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Introduction
In a metabolomics context, proton nuclear magnetic resonance 

(1H-NMR) spectroscopy generates spectral profiles describing the 
metabolite composition of collected bio fluid samples. A comparison 
of several spectra of metabolites in various specific states permits a 
preliminary graphical and qualitative investigation of changes in bio 
fluid metabolite composition inherent to the presence of a stressor. 
However, the complexity of 1H-NMR spectra and the number of spectra 
(of samples) usually available in metabolomics studies require a semi-
automated data analysis. In addition, systematic differences between 
samples are often hidden behind biological noise and/or behind 
peak shifts. Adequate data pre-processing and multivariate statistical 
methodologies are then required to extract spectral regions with stable 
differences between the spectra obtained in various conditions [1-
5]. These regions, directly linked with biomarkers, are assumed to be 
associated with the alteration of an endogenous metabolite in reaction 
to the contact with a considered stressor. A biomarker can then be 
isolated to detect and follow changes in biological systems. Beside this 
goal of biomarker identification, statistical analysis, through predictive 
models, also provides a measure of statistical significance of the 
identified biomarkers.

The first and the most common chemo metric tool used in 
preliminary metabolomics studies is Principal Component Analysis 
(PCA). PCA is a starting point for analysing multivariate data and can 
rapidly provide an overview of the hidden information. PCA produces 
a two-dimensional plot (score plot) where the coordinate axes 

correspond to the two first principal components [6]. If spectra differ 
according to a specific characteristic (presence or absence of a stress, for 
example), the score plot reveals the presence of natural clusters in the 
datasets. An examination of the loadings leads to identify biomarkers 
or key portions of the 1H-NMR spectra giving rise to these clusters.

However, variations within groups are sometimes larger than 
variations between groups, resulting in a score plot with clusters that 
overlap or do not directly correlate to the studied characteristics. In such 
cases, additional information can be extracted by using more advanced 
data decomposition methods such as partial least squares (PLS), 
discriminant PLS (PLS-DA) or orthogonal PLS (O-PLS). As PCA, these 
methods look for systematic variances between samples. In contrast, 
they use information about samples such as groups of the characteristic 
of interest. Therefore, these methods often allow a better separation of 
samples and a clearer identification of significant biomarker variables 
[7,8]. Another limitation of PCA is its high sensitivity to noise for the 
analysis of 1H-NMR data: very small and random fluctuations within 
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Abstract
In order to maintain life, living organism’s product and transform small molecules called metabolites. Metabolomics 

aims at studying the development of biological reactions resulting from a contact with a physio-pathological stimulus, 
through these metabolites. The 1H-NMR spectroscopy is widely used to graphically describe a metabolite composition 
via spectra. Biologists can then confirm or invalidate the development of a biological reaction if specific NMR spectral 
regions are altered from a given physiological situation to another. However, this pro-cess supposes a preliminary 
identification step which traditionally consists in the study of the two first components of a Principal Component Analysis 
(PCA). This paper presents a new methodology in two main steps providing knowledge on specific 1H-NMR spectral 
areas via the identification of biomarkers and via the visualization of the effects caused by some external changes. 
The first step implies Independent Component Analysis (ICA) in order to decompose the spectral data into statistically 
independent components or sources of information. The in-dependent (pure or composite) metabolites contained in bio 
fluids are discovered through the sources, and their quantities through mixing weights. Specific questions related to ICA 
like the choice of the number of components and their ordering are discussed. The second step consists in a statistical 
modelling of the ICA mixing weights and introduces statistical hypothesis tests on the parameters of the estimated 
models, with the objective of selecting sources which present biomarkers (or significantly fluctuating spectral regions). 
Statistical models are considered here for their adaptability to different possible kinds of data or contexts. A computation 
of contrasts which can lead to the visualization of changes on spectra caused by changes of the factor of interest is also 
proposed. This methodology is innovative because multi-factors studies (via the use of mixed models) and statistical 
confirmations of the factors effects are allowed together.
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noise of the 1H-NMR spectrum can result in irrelevant clusters in the 
score plot formed by the two first principal components.

Despite these limitations, PCA often remains the main statistical 
standard for the analysis of 1H-NMR data. In a previous work, 
Rousseau et al. extend the standard PCA methodology by selecting 
the two most discriminants factors for the score plot (instead of using 
systematically the two first ones), and by using statistical methods for 
the identification of biomarkers [9-11]. It is suggested to use PLS-DA 
or ICA (Independent Component Analysis) for the decomposition of 
spectra, resulting in improvements for the identification of biomarkers 
(in comparison to PCA).

Motivated by these previous results, and by the good results obtained 
with ICA in close domains such as genomics and Mass Spectroscopy 
metabolomics, this paper expands the use of ICA to the identification 
of specific 1H-NMR spectral regions that are discriminant for two or 
more categories of spectra. PCA and ICA share common properties. 
Both of them are projections methods which linearly decompose data 
into components. As for PCA, the ICA results can then be supported 
by visual representations. However, the ICA components have a 
more stringent nature than principal components: PCA decomposes 
data into uncorrelated components when ICA decomposes them 
into independent ones; independence is a stronger statistical concept 
than un-correlation for non-Gaussian data. Independence of the 
components is also adequate for biological interpretation because 
the analysed bio fluid (e.g. plasma, urine) can be seen as a mixture of 
unrelated metabolites. 1H-NMR spectra may then be interpreted as 
weighted sums of 1H-NMR spectra of these independent metabolites. 
The application of ICA should then ideally recover components which 
may represent the independent metabolites contained in the media.

In this context, this paper proposes a two-steps methodology for the 
identification of 1H-NMR metabolomics biomarkers. Having introduced 
a typical experimental dataset, used to illustrate the methodology 
throughout this paper, the first step consists in the implementation of 
ICA in order to reduce the dimension and decompose the multivariate 
spectral dataset into statistically independent components. Solutions 
are proposed to select the optimal number of components and to rank 
them by importance. The second step of this methodology consists in 
a statistical modelling of the ICA resulting mixing weights [12-15]. A 
panel of various mixed linear statistical models adapted to the nature 
of the domain are considered. The model coefficients and appropriate 
statistical tests are used to decide which ICA sources can be considered 
as biomarkers of the stressor(s) of interest, including a visualization of 
the effect of the latter on the 1H-NMR spectra. In addition, contrasts 
are computed from the selected sources to visualize the spectral effects 
when one factor of interest changes. Finally, available in the Supporting 
Information, the methodology has been used on real medical data to 
successfully find biomarkers for Age related Macular Degeneration 
(AMD).

Materials
A simple set of metabolomics data is used as running example to 

illustrate the methodology detailed in this paper. This section details 
this dataset, including the acquisition steps.

Typical metabolomics data

A typical experimental metabolomics database is formed by three 
sets of data: a design, a set of 1H-NMR spectra and biological and/
or histopathological data. The design describes the experimental 
conditions underlying each available spectrum. Typical design factors 

are: subject ID (animal or human) and its characteristics, treatment, 
dose and time of sampling. A 1H-NMR dataset contains the spectral 
evaluations of bio fluid samples which were collected according to 
the design. A primary data reduction ("binning") is carried out by 
digitizing the one-dimensional spectrum into a series of typically 
250 to 3000 integrated regions or descriptor variables. However, a 
typical metabolomics study involves about 30 to 200 spectra or sample 
measurements. The resulting dataset is thus typically characterized by a 
larger number m of variables than the number n of observations.

Another important characteristic of 1H-NMR data is the strong 
association (dependency) existing between some descriptors, due 
to the fact that each molecule can have more than one spectral peak 
and hence may contribute to several descriptors. Moreover, as a large 
variety of dynamic biological systems and processes are reflected in 
spectra, a range of physiological conditions, for example the nutritional 
status, can also represent a source of variability into spectra. Noise and 
biological fluctuations are thus natural and unavoidable in spectral data. 
Finally, each spectrum in the 1H-NMR dataset is also usually linked 
with one or more variable(s), which tends to confirm the presence of a 
response of the organism to the stressor. This confirmation is obtained 
via the current gold-standard examinations (biological measures or 
histopathological ones) on the subject for which spectra are measured.

Experimental data

Experimental data were produced according to a specific design, 
in order to provide a database in which one controls the alterations of 
known descriptors. The next sections detail the design, the acquisition 
and the pre-processing steps on data. A more detailed description and 
analysis of these data is available.

Experimental design: Homogeneous urine samples were spiked 
with two products at different levels of concentration and analysed 
through spectroscopy [16-18]. The products are citric acid ("citrate") 
and hippuric acid ("hippu-rate"). They were added to urine at four 
levels of concentrations, respectively 0, 2, 4 and 8 mM for citric acid 
(Qc=8 mM), and 0, 1, 2 and 4 mM for hippuric acid (Qh=4 mM). The 
resulting 14 points design is illustrated in Figure 1.

As shown in Figure 2, the peaks corresponding to each product are 
located in distant areas. The hippurate is characterized by three peaks, 
with two of them in region containing a low level of noise (around 7 
ppm). On the contrary, citrate peaks are located in the noisy region 
(around 2 ppm). Note that during the spectral pre-processing these 
peaks are aggregated in a single one to avoid alignment problems.

Sample preparation and acquisition of the 1H-NMR data: The 
two products (citrate and hippurate) were first mixed with phosphate 
buffer containing TSP (Trisodium Phosphate). The volume of buffer 

Figure 1: Experimental design.
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Component Analysis and biomarkers identification by statistical 
modelling of the ICA weights.

The basic idea of Independent Component Analysis (ICA) is 
to recover unobserved multidimensional independent signals from 
linearly mixed observed ones [21]. In the metabolomics context, it 
is used to extract metabolite profiles of potential biomarkers from 
available 1H-NMR spectra.

The ICA methodology

ICA was originally developed for signal processing to solve the 
problem of blind source separation (BSS). In the basic noiseless ICA 
model, each observed signal is a mixture of unknown statistically 
independent signals (named sources or components):

X=SAT                             (1)

Where X denotes the (m n) matrix that contains n original signal 
vectors of m observations (xi), S denotes the (m q) matrix that contains 
q unknown source vectors sj, and A is a mixing matrix. Both S and A 
are unknown. The "unmixing" problem considered by ICA is to find an 
unmixing matrix such that the sources can be estimated by .S X W

∧

= , where S
∧

 
denotes the matrix formed by q estimations of scaled independent source 
vectors sj (as columns). The ICA model introduces an undetermination 
in the scale of the recovered sources. Indeed, scaling a source by a 
factor l is exactly compensated by dividing the corresponding column 
of the mixing matrix by l. A natural way for fixing the magnitudes 
of independent components is thus to assume that each component 
has unit variance. It should be noted that the ambiguity of the sign 
remains as we can multiply any component by -1 without affecting the 
model. The key assumption of ICA is that the sources are statistically 
independent. Under the ICA model, the observed data tend to be more 
Gaussian than the independent components due to the Central Limit 
Theorem (the distribution of a sum of independent random variables is 
generally more Gaussian than the summands). Thus, the independence 
of random variables can be reflected by non-gaussianity. Solving the 
ICA problem aims then at finding a matrix W that maximizes the non-
gaussianity of the estimated sources, under the constraint that their 
variances are constant. The non-gaussianity may be estimated by the 
negentropy, as in the FastICA algorithm used in this work. Other ways 
of estimating the sources exist. Often, data are pre-processed before 
applying ICA. First, mixtures are reduced to zero mean without loss of 
generality. The second steps consist in ‘whitening’, i.e. applying PCA. 
This reduces roughly by half the number of parameters to be estimated 
by ICA, therefore facilitating the task of the latter. In addition using 
PCA allows us to reduce the number of mixtures to be used by ICA; 
the number q of sources to be computed can be fixed in this step via a 
method discussed.

was adapted in order to obtain a volume of 600 ml. Each urine sample 
came from a pool of 344 female Fischer rats and had a volume of 
1200 ml. Each mixture of TSP, citrate and hippurate was added to a 
urine sample, centrifuged, frozen at-80°C and unfrozen at 40°C the 
day before the 1H-NMR analysis. Each of the 14 mixtures was splitted 
into two parts; one was diluted on a 1-to-1 basis with water. The 28 
resulting samples were then analyzed randomly within a single day of 
measurements [19]. NMR measurements were made with a 600 MHz 
Bruker spectrometer with 4 mm FI-SEI ATM probe. The spectral 
information is then included in 28 individual free induction decays (FIDs).

The post-acquisition treatments: Each acquired spectrum was 
processed using Bubble, a MATLAB tool for automatic processing and 
reducing NMR spectra. Bubble performs sequentially: suppression of 
the water resonance, apodisation (with a line broadening factor of 1 
Hz), Fourier transform and phase correction, baseline correction using 
a Whithaker smoother, median normalization and warping in order to 
align shifted peaks. The last step of the Bubble process reduces, by simple 
integration, the part of the spectrum situated between 0.2 and 10 ppm 
to 600 descriptors. We manually added several pre-processing tools to 
the spectra prepared by Bubble [20]. First, we replaced all the negative 
values by zero. Secondly, we set to zero the ppm values corresponding 
to the large non-informative urea peak and to the already treated 
water peak (4.5-6.0 ppm). Then, the spectral region around the citrate 
resonances (2.56-2.72 ppm) was integrated and summarized in just one 
peak to suppress large shifts. Finally, we normalized again the dataset. 
Indeed, the effect of the first normalization by the median, necessary 
to realize an accurate warping, is cancelled due to the reduction. The 
second normalization consists in constant sum normalization: each 
spectrum is divided by the sum of intensities on all its ppms values.

Notations

Let X be the (m n) matrix of spectral data containing n spectra, 
each of them being described by m descriptors. Y is a (n l) matrix 
of design data describing each sample or spectrum by l variables. In 
our experimental data, n=28, m=600 and the l=2 design variables 
correspond to the citrate and hippurate concentrations. This dataset 
is used for illustrating the methodology developed in the following 
sections. Some of the steps are illustrated on a 24-spectra dataset only. 
The latter results from removing 4 spectra from the original dataset, 
corresponding to the two replicates (with and without water dilution) 
of the samples with maximum concentration of hippurate and without 
citrate, and vice-versa. The 24-spectra dataset has the advantage to 
correspond to a non-orthogonal design of experiments and will allow 
to emphasize the differences between PCA and ICA results.

Methods
Dimension reduction and signal decomposition by Independent 

Figure 2: A Typical urine intensity spectrum with spiked citrate and hippurate.



Citation: Féraud B, Rousseau R, de Tullio P, Verleysen M, Govaerts B (2017) Independent Component Analysis and Statistical Modelling for the 
Identification of Metabolomics Biomarkers in 1H-NMR Spectroscopy. J Biom Biostat 8: 367. doi: 10.4172/2155-6180.1000367

Page 4 of 8

Volume 8 • Issue 4 • 1000367J Biom Biostat, an open access journal
ISSN: 2155-6180
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We propose to choose q on the basis of a scree plot in order to 
guarantee the preservation of most of the original information.

Measure of the information contained in ICA sources and 
sources ordering: ICA does not provide a natural ordering of the 
computed sources. This section presents a possible solution to this 
limitation. Given a set of q estimated sources s j, we can reconstruct the 
data as TX SA

∧

= . Let us define the error when Xc is reconstructed with 
source s j only:

( )  . .  c T T
j j j j jE X s a S A≠ ≠−= =

This error is equivalent to the data reconstructed with all the 
other sources contained in the (m (q1)) matrix S6=j. For sources with 
zero mean and unit variance, it can be shown that a measure of the 
proportion of the variation in T explained by sj is:
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The proportion of the variance of signals in Xc explained by a 
source sj is then defined by:
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With Dq the proportion of variance explained by the q scores in T 
(see eqn. (4)). This measure of importance finally allows ordering the 
sources sj according to their respective Cj.

Example: In this section, the ICA procedure is applied on the 
n=24 spectra with m=600 ppms dataset described. Figure 3 shows the 
expected improvement of ICA over PCA for this specific dataset: PCA 
will produce principal components of maximum variance, while ICA 
should provide independent directions, corresponding to the sources 
of interest. As the experimental samples are mixtures of three products, 
we ideally expected to find three independent sources of variation: the 
urine, the citrate and the hippurate.

Of course, in the data analysis, it is supposed that we do not have 
the information on the sources and expect to recover them blindly 
according to our methodology. Based on the screeplot (Figure 4), 
we first chose to estimate q=6 sources. The percentage of explained 
variance with these first six PCs is D6=0.9796.

A discussion about the three more important ICA sources derived 
by the ICA algorithm and the first three sources (or loadings vectors) 
obtained by applying classical PCA to the spectral matrix are detailed 
in the Supporting Information additional figure file.

Biomarkers identification by statistical modelling of the ICA 
weights

The second step of the methodology fits a statistical model in order 
to identify metabolomics biomarkers from ICA results. More precisely, 
the model will search for a link between the ICA mixing weight matrix 
A and the design factors of the metabolomics study. This modelling 
step will provide a list of sources which significantly influence the 
spectra when the level of a factor of interest changes [22]. The profiles 
of these sources will then help the biologist to identify corresponding 
metabolites and designate them as candidate biomarkers.

ICA on metabolomic data and algorithm application: In the 
context of metabolomics 1H-NMR data, the analyzed biofluid (e.g. 
plasma, urine) can be seen as a mixture of individual metabolites; NMR 
spectra may then be interpreted as weighted sums of NMR spectra of 
these single metabolites. If the matrix X of 1H-NMR spectra is rich 
enough, the application of ICA to 1H-NMR data should then ideally 
recover components included in the mixture, interpretable as spectra of 
pure or complex metabolites. The Fast ICA algorithm recovers sources 
and linked weights from the spectral matrix through following steps:

•	 Pre-processing step 1: centre X by columns:

1 .C
mX X X= −

Where X  is the 1 × n vector of spectral means and 1 m a m 1 unit 
vector.

•	 Pre-processing step 2 ("whitening"): reduce by PCA the (m × 
n) matrix Xc to a (m × q) matrix of scores T (q £ min(n; m)):

Xc=T*P*=T P + E.

Where P* is a (n n) matrix defined on the basis of the eigenvectors 
of the covariance matrix (XcT Xc)/n. Then, P is defined as the q first 
lines of P* and E is the error matrix. The column vectors of the full 
score matrix T* are centred, uncorrelated and their variances are equal 
to one. In other words, the variance-covariance matrix of T* equals 
the identity matrix: Var(T*)=In. Note that this PCA differs from usual 
PCA for metabolomics biomarkers identification as the resulting 
components are linear combinations of observations (spectra) and not 
of variables (spectral descriptors), and centring is done by spectra and 
not by descriptor. The number of sources q to be estimated must be 
fixed to less than min (n, m). This is performed here by selecting the q 
first scores vectors (columns) of T* in order to build the (m × q) matrix 
T. The choice of q is discussed.

•	 Extraction of S and AT from T with the fastICA algorithm

The (m × q) matrix S contains q estimated independent components 
(IC) sj. Each sj has a zero mean and a unit variance, and at least (q−1) 
sources are non-gaussian. The A mixing matrix is a (n q) matrix. 
Each column a j is then a (n × 1) vector containing the weights (or 
contributions) of the corresponding source sj in the construction of the 
n observed spectra. A source sj playing a major role in the contribution 
of an observed spectrum xi has then a potentially large absolute value 

ija .

Choice of the number of sources to estimate: One important 
parameter that may influence the ICA results is the number q of 
estimated components. The effective number of independent sources 
contributing to the signal is obviously un-known. ICA algorithms make 
the fundamental assumption that the number of sources q is less than 
or equal to the number of observed mixtures n. Moreover, to make 
the implementation of the fast ICA algorithm effective, the maximal 
value for q is the smallest dimension of its input matrix T, i.e. q min (n, 
m). In 1H-NMR metabolomics datasets, the resolution of a spectrum 
m is typically higher than the number of spectra n. The maximal value 
for q is then the number n of observed spectra. Anyway, when n is 
large, choosing q=n can produce convergence problems or very high 
computational costs. Choosing q<n by discarding some score vectors 
obtained via the whitening matrix T helps convergence and discards 
noise. PCA provides a natural ordering of the columns of T* according 
to the eigenvalues lj of XcT Xc. The q first score vectors associated with 
the largest eigenvalues are then selected to form the reduced matrix T. 
Let us define Dq the proportion of the variation of Xc explained by the 
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Principle: The fundamental principle underlying this step of 
the methodology is the following. A 1H-NMR spectrum reflects the 
concentrations of pure or complex metabolites contained in the 
analysed sample. The design factors, as for example the dose of a 
drug, can influence these concentrations and consequently modify 
the spectra in a specific way. The methodology presented in this paper 
supposes that the q sources recovered by ICA are the spectral images 
of pure or complex metabolites that are influenced by the (observed 
or unobserved) variables underlying the study. Under this assumption, 
the mixing weights aij should be proportional to the concentrations of 
the identified metabolites in the samples.

This step aims then at finding, through the mixing weights, which 
sources affect significantly the spectra when the factor of interest 
of the study changes (e.g. presence/absence of a disease, dose of a 
drug...) in spectral matrices where several other noise or controlled 
factors potentially affect the spectra (e.g. subject, nutrition status,... ). 
Linear mixed statistical models are used in this context to (1) allow to 
decorrelate the effect of the factor of interest on the mixing weights 
from the effects of the other covariables and noise factors, (2) allow to 
take into account the random character of some covariables and (3) 
provide a measure of statistical significances of the link between the 
factor of interest and the sources.

Linear mixed model specification, estimation, testing 
and interpretation: Let aj be the (n 1) vector of mixing weights 
corresponding to the jth ICA source and Y the (n l) experimental design 
matrix containing the variables of the study (as the factor of interest 
for which biomarkers are searched for) and other covariables which 
may have affected the spectra. In order to find how these variables 
are linked to each vector of weights aj, fitting a linear mixed statistical 
model is a flexible solution and a very classical approach in the context 
of biomedical studies. For each of the q sources sj, the following linear 
mixed model can be written as follows:

1 2  j j j ja Z Z εβ γ= + + .                      (3)

Where,

Z1 is a (n × p1) incidence matrix containing the fixed effects of the 
model: typically a constant term, coded categorical design variables, 
continuous variables and interactions or other high-order terms.

Z2, a (n × p2) incidence matrix containing the random effects of the 
model: typically coded random design variables as subject, batch, day 
and interactions between fixed and random variables.

βj, a (p1 1) vector of constant parameters to be estimated, γj is a (p2 × 
1) vector of random effects distributed as a multivariate normal N(0,G) 
and e j is a (n × 1) vector of residuals distributed as a multivariate 
normal N(0 × R).

Different specific cases of this general model are possible according 
to the inclusion of Z1 or Z2 or both. Models using only Z1 are also called 
GLM models in the statistical literature, and include ANOVA and 
regression models depending of the categorical or continuous nature 
of the variables included in the model. In most cases, the variable of 
interest of the study will be included in this matrix as a dose of a drug or 
a treatment versus placebo or the presence/absence of a disease. It can 
also include covariables that are not directly of interest but may greatly 
affect the spectra as the age or sex of a patient. Models using only Z2 
are "variance components" models including only random factors. This 
arises when one is interested by the effect of various populations (or 
analytical factors) on the spectrum variability (e.g. subject, hospital, 
operator, batch…), but this is not yet common in metabolomics. 
Complex metabolomics studies will typically include both fixed and 
random effects as for example in longitudinal studies where n subjects 
belonging to p categories of treatments are followed over time.

Depending of the generality of the specified model, the estimated 
parameters and related significance measures will be provided by basic 
statistical softwares or by more advanced ones like the PROC MIXED 
procedure in SAS or lme function in R.

Figure 3: Components expected to be found by PCA and ICA on an illustrative experimental design.

Figure 4: Scree plot of the % of explained variance with the first q PCs (from 
the PCA whitening).
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Testing the significance of the factor(s) of interest is a key step 
in the methodology and is typically neglected in most metabolomics 
studies. It will allow more generalized and powerful conclusions to the 
population of interest from which the data are issued. In general mixed 
models, several common procedures exist to test the significance of 
model terms. They are different for fixed and random effects, depend 
on the method applied to estimate the model and may be controversial 
when complex random effects occur.

Let us suppose that the model contains only fixed continuous and 
categorical effects and that the effect of interest is the main effect of a 
continuous covariate yk. The significance of yk is derived for each source 
sj through the p-value related to a t-statistic:

( ) ( ),( ) )2 | |n p j kpjk P t t−= × ≥                   (4)

( ),   /jk jkt j k sβ β
∧ ∧ 

 
 

=                 (5)

and where jkβ
∧

 is the coefficient of yk in the fitted model on ), ( kj ja s β
∧

 is 

the standard error associated with jkβ
∧

, n is the number of observations 
(spectra), p is the number of parameters into the model b and t(n-p) is a 
t random variable with (n-p) degrees of freedom.

If one supposes that the effect of interest is a categorical covariate 
with q levels, the significance of yk is then derived for each source sj 
through a F statistic as follows:

If one supposes that the effect of interest is a categorical covariate 
with q levels, the significance of yk is then derived for each source sj 
through a F statistic as follows

pjk=P(Fq–1,n–p) ≥ F(j,k)                     (6)

With,

F(j, k)=MSyk
j/MSRj,                  (7)

And where MSR j is the mean square of model residuals for source 
sj, MSyk

j the mean square related to yk effect and Fq–1;n p a F random 
variable with (q–1) and (n–p) degrees of freedom.

If such procedure is applied on K variables with more complex 
effects of interest (and for each of the q sources), (K × q) tests are 
performed and the decision of significance via the p-values must take 
into account the multiplicity situation. If (K × q) remains reasonably 
small, a simple Bonferroni correction is still applicable and the 
significance of the effect of yk for source sj is confirmed if pjk£/(K × 
q), where a is a chosen total error rate (e.g. a=0.05). For larger (K × 
q), procedures like False Discovery Rate (FDR) can be used. Through 
these testing procedures, the modelling step can be summarized into a 
table containing for each mixing weight vector (and related source) a 
measure of significance for each factor of interest (Table 1). This result 
is the basis of biomarker identification and interpretation.

Let us define S* as the (m × r) matrix of the r significant sources 
identified for the (or a) factor of interest in the study. A first way to 

extract biomarkers from these sources consists in examining their 
profile and identifying the known pure or complex metabolites with 
close profiles. This approach is appropriate when r is quite small and 
has "clean fingerprints". Also, sources do not provide quantification or 
a direction of the metabolite effect.

An additional and more informative approach is then proposed. 
It is a generalization of the concept of contrast estimation in classical 
linear models and gives an answer to the following question: which 
average change is expected in the spectrum when the covariate of 
interest changes from one level to another (e.g. if a patient is or is not 
affected by a disease, or if the dose of a drug is increased)?

Let us introduce y1
k and y2

k, two levels of interest for a quantitative 
covariate yk (e.g. two drug doses). Let us then define * * *

2 1 2 1 a a a
∧ ∧ ∧

− −∆ =  
as the vector of the differences of predictions for these two covariate 
levels and for the r identified sources. For models without interaction, 
these differences are only influenced by the terms in yk. For models 
with interactions, the values of the other factors should be fixed to 
chosen levels.

Consequently, the expected change in spectra can simply be 
obtained via the following contrast:

* *
2–1  C S a

∧

= ∆                       (8)

Where C2–1 is a (m × 1) vector and can be drawn as a spectrum to 
visualize the spectral zones which are affected by the covariate.

In particular, if yk is introduced as a continuous variable in 

the model and if *
kβ

∧

 is the vector of the coefficients for yk and the r 
identified sources, the expected change between the spectra for the two 

levels 1
ky  and 2

ky  is given by ( )*
2–1

1* 2 k k kC S y yβ
∧

−= . If yk is introduced 

as a categorical variable in the model and if *1
kβ
∧

 and *2
kβ
∧

 are the vectors 
of the estimated effects for the two levels of interest for the r sources, 

the change in spectra is provided by * *2*
2–

*1
1  k k kC S β β β

∧ ∧ ∧ 
− 

 
= .

Example: This section illustrates the modelling step on the 
experimental data presented. All 28 spectra are used in this section and 
the two design factors (hippurate and citrate levels) are used as variables. 
With 28 spectra, the screeplot suggests to calculate six ICA sources. The 
profiles of the three first sources are very similar than those obtained 
with the reduced design. Let us define y1 as the hippurate dose and take 
it as the factor of interest for which biomarkers are investigated, and y2 
as the citrate level supposed to be an additional covariate in the study.

These variables can be introduced either as continuous or as 
categorical variables in the linear model. In the first case, matrix Z will 
be a (28 3) matrix with a constant term as first column and y1 and y2 
as second and third columns. For each source s j, the following linear 
model is written as:

1
0 1 1 2 2    j j j j j j ja Z y yε β β β εβ= + = + + +                  (9)

Sources ˆ
1jβ Linear Regression p-values F(j,1) ANOVA p-values

S1 -6.60e-7 1.94e-15 105.46 8e-13

S2 -5.52e-7 4.77e-16 152.71 2.04e-14

S3 2.65e-6 8.30e-35 4468.90 1.31e-29

S4 -1.07e-7 0.27 0.83 0.50
S5 2.21e-7 0.01 2.86 0.06
S6 3.70e-9 0.96 0.02 0.99

Table 1: Results of Linear Regression and ANOVA models.
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The β1’s estimated by linear regression for the six sources and the 
corresponding p-values are given in Table 1 (the β2’s are not provided 
since this covariate is not considered of interest). Note that higher 
order terms (quadratic or interaction terms) could be included in such 
model. If the two covariates are introduced as categorical variables 
in the model, Z becomes a (28 7) matrix with a constant term as first 
column and two blocks of three columns corresponding to the binary 
coding of the 4-levels categorical variables. Such model can then be 
estimated by regression but corresponds also to a two ways ANOVA 
model which can be fitted through classical ANOVA formulae when 
the design is balanced. This model is written in the ANOVA literature as:

0    1  2  i h
jih j j jiha β β β ε= + + +                    (10)

 Where indices i and h refer to the levels of the two variables y1 and 
y2, and 1

i

jβ  and 2

i

jβ  to the corresponding main effects according to 
source sj. Note that one could also introduce an interaction term in this 
model. Table 1 provides the F statistic and corresponding p-values for 
the effect of the first factor on the six sources. If y1 is considered as the 
only variable of interest, a p-value will be declared significant if smaller 
than a/6=0:00833 with a= 0:05 according to the Bonferroni correction.

Four sources can then be declared as significant in the regression 
model and three sources in the ANOVA model. The most important 
source seems to be s3. Spectral regions linked with s3 may then represent 
biomarkers or spectral expression of metabolites significantly affected 
by a change of the factor of interest y1. As expected in this example 
with y1 being the hippurate dose, s3 presents as biomarkers the peaks 
in the spectral zone of the hippurate molecule. Logically, the model 
recovers that a change of concentration of hippurate in the mixture 
introduces a signal corresponding to the third source in the resulting 
spectra. However, when other covariables affect the spectra, note that 
the methodology presented here is able to extract from the signal 
the effect of the variable of interest and keep in other possible non-
orthogonal sources of variability. This is a crucial property in biological 
and medical applications, where controlled or noise covariables can 
greatly affect the signal and hide the effect of the variable of interest.

When a source is declared as significant, the model parameters 
also provide a quantification of the effect of the variable of interest on 
the spectra through the mixing weights. Figure 5 illustrates the linear 
effect of the hippurate dose on the mixing weights for the four levels of 
citrate. The slope of the line is 2:6410–6, the parameter β1 of the linear 
model for s3.

Additionally, both linear regression and ANOVA models select 

s1 (spectral profile of pure urine) and s2 (spectral profile of pure 
citrate) as significant sources. In linear regression models, the sign 
of corresponding parameters 1jβ

∧

 and 2jβ
∧

 is negative, indicating a 
negative contribution of these sources to the observed spectra. This 
is easily explained by the constant sum normalization pre-processing 
applied to the spectra: if the peak heights corresponding to one 
metabolite in the spectra increase, the peaks corresponding to all other 
products (urine and citrate) decrease accordingly.

When more sources are declared as significant (but with less 
interpretable sources), the methodology presented in this paper 
allows to reconstruct the effect of the change of one factor level on 
the spectra independently to the effect of possible confounding model 
factors. In the design matrix Y, the hippurate dose y1 is observed at 
the following values: 0, 75, 150 and 300 mg. Three contrasts, C2–1, C3–1 
and C4–1, respectively describe the expected changes in spectra when 
the drug dose goes from 0 to 75 mg, 0 to 150 mg and 0 to 300 mg. 
Figure 6 presents the three contrasts obtained when y1 is introduced 
as a continuous variable in the model. This figure shows that, as the 
dose goes from 0 to a positive value in each of the three contrasts, the 
hippurate peaks increase. On the contrary, negative values appear 
everywhere else due to the normalization. The corresponding figure 
when y1 is introduced as a qualitative variable is very similar.

More discussion concerning this data set and a generalization to 
more complex mixed models may be found in ref. [18].

Conclusions
The biomarker identification in 1H-NMR based metabolomics 

is traditionally realised, with some limitations, via the examination 
of the two first components of a PCA, but without any statistical 
testing confirmation of factors effects. In this paper, we presented a 
new methodology providing three kinds of knowledge on 1H-NMR 
metabolomics data: the identification of biomarkers, a statistical 
confirmation of the significance of these biomarkers and the 
visualization of the effects on the biomarkers caused by factor changes.

The methodology involves a dimension reduction by ICA 
followed by statistical modelling approaches. This paper first presents 
a process to decompose by ICA the spectral data into statistically 
independent components and shows, on experimental data, that 
ICA allows to visualize, through the resulting sources, the spectral 
profile of independent metabolites contained in the studied bio fluid 
and their quantity through the corresponding mixing weights. Then, 
linear mixed statistical modelling is applied on ICA results to select 
the sources or spectral regions changing significantly according to the 
factors of interest. Finally, the selected sources are used to reconstruct 
the spectra and to compute contrasts presenting the alterations in 
specific regions caused by different changes of the factor of interest. 
Beside their discovery, contrasts also allow to visualize the alterations 
of potential biomarkers for defined changes of covariate conditions or 
context.

As exposed on experimental data, the ICA solves the weaknesses 
of the PCA dimension reduction by providing more natural and also 
more biologically meaningful representations of the data. Additionally, 
the combination of ICA with statistical models has the advantage to 
base the component selection on an inferential criterion: biomarkers 
are identified from components for which the covariate of interest 
shows a significant effect. In the usual PCA, biomarkers are identified 
from the component with the largest percentage of variance, without 
any inferential information.

Figure 5: Relationship between the hippurate dose (y1) and the vector of mixing 
weights a3. Each of the four lines represents the estimated linear regression 
models for one fixed value of y2.
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In this paper, source selection is based on t-statistics computed on 
the weight vectors without using their significance levels. An accurate 
source selection is provided, due to its inferential character but also 
to the fact that models give the possibility to include all the design 
covariates jointly with the covariate of interest. The large diversity of 
statistical models accepted by this methodology allows us to apply 
it to a large variety of complex metabolomics situations: models 
can include quantitative and qualitative design variables as well as 
combinations of fixed and random effects (linear mixed models). As a 
result, additionally to the proposed biomarker search, the methodology 
provides information on spectral regions affected by other factors of 
the study.

Furthermore, this methodology has been applied on a real 
metabolomic AMD dataset (see Supporting Information). The spectral 
biomarkers linked with this disease correspond to a metabolite 
supporting biological explanation of the setting of AMD.
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