 locus, which 
leads to the expression of Neo resistance genes, thereby allowing the 
fibroblasts to survive in the presence of G418.

In Yamanaka’s experiments, 24 genes, which were important 
transcripts of ES cells and oncogenes, were selected as candidate 
reprogramming factors. Different combinations of these candidates 
were introduced into mouse embryonic fibroblasts using the Fbx15-
Neo reporter system; G418-resistant mouse stem cell-like colonies 
would appear about two weeks later if these candidate genes could 
reprogram the fibroblasts. The 24 candidates were finally narrowed 
down to four transcription factor genes. Using the retroviral-
mediated factors Oct3/4, Sox2, Klf4, and c-Myc, Yamanaka was able 
to reprogram mouse embryonic fibroblasts into ES cell-like cells in 
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2006 [6]. These reprogrammed cells were named iPS cells. This was 
a revolutionary breakthrough that immediately sparked immense 
interest. However, the four transcription factor genes did not fully 
activate some key pluripotency genes; hence, the fibroblasts were only 
partially reprogrammed. When the iPS cells were injected into mouse 
blastocysts, they failed to generate postnatal chimeras or contribute to 
the germline. In 2007, totipotent iPS cell lines were established; live 
chimeras and germline transmitted mice were generated from these iPS 
cells though blastocyst injection [7-9]. In 2009, Zhou [10] and Gao [11] 
used iPS cells to produce germline transmitted mice through tetraploid 
complementation. Research in different laboratories, as mentioned 
above; indicate that iPS cells, similar to ES cells, have the potential to 
differentiate into any cell type. 

Nearly a year after the breakthrough, scientists from the Yamanaka 
[12] and Thomson [13] laboratories independently reprogrammed 
human somatic cells to iPS cells. The former used Oct3/4, Sox2, 
Klf4, and c-Myc on human dermal fibroblasts, whereas the latter 
used Oct3/4, Sox2, Nanog, and Lin28 on human somatic cells. Both 
undertakings demonstrated that human iPS cells resemble human 
ES cells in many aspects, including morphology, proliferation, 
pluripotency markers, gene expression profiles, epigenetic status, and 
differentiation potential. These findings revealed that human iPS cells 
have the potential to replace human ES cells. Human iPS cells address 
the ethical disputes over stem cell sources and immunological rejection 
in cell therapy.

Since the first iPS cell line was established in 2006, advances have 
been made to improve the safety and efficiency of the reprogramming 
process, such as single [14] and multiple transient transfections 
[15], non-integrating vectors [16-18], excisable vectors [19-21], 
direct protein transduction [22-24], RNA-based Sendai viruses [25-
27], mRNA-based transcription factor delivery [28,29], microRNA 
transfections [30], and the use of chemical compounds [31,32]. In 
addition, various cell sources now also facilitate research on iPS 
cells. Up to the present, iPS cells have been derived from a number 
of different species, including mouse, human, rat, marmoset, rhesus 
monkey, pig, rabbit, and so on (Table 1). However, most iPS cell 
lines fail to yield live chimeras. With regard to cell type, iPS cells have 
been generated from fibroblasts, hepatocytes, gastric epithelial cells, 
keratinocytes, mesenchymal cells, neural stem cells, pancreatic cells, B 
and T lymphocytes, blood progenitor cells, cord blood cells, peripheral 
blood cells, and so on (Table 1). 

iPS cells from peripheral blood

Generating patient-specific iPS cells is a critical step in cell 
therapy and other clinical applications. As shown in Table 1, human 

Species Cell type Factors or 
Chemicals Vectors References

Mouse Fibroblast OKSM or OKS retrovirus [6,33,34]
Fibroblast OSE or KSNr retrovirus [35,36]

Fibroblast mir302/367 
cluster lentivirus [37]

Fibroblast OKSM PB transposon and 
2A peptides [19]

Fibroblast proteins (OKSM) poly-arginine [23]
Fibroblast OKSM plasmid or 

adenovirus [15,16]

Dermal papilla OKM or OK retrovirus [38]

Melanocyte OKM drug-inducible 
lentivirus [39]

Mature B and 
T cell OKSM retrovirus [40]

Myeloid 
progenitor OKSM retrovirus [40]

Hematopoietic 
stem cell OKSM retrovirus [40]

Pancreatic 
β cell OKSM drug-inducible 

lentivirus [41]

Intestinal 
epithelial cell OKSM drug-inducible 

lentivirus [42]

Hepatocyte OKS retrovirus [43]
Gastric 

epithelial cell OKSM retrovirus [43]

Adipose stem 
cell OKSM retrovirus [44]

Neural stem 
cell OK or O retrovirus [45,46]

Human Fibroblast OKSM or OKS retrovirus [12,33]
Fibroblast OSLN lentivirus [13]
Fibroblast OKSM or OKS floxed lentivirus [47]

Fibroblast OS and valproic 
acid retrovirus [48]

Fibroblast proteins (OKSM) poly-arginine [22]
Fibroblast OKSM adenovirus [49]
HUVEC OKSM retrovirus [50]

Peripheral 
blood cell  OKSM drug-inducible 

lentivirus [51,52]

Cord blood 
endothelial 

cell 
OSLN lentivirus [53]

Cord blood 
stem cell OKSM or OS retrovirus [40,54]

Adipose stem 
cell OKSM lentivirus [55]

Adipose stem 
cell OKS retrovirus [56]

 Amniotic cell OKSM retrovirus [57]
Amniotic cell OSN lentivirus [58]
Neural stem 

cell O retrovirus [59]

Marrow 
mesenchymal 

cell 
OKSM or OK retrovirus [60]

Adipose stem 
cell OSLN nonviral minicircle 

DNA [60]

Hepatocyte OKSM retrovirus [62]
Astrocyte OKSM retrovirus [63]

Keratinocyte OKSM or OKS retrovirus [64]

Pig Fibroblast OKSM drug-inducible 
lentivirus [65]

Rabbit 
Hepatocyte 

and stomach 
cell 

OKSM lentivirus [66]

Rat Fibroblast OKS retrovirus [67]
Fibroblast OKSM lentivirus [68]

Neural 
progenitor cell OKS retrovirus [67]

Liver 
progenitor cell OKS retrovirus [69]

Marmoset Fibroblast OKSM retrovirus [70]
Rhesus 
monkey Fibroblast OKSM retrovirus [71]

Abbreviations:  O: Oct3/4; S: Sox2; K: Klf4; M: c-Myc; E: Esrrb; L: Lin28; N: Nanog; 
Nr: Nr52a.

Table 1. iPS Cells Derived from Different Species and Somatic Cell Types
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iPS cells are most commonly derived from dermal fibroblasts, due 
to their accessibility and relatively high reprogramming efficiency. 
However, dermal fibroblasts require skin biopsy and a prolonged 
period of expansion in cell culture prior to use. During skin biopsy, 
the exposure of the dermis to ultraviolet light might increase the risk 
for chromosomal aberrations. In addition, the pain experienced by and 
risk of infection for patients in obtaining dermal fibroblasts cannot be 
ignored. These concerns limit the wide application of iPS cells.

Peripheral blood is the most easily accessible source of patient 
tissue for reprogramming without the need to maintain cell cultures 
extensively prior to reprogramming experiments. Furthermore, 
numerous peripheral blood samples have already been frozen and 
stored in blood banks, and these may be used to generate human iPS 
cells. 

The reprogramming of peripheral blood cells began with research 
on mice in 2008. Hanna et al. [72] utilized retroviral-mediated factors 
(Oct3/4, Sox2, Klf4, and c-Myc) to reprogram mouse B lymphocytes; 
in their experiments, the reprogramming efficiency was improved by 
either ectopic expression of the myeloid transcription factor CCAAT/
enhancer-binding-protein-alpha (C/EBPalpha) or knockdown of the B 
cell transcription factor Pax5. In 2009, Hong reported the generation 
of iPS cells from mouse T lymphocytes by the introduction of Oct3/4, 
Sox2, Klf4, and c-Myc in a p53-null background [73].

After reprogramming mouse peripheral blood cells, Haase 
generated human iPS cells from cord blood (CB) in 2009 [53]. CB may 
be obtained from public and commercial CB banks without any risk to 
donors. In the same year, Ye derived human iPS cells from previously 
frozen CB and CD34+ cells of healthy adult donors [74]. However, CB is 
still not easily accessible because it can only be obtained from neonates.

In 2010, three laboratories [26,51,52] independently reprogrammed 
human peripheral blood cells into iPS cells. In Loh’s laboratory, they 
isolated mononuclear cells (PBMCs) and CD 34+ cells (PBCD34+) from 
peripheral blood samples, collected though venipuncture, via Ficoll 
density centrifugation. After infection with lentiviruses expressing 
Oct3/4, Sox2, Klf4 and c-Myc, PBCD34+ cells showed a reprogramming 
efficiency of 0.002%, whereas PBMCs showed relatively lower values of 
0.0008% to 0.001% [51]. Starek et al. [52] used a doxycycline-inducible 
lentivirus construct to derive iPS cells from T lymphocytes and myeloid 
cells cultured in IL-7 or G-CSF, GM-CSF, IL-3, and IL-6; this lentivirus 
construct could encode four reprogramming factors (Oct3/4, Sox2, 
Klf4 and c-Myc) into a polycistronic expression cassette (pHAGE2-
TetOminiCMV-hSTEMCCA). Their results showed that the efficiency 
of reprogramming T lymphocytes was higher compared with that 
of myeloid cells, this was because T lymphocytes exhibited a higher 
proliferation rate and had better long-term growth potential in vitro 
than myeloid cells. Seki induced T lymphocytes into iPS cells using 
a temperature-sensitive mutant Sendai virus (SeV) vector encoding 
human Oct3/4, Sox2, Klf4, and c-Myc with an efficiency of 0.1%. 
This SeV vector is a non-integrating type, and it could not proliferate 
at standard culture temperatures; these characteristics significantly 
increase the safety of the generated iPS cells [26]. In 2011, Chou 
reprogrammed newborn CB and adult peripheral blood mononuclear 
cells into iPS cells with an improved EBNA1/OriP plasmid. Using this 
new reprogramming vector, iPS cells were generated from peripheral 
blood cells within 14 days, instead of 28 to 30 days as in a previous work 
on fibroblasts [75].

The research and findings described above indicate that human 
iPS cells from peripheral blood cells are comparable to human ES 
cells in terms of morphology, surface antigens, pluripotency gene 
expression, DNA methylation, and differentiation potential: induced 
pluripotent stem cells from mononuclear cells of peripheral blood can 
be considered reliable. Hence, methods of generating iPS cells from 
human peripheral blood cells will accelerate research on and promote 
future clinical applications of iPS cells.

Differentiation and applications of iPS cells

Similar to ES cells, mouse iPS cells have the potential to differentiate 
into any type of cell, and even the capability of germline transmission 
[7-11]. This means that we can obtain differentiated cells in large 
quantities. So far, iPS cells have main applications in three major areas: 
cell therapy, human disease modeling, and drug discovery.

Cell therapy: Immunological rejection is a major problem in 
organ transplantation and cell therapy, and long-term treatment with 
immunosuppressive drugs has serious side effects. Patient-specific 
iPS cells have the immune markers of the patient, so they address 
the problem of immunological rejection. In addition, disease-causing 
mutations can be repaired by gene targeting in patient-specific iPS cells. 
Repaired cells can be differentiated into targeted cells and transplanted 
into the diseased area where they can alleviate disease symptoms. 
To illustrate this, using a mouse model, Jaenisch and his colleagues 
showed that iPS cells can be used to cure sickle cell anemia, a genetic 
blood disorder that renders red blood cells nonfunctional. The disease-
causing mutation was repaired in iPS cells derived from the mouse 
model via gene targeting. The repaired iPS cells were then differentiated 
into blood-forming progenitor cells. These healthy progenitors were 
transplanted into an anemic mouse where they generated normal red 
blood cells, thereby curing the disease [76].

Disease modeling: For many human genetic diseases, therapeutic 
research is hindered by issues regarding the source of experimental 
materials. iPS cells can overcome these problems by establishing 
patient-specific disease models. Patient-specific iPS cells can form cell 
lineages that reflect the defects caused by a certain disease in patients. 
Some human diseases for which models have been established using 
patient-specific iPS cells include amyotrophic lateral sclerosis [77], 
spinal muscular atrophy [78], Parkinson’s disease [47], β-thalassemia 
[79], Rett syndrome [80], adenosine deaminase deficiency-related 
severe combined immunodeficiency, Shwachman-Bodian-Diamond 
syndrome, Gaucher disease, Duchenne muscular dystrophy, Becker 
muscular dystrophy, Huntington’s disease, type 1 diabetes mellitus, 
Down syndrome, and Lesch-Nyhan syndrome (carriers) [60].

Drug discovery: Before using novel drugs for treatment, reliable 
data on their potential toxic effects on humans must be determined. 
In drug discovery, the effects and side effects of novel drugs are 
usually tested in laboratory animals. However, these tests are costly, 
and humans and animals have relatively significant differences. In 
addition, animal tests are not effectively standardized. Novel drugs can 
be tested efficiently on disease models generated from patient-specific 
iPS cells. This approach will greatly facilitate research on pharmacology 
and toxicology. Some drugs have already been tested on iPS cells 
derived from patients suffering from various diseases, including spinal 
muscular atrophy [78], familial dysautonomia [81], and LEOPARD 
syndrome [82]. Observations that novel drugs alleviate “symptoms” in 
patient-specific iPS cells demonstrate their therapeutic potential. This 
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principle can now be applied to many other diseases and will benefit 
many patients.

Potential Issues Regarding iPS Cells

Crucial experiments based on iPS cell technology have shed light 
on human diseases at the cellular and molecular level. The application 
of iPS cells in drug discovery can reduce cost and increase the chance of 
success. Furthermore, iPS cells circumvent ethical disputes on ES cells, 
and patient-specific iPS cells may resolve problems of immunological 
rejection in cell therapy. 

Currently, in the field of iPS cells, scientists are developing more 
efficient methods of deriving iPS cells from various cell sources, 
including those from patients who suffer from different diseases. More 
progress and new innovations regarding iPS cells are to be made in 
the near future. However, some problems remain to be solved in the 
clinical application of iPS cells. Various kinds of genomic changes, 
including chromosomal aneuploidy, translocations, point mutations, 
megabase-scale duplications and/or deletions, and so on, have been 
observed in human iPS cells; these problems may affect the therapeutic 
potential of iPS cells. Although the reprogramming process itself might 
cause chromosomal anomalies, not all anomalies result from it, as 
genomic alterations have been identified in human iPS cells produced 
through different techniques, including non-integrating methods 
such as those that use synthetic mRNAs [29]. Nevertheless, compared 
with improving reprogramming efficiency, solving problems in 
chromosomal anomalies in iPS cells is more important. Thus, in the 
future, the focus of the field of iPS cells should be shifted toward 
obtaining iPS cells with the fewest genomic alterations. The causes 
of chromosomal abnormalities during iPS cell induction need to be 
investigated as well.

In addition, some other questions remain: What is the mechanism 
of iPS cell induction? What are the optimal reprogramming factors? 
How do we reduce risks of insertion mutagenesis in the genome of iPS 
cells? How do we achieve directed differentiation? How do we evaluate 
the safeness of iPS cells in clinical applications? Obtaining the answers 
to these questions require thorough analyses of the induction process 
and the epigenetics of iPS cells. Moreover, a reliable evaluation system 
on clinical trials needs to be established.

Future Perspectives 
The generation of iPS cells is regarded as a milestone for life 

science. Despite the problems mentioned in last section, the advantages 
of using iPS cells cannot be ignored. With iPS cells, ethical disputes can 
be avoided, as well as immunological rejection in cell therapy, using 
patient-specific iPS cells. Moreover, disease models generated using iPS 
cells can be used to study the mechanism of human genetic disorders 
and test the effects of novel drugs. iPS cell biology has admittedly 
become a new field within stem cell research that covers various 
important and attractive scientific areas.

A more comprehensive knowledge of the reprogramming process is 
crucial for future clinical applications of iPS cells. Recent advancements 
have increased the therapeutic potential of iPS cells. Along with the 
improvement of iPS cell technology, clinical therapy based on iPS cells 
will be put on the agenda in the foreseeable future.
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