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Abstract
Viral entry is one of the most important targets for the efficient treatment of Human immunodeficiency virus 

type 1 (HIV-1)-infected patients. The entry process consists of multiple molecular steps: attachment of viral gp120 
to CD4, interaction of gp120 with CCR5 or CXCR4 co-receptors, and gp41-mediated fusion of the viral and cellular 
membranes. Understanding the sequential steps of the entry process has enabled the production of various antiviral 
drugs to block each of these steps. Currently, the CCR5 inhibitor, maraviroc, and the fusion inhibitor, enfuvirtide, are 
clinically available. However, the emergence of HIV-1 strains resistant to entry inhibitors, as commonly observed 
for other classes of antiviral agents, is a serious problem. In this review, we describe a variety of entry inhibitors 
targeting different steps of viral entry and escape variants that are generated in vitro and in vivo.

Keywords: CD4-gp120 binding inhibitor; CCR5 antagonist; CXCR4
antagonist; Fusion inhibitor; Resistance; HIV-1

Introduction
     The development of chemotherapy with antiretroviral agents has 
reduced the morbidity and mortality of Human immunodeficiency vi-
rus type 1 (HIV-1)-infected individuals. Successful treatment of HIV-
1-infected patients using chemotherapy is partly due to a combination
of different classes of antiviral agents against the viral protease or re-
verse transcriptase. However, successful eradication of the virus from
infected individuals has not been achieved by antiviral treatment, and
is often limited by the emergence of drug-resistant HIV-1 strains [1-3].
These problems highlight the need to develop novel anti-HIV-1 drugs
that target different steps of the viral replication process. Viral entry is
currently one of the most attractive targets for the development of new
drugs to control HIV-1 infection. Viral entry proceeds through Env

(gp120, gp41)-mediated membrane fusion, and consists of sequential 
steps: (i) attachment of viral gp120 to the CD4 receptor; (ii) binding of 
gp120 to CCR5 or CXCR4 co-receptors; and (iii) fusion of the viral and 
cellular membranes (Figure 1). A large number of inhibitors targeting 
different steps of the viral entry process have been developed, including 
peptides/peptide mimics, small molecules, and monoclonal antibodies 
(MAb). 

Enfuvirtide (also known as T-20) was the first of a new class of 
drugs known as fusion inhibitors, which was approved by the U.S. 
Food and Drug Administration (FDA) in 2003. Approval was given for 
the use of this drug in combination with other anti-HIV-1 medications 
to treat advanced HIV-1 infection in adults and children aged six years 
and older. The drug is an antiviral peptide that prevents HIV-1 entry by 
blocking gp41-mediated fusion [4-6]. Small compounds that can bind 
to the pockets of the extracellular loops of a coreceptor are expected 
to be potent antiviral agents. Several small-molecule CCR5 inhibitors 
have progressed through clinical development [7]. Maraviroc [8,9], a 
CCR5 antagonist, is the second entry inhibitor approved by the FDA in 
2007 for treatment-experienced patients infected with a CCR5-tropic 
(R5-tropic) virus. Extensive research is currently underway to develop 
the next generation of entry inhibitors, however, the emergence of viral 
strains resistant to entry inhibitors, as well as other classes of antiviral 

Figure 1: Molecular targets of inhibitors of HIV-1 entry into the target cell.
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agents, has been reported in vitro and in vivo [7,10]. In this review, we 
describe the current status of in vitro and in vivo resistance to HIV-1 
entry inhibitors.

Resistance to CD4-gp120 binding inhibitors

Inhibition of CD4-gp120 binding: Entry of HIV-1 into target cells 
is mediated by the trimeric envelope glycoprotein complex, each mono-
mer consisting of a gp120 exterior envelope glycoprotein and a gp41 
transmembrane envelope glycoprotein [11]. Attachment of HIV-1 to 
the cell is initiated by the binding of gp120 to its primary CD4 recep-
tor, which is expressed on the surface of the target cell. The gp120-CD4 
interaction induces conformational changes in gp120 that facilitate 
binding to additional coreceptors (for example, CCR5 or CXCR4). At-
tachment inhibitors are a novel class of compounds that bind to gp120 
and interfere with its interaction with CD4 [12]. Thus, these agents can 
prevent HIV-1 from attaching to the CD4+ T cell and block infection 
at the initial stage of the viral replication cycle (Figure 1). There are two 
primary types of HIV-1 attachment inhibitors: nonspecific attachment 
inhibitors and CD4-gp120 binding inhibitor [13]. 

In this section, we focus on the CD4-gp120 binding inhibitors, the 
soluble form of CD4 (sCD4), a fusion protein of CD4 with Ig (PRO542), 
a monoclonal anti-CD4 antibody (Ibalizumab, formerly TNX-355), 
CD4 binding site (CD4bs) monoclonal antibodies (b12 and VRC01), 
small-molecule HIV-1 attachment inhibitors (BMS-378806 and BMS-
488043), and a new class of small-molecule CD4 mimics (NBD-556 
and NBD-557) and a natural small bioactive molecule (Palmitic acid) 
(Figure 2). We also describe the resistance profiles against these CD4-
gp120 binding inhibitors in vivo and/or in vitro.

Soluble CD4 (sCD4) and PRO542: In the late 1980s, various recom-
binant, soluble proteins derived from the N-terminal domains of CD4 
were shown to be potent inhibitors of laboratory strains of HIV-1 [14]. 
Based on the potential of sCD4 to inhibit HIV-1 infection in vitro, this 
protein was tested for clinical efficacy in HIV-1-infected individuals; 
however, no effect on plasma viral load was observed [14]. Further ex-
amination revealed that doses of sCD4 significantly higher than those 
achieved in the clinical trial were required to neutralize primary clini-
cal isolates of HIV-1, in contrast to the relatively sensitive, laboratory-
adapted strains [15].

The first report of sCD4-resistant variants induced by in vitro selec-
tion showed that the resistant variant had a single mutation (M434T) 
in the C4 region [16]. During selection with sCD4, it was also reported 
that, seven mutations (E211G, P212L, V255E, N280K, S375N, G380R, 
and G431E) appeared during in vitro passage [17]. Further, a recom-
binant clone containing a V255E mutation was found to be highly 
resistant to sCD4 compared with the wild-type virus (114-fold higher 
50% inhibitory concentration [IC50] value). To determine the mutation 
profiles obtained during in vitro selection with sCD4, the atomic coor-
dinates of the crystal structure of gp120 bound to sCD4 was retrieved 
from public protein structure database (PDB entry: 1RZJ). From these 
analyses, it was determined that almost all the described resistance mu-
tations were located the inside the CD4-binding cavity of gp120 [17].

Recently, a novel recombinant antibody-like fusion protein (CD4-
1gG2; PRO542) was developed in which the Fv portions of both the 
heavy and light chains of human IgG2 were replaced with the D1D2 
domains of human CD4 [18]. PRO542 was shown to broadly and po-

Figure 2: Profile of CD4-gp120 binding inhibitors including molecular structures of selected small molecular inhibitors.
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tently neutralize HIV-1 subtype B isolates, and was also able to neutral-
ize strains from non-B isolates with the same breadth and potency as 
for subtype B strains. PRO542 blocks attachment and entry of the virus 
into CD4+ target cells and were mainly developed for the prevention 
and transmission of HIV-1 through external application agents, such 
as microbicides. 

Ibalizumab (TNX-355): Monoclonal anti-CD4 antibodies block the 
interaction between gp120 and CD4 and, therefore, inhibit viral entry 
[19]. Ibalizumab (formerly TNX-355) was a first-in-class, monoclo-
nal antibody inhibitor of CD4-mediated HIV-1 entry [20]. By block-
ing CD4-dependent HIV-1 entry, ibalizumab was shown to be active 
against a broad spectrum of HIV-1 isolates, including recombinant 
subtypes, as well as both CCR5-tropic and CXCR4-tropic HIV-1 iso-
lates. Many clinical trials with HIV-1-infected patients have demon-
strated the antiviral activity, safety, and tolerability of ibalizumab. A 
nine-week phase Ib study investigating the addition of ibalizumab 
monotherapy to failing drug regimens showed transient reductions in 
HIV-1 viral loads and the evolution of HIV-1 variants with reduced 
susceptibility to ibalizumab. Further, clones with reduced susceptibil-
ity to ibalizumab contained fewer potential N-linked glycosylation sites 
(PNGSs) within the V5 region of gp120. Reduction in ibalizumab sus-
ceptibility due to the loss of V5 PNGSs was confirmed by site-directed 
mutagenesis [21].

Monoclonal antibodies, b12 and VRC01: Several broadly neutraliz-
ing MAbs isolated from HIV-1-infected individuals define conserved 
epitopes on the HIV-1 Env. These include the membrane proximal 
external region of gp41 targeted by MAbs 4E10 and 2F5 [22]; the car-
bohydrate-specific outer domain epitope targeted by 2G12 [23]; a V2-
V3-associated epitope targeted by PG9/PG16 [24]; and the CD4bs [25] 
targeted by b12 and VRC01. The CD4bs overlaps with the conserved 
region on gp120 that is involved in the engagement of CD4. The proto-
typical CD4bs-directed MAb, b12, neutralizes around 40% of primary 
isolates, and its structure (in complex with the core of gp120) has been 
defined [26]. However, Mo et al. [27] reported the first resistant variant 
induced by in vitro selection with b12 that showed a P369L mutation in 
the C3 region of HIV-1JRCSF. Further, several b12-resistant viruses com-
monly display an intact b12 epitope on the gp120 subunits [28], sug-
gesting that quaternary packing of Env also confers resistance to b12. 

A recently described CD4bs-directed MAb, VRC01, had been 
shown to be able to neutralize over 90% of diverse HIV-1 primary 
isolates [29]. The structure of VRC01 in complex with the gp120 core 
reveals that the VRC01 heavy chain binds to the gp120 CD4bs in a 
manner similar to that of CD4 [30]. The gp120 loop D and V5 regions 
contain substitutions uniquely affecting VRC01 binding, but not b12 or 
CD4-Ig binding. In contrast to the interaction of CD4 or b12 with the 
HIV-1 Env, occlusion of the VRC01 epitope by quaternary constraints 
was not a major factor limiting neutralization. Interestingly, many Ala 
substitutions at non-contact residues increased the potency of CD4- or 
b12-mediated neutralization; however, few of these substitutions en-
hanced VRC01-mediated neutralization [31]. This study suggests that 
VRC01 approaches its cognate epitope on the functional spike with less 
steric hindrance than b12 and, surprisingly, with less hindrance than 
the soluble form of CD4 itself. These differences might be related to 
the distinctly different angle of approach to the CD4bs employed by 
VRC01, in contrast to the more loop-proximal approach employed by 
CD4 and b12. 

BMS-378806 and BMS-488043: BMS-378806 (Figure 2) is a recently 
identified small-molecule HIV-1 attachment inhibitor with good anti-

viral activity and pharmacokinetic properties [32]. BMS-378806 binds 
directly to gp120 with a stoichiometry of approximately 1:1 and with 
a binding affinity similar to that of soluble CD4. The potential BMS-
378806 target site was localized to a specific region within the CD4 
binding pocket of gp120 using HIV-1 gp120 variants carrying either 
compound-selected resistant substitutions or gp120-CD4 contact site 
mutations [32]. M426L (C4) and M475I (V5) substitutions located at 
or near gp120/CD4 contact sites were shown to confer high levels of 
resistance to the in vitro mutated HIV-1 variants, suggesting that the 
CD4 binding pocket of gp120 was the antiviral target. M434I and other 
secondary changes (V68A and I595F) also affect the drug susceptibility 
of recombinant viruses, presumably by influencing the gp120 confor-
mation [33]. BMS-378806 (Figure 2) exhibited decreased, but still sig-
nificant activity against subtype C viruses, low activity against viruses 
from subtypes A and D, and poor or no activity against subtypes E, F, 
G, and Group O viruses [33].

BMS-488043 (Figure 2) is a novel and unique small-molecule that 
inhibits the attachment of HIV-1 to CD4+ lymphocytes. BMS-488043 
exhibits potent antiviral activity against macrophage-, T-cell-, and 
dual-tropic HIV-1 laboratory strains (subtype B) and potent antiviral 
activity against a majority of subtype B and C clinical isolates [34]. Data 
from a limited number of clinical isolates showed that BMS-488043 
exhibited a wide range of activity against the A, D, F, and G subtypes, 
with no activity observed against three subtype AE isolates [34]. The 
antiviral activity, pharmacokinetics, viral susceptibility, and safety of 
BMS-488043 were evaluated in an eight-day monotherapy trial that 
demonstrated significant reductions in viral load. To examine the ef-
fects of BMS-488043 monotherapy on HIV-1 sensitivity, phenotypic 
sensitivity assessment of baseline and post-dosing (day 8) samples were 
performed. The analyses revealed that four subjects showed emergent 
phenotypic resistance. Population sequencing and sequence determi-
nation of the cloned envelope genes revealed five gp120 mutations at 
four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-
488043 resistance; the most common (substitution at the 375 locus) 
located near the CD4 binding pocket [35].

NBD-556 and NBD-557: Targeting the functionally important and 
conserved CD4bs on HIV-1 gp120 represents an attractive potential 
approach to HIV-1 therapy or prophylaxis. Recently, a new class of 
small-molecule CD4 mimics was identified [36-38]. These compounds, 
which include the prototypic compound, NBD-556, and its deriva-
tives, mimic the effects of CD4 by inducing the exposure of the co-
receptor-binding site on gp120 [17,39]. NBD-556 and -557 (Figure 2) 
show potent cell fusion and virus-cell fusion inhibitory activity at low 
(micromolar) concentrations. A mechanistic study showed that both 
compounds target viral entry by inhibiting the binding of gp120 to its 
cellular receptor, CD4. A surface plasmon resonance study showed that 
these compounds bind to unliganded HIV-1 gp120, but not to CD4 
[37]. Another recent study identified NBD-analogs as CD4 mimetics 
that were used for the prophylaxis and treatment of HIV-1 infection 
[39]. These compounds inhibited HIV-1 transmission by inhibiting the 
binding of the natural ligand, CD4, and prematurely triggering the en-
velope glycoprotein to undergo irreversible conformational changes. 
NBD-556 binds to the F43 cavity, which is formed by binding of gp120 
to the CD4 receptor in a highly conserved manner [17,39].

Recently, our group reported that NBD-556 has potent neutral-
izing antibody-enhancing activity toward plasma antibodies that can-
not access neutralizing epitopes hidden within the trimeric Env, such 
as gp120-CD4 induced epitope (CD4i) and anti-V3 antibodies [17]. 
Therefore, to investigate the binding site of NBD-556 on gp120, we in-



Citation: Maeda R, Yoshimura K, Miyamoto F, Kodama E, Harada S, et al. (2011) In vitro and In vivo Resistance to Human Immunodeficiency Virus Type 
1 Entry Inhibitors. J AIDS Clinic Res S2:004. doi:10.4172/2155-6113.S2-004.

Page 4 of 12

ISSN:2155-6113 JAR, an open access journal J AIDS Clinic Res Pharmacology of Antiretroviral Agents: HIV

duced HIV-1 variants that were resistant to NBD-556 in vitro. Two 
amino acid substitutions (S375N in C3 and A433T in C4) were identi-
fied at passage 21 in the presence of 50 µM NBD-556. The profiles of the 
resistance mutations after selection with NBD-556 and sCD4 were very 
similar with regard to their three-dimensional positions.

Elucidation of the detailed molecular mechanisms governing the 
interaction between gp120 and NBD compounds will enable the op-
timization and evaluation of this strategy in more complex biological 
models of HIV-1 infection. Consequently, we will continue to synthe-
size NBD analogs and search for drugs with greater potency to change 
the tertiary structure of the envelope glycoproteins and reduce host 
cytotoxicity [40,41].

Palmitic acid : Previous studies with whole Sargassum fusiforme (S. 
fusiforme) extract and with the bioactive SP4-2 fraction demonstrated 
inhibition of HIV-1 infection in several primary and transformed cell 
lines [42]. Palmitic acid (PA), which was isolated from the SP4-2 bio-
active fraction, specifically block productive X4 and R5-tropic HIV-1 
infection [43]. PA occupies a novel hydrophobic cavity on the CD4 
receptor that is constrained by amino acids F52-to-L70 [44], which 
encompass residues that have been previously identified as a region 
critical for gp120 binding. PA is mainly developed as microbicides [45].

Resistance to CCR5 antagonists

CCR5 antagonists: The binding of HIV-1 to CD4 molecules induces 
conformational change in gp120, resulting in the recognition of either 

CCR5 or CXCR4 as a coreceptor for HIV-1 (Figure 1). It has been 
shown that CCR5-utilizing HIV-1 (R5 virus) is associated with hu-
man-to-human transmission that predominate throughout the infec-
tion, while CXCR4-utilizing HIV-1 (X4 virus) emerges during the late 
stage of infection in approximately half of HIV-1-infected individuals 
and is associated with disease progression [46]. Most strikingly, it had 
been shown that homozygous individuals having a 32-bp deletion in 
the CCR5 coding region (CCR5∆32) were found to be resistant to R5 
HIV-1 and remained apparently healthy [47,48]. These findings sug-
gested that CCR5 would be an attractive therapeutic target for treating 
HIV-1 infection, although it is a host factor. Several small molecule 
compounds have been developed and were found to bind CCR5 and 
inhibit R5 virus replication [49-53]. Molecular studies using CCR5 
mutants indicated that these compounds bind to a cavity formed by 
transmembrane helices of CCR5, and thereby inducing the conforma-
tional change in an allosteric manner that is not recognized by gp120 
of HIV-1 [54-58]. Among these, TAK-779 (Figure 3) was the first com-
pound developed [49] that could inhibit not only HIV-1 infection, but 
also binding of RANTES (CCR5 ligand) to CCR5-expressing cells at 
nanomolar concentrations, but was terminated due to poor oral bio-
availability. Maraviroc (MVC, UK427, 857) (Figure 3), however, has 
been approved and used in the clinic for the treatment of HIV-1 in-
fection [8]. Another promising drug, vicriviroc (VCV, SCH-D, SCH-
417690) (Figure 3), recently completed phase III trials but has not yet 
been approved [53].

Resistance to CCR5 antagonists: Although CCR5 antagonists target 

Figure 3: Profile of CCR5 antagonist-resistant mutants. The CCR5 antagonist-resistant mutants were isolated in vitro and in vivo across different subtypes of 
HIV-1. Resistance-related mutations were found in the V3 and non-V3 regions including the C2, V4, C4, and gp41. Chemical structures of representative CCR5 
antagonists are shown.
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a host cell receptor, the in vitro [59-64] and in vivo [65-67] emergence 
of viruses resistant to CCR5 antagonists in different subtypes has been 
reported, as shown in Figure 3. The most intuitive mechanism of re-
sistance to CCR5 antagonists is likely to be the acquisition of CXCR4 
use or selection of minority variants of CXCR4- or dual/mixed-tropic 
viruses [61,68-70]. Numerous studies showed that coreceptor selectiv-
ity of HIV-1 is primarily dependent on the third hypervariable region 
(V3 loop) of gp120 [71-74]. Furthermore, there is a simple rule to pre-
dict HIV-1 coreceptor usage called the 11/25 rule: if either the 11th 
or 25th amino acid position of V3 is positively charged, the virus will 
use CXCR4 as the coreceptor, otherwise it will use CCR5 [75]. Thus, 
a single amino acid substitution in the V3 loop is sufficient to acquire 
usage of CXCR4. However, these are rare cases when the viruses exclu-
sively use CCR5. 

Indeed, escape variants from selective pressure by natural ligand 
for CCR5, such as MIP-1α (CCL3) [76], or CCR5 antagonists [60], 
still use CCR5 and do not involve acquisition of CXCR4 usage. These 
studies indicate that acquisition of CXCR4 usage conferred by muta-
tions in the V3 loop of gp120 results in the loss of replication fitness, 
as previously described [77]. However, the escape variants from CCR5 
antagonists usually retain CCR5 usage [60,61,69,78], and recognize the 
antagonist-bound form of CCR5 as well as the free CCR5 form for en-
try by the accumulation of multiple amino acid mutations, called non-
competitive resistance [61,79]. In non-competitive resistance, once 
saturating concentrations of antagonists were achieved, further inhi-
bition was not observed, resulting in the plateau of inhibition, while 
competitive resistance can achieve inhibition of viral replication by a 
sufficient inhibitor concentration, resulting in a shift in the IC50 value 
(Figure 4). A principal determinant for the reduced sensitivity to CCR5 
antagonists has been shown to be the V3 loop of gp120 although the 
mutations appear to be isolate-specific and antagonist-dependent [33].

In general, primary R5 viruses or laboratory-adapted R5 infectious 
clones cultured in stimulated peripheral mononuclear cells (PBMCs) 
have been used for the selection of CCR5 antagonist-resistant variants. 
However, the use of PBMCs for virus passage is donor-dependent and 
labor-intensive. Additionally, the use of a single clone for selection 
would need long-term passage to induce resistant viruses. To overcome 
these problems, we constructed R5-tropic infectious clones containing 
a V3 loop library, HIV-1V3Lib. To construct replication competent HIV-
1V3Lib, we chose 10 amino acid positions in the V3 loop and incorporat-
ed random combinations of the amino acid substitutions derived from 
31 subtype B R5 viruses into the V3 loop library (Figure 5). This novel 

in vitro system enabled the selection of escape variants from CCR5 an-
tagonists over a relatively short time period. 

In addition to the V3 library, we are currently using PM1/CCR5 
cells for virus passages. The PM1/CCR5 cell line was generated by stan-
dard retrovirus-mediated transduction of parental PM cell line with the 
CCR5 gene, as previously described [63,76], and is highly sensitive to 
the R5 viruses compared to the parental PM1 cell line. Remarkably, the 
infection of PM1/CCR5 cells with R5 viruses induces prominent cell 
fusion, which is clear sign of virus proliferation. Thus, the use of PM1/
CCR5 cells with the HIV-1V3Lib allows us to focus on the contribution 
of the V3 loop in gp120 in CCR5 antagonist-resistance with a short-
ened selection period compared to the use of PBMCs with wild-type 
virus. As expected, we were able to isolate TAK-779- [63] and MVC-
resistant [62] variants using replication competent HIV-1V3Lib. Indeed, 
TAK-779- and MVC-resistant variants were determined to contain 
several amino acid substitutions within the V3 loop sequence. Howev-
er, MVC-resistant variants also contained several amino acid substitu-
tions in non-V3 regions (T199K and T275M), such as elsewhere in the 
gp120 to retain infectivity [80,81]. However, these mutations could not 
confer non-competitive resistance, indicating the importance of the V3 
loop for non-competitive resistance.

Mechanisms of resistance: It is thought that docking of gp120 to 
CCR5 without CCR5 antagonists involves interactions of both the 
V3 tip with the second extracellular loop of CCR5 (ECL2) and the 
V3 stem-C4 region (bridging sheet) with the CCR5 N-terminus (NT) 
[82]. Since small molecule inhibitors interact with the pocket formed 
by transmembrane helices, thereby inducing allosteric conformational 
change in the ECL2, the wild-type virus can no longer interact with 
the ECL2. It is assumed that binding of small molecule inhibitors al-
ters orientation between the ECL2 and NT regions, disrupting multi-
point binding sites for gp120, thereby impeding gp120-CCR5 interac-
tion [83]. Indeed, studies using CCR5 mutants showed that the escape 
variants were more dependent on tyrosine-sulfated CCR5 NT than 
wild-type viruses [65,66,84]. Furthermore, these escape variants were 
more sensitive to monoclonal antibodies recognizing the NT portion 
of CCR5 [65]. These studies indicated that the escape variants from 
CCR5 antagonists showed enhanced interactions with the NT that may 
be a consequence of a weakened interaction with the ECL2 (Figure 6). 

Another genetic pathway is independent of V3 mutations. Vicri-
viroc-resistant mutants have been developed with multiple amino 
acid substitutions throughout the gp120 spanning the C2-V5 region 
without any changes in the V3 loop [69]. Recently, three amino acid 
changes in the fusion peptide domain of gp41 have been shown to be 
responsible for resistance although the effect of these mutations was 

Figure 4: Typical competitive and non-competitive resistance profiles. Competitive resistance can achieve inhibition of viral replication by a sufficient inhibitor concentra-
tion, resulting in a shift in the IC50 value (left panel). In non-competitive inhibition, increasing concentrations of inhibitors have no effect, resulting in no increase in the 
inhibitory effect (right panel).
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context-dependent [84,85]. Thus, the mechanisms by which changes 
in the fusion peptide alter the gp120-CCR5 interaction still remain to 
be determined.

As previously mentioned, the patterns of mutations in escape vari-
ants against CCR5 antagonists were hypervariable and context-depen-
dent, due in part to extensive sequence heterogeneity of HIV-1 env. 
Resistance to CCR5 antagonists was also found to be dependent upon 
cellular conditions such as cell tropism and the availability of CCR5. 
The differential staining of CCR5-expressing cells by various CCR5 
monoclonal antibodies suggested that CCR5 exists in heterogeneous 
forms [86] and compositions of these multiple forms differed in cell 
type [87]. These findings suggested that different conformations of 
CCR5 with CCR5 antagonists might induce different substitutions in 
gp120. Moreover, the development of cross-resistance to other CCR5 
antagonists is inconsistent, where some studies suggest that it may oc-
cur [69,78,79] and some suggest that it may not occur [61]. Additional 
data from in vitro and in vivo studies will be needed to elucidate the 
meaning of these studies.

Resistance to CXCR4 antagonists

CXCR4 as a target: CXCR4 is a coreceptor that is used for entry by 
X4-tropic viruses [88]; however, it is not always regarded as a suitable 

therapeutic target molecule for HIV-1 infection (Figure 1). R5 and X4 
HIV-1 variants are both present in transmissible body fluids; however, 
R5-tropic HIV-1 transmits infection and dominates the early stages 
of HIV-1 pathogenesis [89], whereas X4-tropic HIV-1 evolves during 
the later stages and leads to acceleration of disease progression due to 
faster decline in CD4+ T lymphocytes [90,91]. Coreceptor switching 
from CCR5 to CXCR4 occurs in approximately 40–50% of infected in-
dividuals [92]; in addition, the R5 virus is still present as a minor viral 
population even after emergence of the X4 virus. Furthermore, CXCR4 
deletion in mice was shown to induce a variety of severe disorders and 
resulted in embryonic lethality [93], suggesting that CXCR4-targeting 
drugs may be less well tolerated than CCR5 inhibitors. These studies 
indicate that administration of CXCR4 inhibitors is relatively restricted 
to the later stage of infection after coreceptor switching. Therefore, the 
development of CXCR4 antagonists has proceeded at a deliberate pace 
when compared with that of other types of entry inhibitors. 

Escape from CXCR4 antagonists: Based on the manner of escape of 
R5-tropic HIV-1 from CCR5 antagonists, four main resistance path-
ways may be intuitively possible for X4 HIV-1 escape from CXCR4 
antagonists: (i) coreceptor switching from CXCR4 to CCR5; (ii) out-
growth of the pre-existing R5 virus; (iii) decrease in CXCR4 suscep-
tibility by mutation(s) in Env; and (iv) utilization of the drug-bound 

Figure 5: Schematic structure of HIV-1 V3 loop library showing introduced mutations in V3 for the analysis of escape mutants. Residues in boldface indicate the 
substitutions that were randomly incorporated in the V3 loop, possible >2 x 104 combinations. The amino acid substitutions were detected in 31 R5 clinical isolates.

Figure 6: Resistant HIV-1 viruses can enter host cells in the presence of the CCR5 antagonist. The successful viral fusion requires the interaction of the V3 loop 
in gp120 with the ECL2 and NT of CCR5. CCR5 antagonists bind to the pocket formed by TM helices and induce allosteric conformational changes in the ECL2, 
thereby disrupting the interaction of gp120 with CCR5. The CCR5 antagonists-resistant viruses containing multiple amino acid substitutions in the V3 loop can 
recognize antagonist-bound forms of CCR5 by enhanced interaction with the NT.
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form of CXCR4. The first mechanism comprises a shift in coreceptor 
usage from CXCR4 to CCR5, which is induced by selective pressure 
from CXCR4 antagonists. However, this is unlikely to occur frequently 
because coreceptor switching from CCR5 to CXCR4, and vice versa, 
requires multiple mutations throughout gp160 via transitional inter-
mediates with poor replication fitness [77]. 

There is an evolutionary gap in viral fitness between viruses using 
CXCR4 and those using CCR5. However, an R5X4 dual-tropic virus 
can shift from X4-dominated tropism to R5-dominated tropism [83]. 
The R5X4 dual-tropic 89.6 mainly uses CXCR4 as a coreceptor, but af-
ter selection with the CXCR4 antagonist T140, coreceptor usage shifted 
from a phenotype that mainly used CXCR4 to one mainly using CCR5 
due to a single amino acid substitution (R308S) in the V3 loop in vitro. 
These results indicated that the R5X4 virus could shift its main corecep-
tor usage due to a low genetic barrier to the development of resistance. 
In contrast, an outgrowth of the pre-existing minority of the R5 virus 
caused by CXCR4 antagonists, is expected to lead to virologic failure. 
AMD3100 is a small molecule compound called a bicyclam that has 
potent antiviral activity against a variety of X4-tropic strains [94-99]. 
However, it is not clinically available because of low oral bioavailability 
[100]. After treatment of clinical isolates in vitro with AM3100 for 28 
days, the major population of viruses using CXCR4 was promptly re-
placed by the pre-existing minor population using CCR5 with multiple 
mutations in the V3 loop in vitro [101]. 

The third possible pathway results from accumulation of mutations 
in the viral envelope that allow interaction between gp120 and the co-
receptor in the presence of the inhibitor. AMD3100-resistant viruses 
selected in vitro from NL4-3 strain still used CXCR4 as a coreceptor 
and contained several mutations in the V3 loop and showed poor fit-
ness [102]. In contrast, other viruses resistant to POL3026, a specific 
β-hairpin mimetic CXCR4 antagonist, did not show any fitness cost 

and contained four mutations (Q310H, I320T, N325D, and A329T) 
in the gp120 V3 loop [70]. These four mutations were shared by viral 
strains resistant to SDF-1α [103] and T134 [104], indicating that the 
V3 loop is a crucial region for the acquisition of CXCR4 antagonist 
resistance.

The fourth possible mechanism involves acquisition of the abil-
ity to utilize the inhibitor-bound form as well as the drug-free form 
of CXCR4 for viral entry. Several clinical isolates demonstrate infec-
tion through the AMD3100-bound form of CXCR4, indicating a non-
competitive mode of drug resistance [99]. The V1/V2 region of one 
of the isolates is responsible for this property, suggesting that baseline 
resistance to this kind of CXCR4 antagonist should be considered while 
developing CXCR4 antagonists. Recent advances have led to the de-
velopment of orally-active CXCR4 antagonists, including AMD11070 
[105], KRH-3955 [106], and GSK81297 [107]. Therefore, to prevent the 
possible emergence of pre-existing forms of the CCR5 virus, it is likely 
that CXCR4 antagonists will be effective only in combination with a 
CCR5 antagonist or other antiviral drugs. 

Fusion inhibitory peptides and their mechanisms of action

Fusion inhibitors: Enfuvirtide (T-20) was approved by the FDA in 
2003 as the first fusion inhibitor that efficiently suppresses the replica-
tion of HIV-1 resistant to available classes of anti-HIV-1 drugs (Fig-
ure 1), such as reverse transcriptase inhibitors (RTIs) and protease in-
hibitors (PIs). Hence, it has been widely used for treatment of HIV-1 
infected patients where treatment with other antiretroviral drugs has 
failed [108]. T-20 comprises a 36 amino acid peptide derived from the 
gp41 HIV-1 C-terminal heptad repeat (C-HR), as shown in Figure 7.

During HIV-1 entry, binding of gp120 to CD4 and either CCR5 
or CXCR4 initiates penetration of the hydrophobic fusion peptide do-
main at the N-terminal heptad repeat (N-HR) of gp41 into the target 

Figure 7: Schematic view of HIV-1 gp41 functional domains and mutation map for T-20. Putative hydrophobic pocket region of the N-HR is shown (green) and 
may form a leucine-zipper-like domain. In the C-HR, two tryptophan-rich domains (TRD; pink) are located at the N- and C-terminal regions (N-TRD and C-TRD, 
respectively). The N-TRD binds to the hydrophobic pocket in the N-HR, whereas the C-TRD plays a key role in membrane association. FP; fusion peptide domain, 
which penetrates into the target cell membrane. TM; transmembrane region. The amino acid sequence of the HXB2 clone is shown as a representative HIV-1 se-
quence. Only mutations located in the extracellular domain of gp41 are shown. Mutations observed in in vitro and in vivo selections are indicated by an asterisk (*). 
I37T was only selected in vitro. Primary and secondary mutations were most frequently associated with T-20 resistance (red and blue, respectively). In addition, 
T25S/A, S35A/T, R46K, L55F, Q56R/K, V72L, A101I/T/V/G, L108Q, N109D, D113G/N, E119Q, L130V, I135L, N140I, and L158W were selected in patients under 
T-20 containing regimens, but observed in some drug-naïve HIV-1 strains (Los Alamos HIV Sequence Data Bank, http://www.hiv.lanl.gov/content/index (natural 
polymorphisms). Corresponding regions of T-20, SC34EK, and T2635 are shown. T-20 is comprised of the original sequence but others are extensively modified.
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cell membrane [6]. In the gp41 extra-cellular domain, the α-helical re-
gion at the C-HR begins to fold and interact with a trimeric form of the 
N-HR in an anti-parallel manner. This intramolecular folding forms a 
stable six-helix bundle and facilitates the fusion of the virus envelope 
and cellular membranes. During the fusion step of HIV-1 replication, 
T-20 can interfere with the formation of the six-helix bundle consisting 
of a trimeric N-HR/C-HR complex.

In the C-HR, two tryptophan-rich domains (TRDs) are located in 
close proximity to the connection loop (N-TRD) and the membrane-
spanning or transmembrane region (C-TRD). Both TRDs resemble a 
leucine zipper structure and are believed to be important for interac-
tions of the N-HR and the C-HR. T-20 contains the amino acid se-
quence of the C-TRD, whereas C34-based peptides, such as SC34EK 
and T2635, contain the N-TRD. T-20 is believed to bind to the N-HR 
as a decoy and prevents the formation of the six-helix bundle [109], 
resulting in the inhibition of HIV-1 entry. This mode of action has been 
well documented with another fusion inhibitory peptide, C34, and re-
mains controversial whether the mechanisms of action of T-20 and 
C34 are in fact the same.

Primary and secondary mutations for fusion inhibitors: Although 
some fusion peptides, such as N36 [110] and IQN17 [111], are designed 
using the N-HR sequence, most have been designed using the C-HR se-
quence. Primary mutations for a representative C-HR derived peptide, 
T-20, are generally introduced within the N-HR, a putative binding site 
of T-20 [112,113]. Mutations frequently reported in vivo are located 
at amino acid positions 36–45 of the gp41, including G36D/S/E/V, 
V38A/M/E, Q40H, N42T, and N43D/K (Figure 7) [114]. Using circu-
lar dichroism analysis, others and we clearly demonstrated that these 
primary mutations reduce the binding affinity of C-peptides with the 
N-HR [112,115]. This mutation also impairs physiological intra-molec-
ular binding of the C-HR with the N-HR, providing a replication cost 
[116]. Therefore, HIV-1 develops secondary or compensatory muta-
tions in the C-HR to restore the reduced stabilities of the six-helix bun-
dle by the introduction of primary mutations. N126K, E137K/Q, and 
S138A [115,117] have been reported in vivo, usually in combination 
with N-HR mutations. Mutations in the C-HR restore the intra-mo-
lecular folding/interaction of the C-HR with the N-HR. The enhanced 
binding affinity by the secondary mutations can be applied to peptide 
design, such as C34 with N126K and T-20 with S138A, which maintain 
anti-HIV-1 activity, even to drug-resistant HIV-1 [115].

Secondary mutations of the N-HR are not only non-synonymous, 
but also synonymous. A part of the RNA coding region for the env 
gene, including gp41, also encodes the Rev-responsible element (RRE), 
which is an RNA secondary structure important for unspliced RNA 
export from the nucleus that is required for efficient viral protein syn-
thesis and packaging of genomic RNA [118,119]. Primary mutations 
at positions 36 and 38 for stem II and at 43 for stem III affect the RRE 
structure. Synonymous and non-synonymous mutations introduced 
into the gp41 compensate for RRE structure stability, such as T18A for 
V38A [120] and A30V for G36D [116], and Q41 (CAG to CAA) and 
L44 (UUG to CUG) for N43D [121]. This association between the gp41 
and RRE results in some genetic restrictions.

Impact of mutations on clinical potency: Only one or two amino 
acid substitutions in gp41 appear to be sufficient for clinical treatment 
failure, where after the emergence of mutations, viral load gradually 
increases [122]. For example, G36E, V38A, Q40H, and N43D were 
shown to confer 39.3-, 16-, 21-, and 18-fold reductions in suscepti-
bility to T-20, respectively [123]. Double or triple substitutions have 
also been identified in clinical isolates from patients undergoing ther-

apy with T-20. Mutations such as N42T+N43S, V38A+N42D, and 
Q40H+L45M confer 61-, 140-, and 67-fold reductions in susceptibility 
to T-20, respectively [123]. Mutations at codons 36 (G36E/D/S) and 38 
(V38A/G/M) seem to emerge relatively rapidly in vivo, whereas Q40H 
and N43D emerge more slowly [122]. After prolonged therapy, HIV-1 
has been shown to develop secondary mutations and may confer more 
apparent resistance with improved replication kinetics. Therefore, 
combination regimens with other inhibitors, such as RTIs and PIs, are 
indispensable for sufficient positive viral responses.

T-20 appears to inhibit replication of HIV-1 subtype independent-
ly [124-126], since T-20 has mainly been used for subtype B HIV-1 
infected patients. Based on the mechanism of action of T-20, interfer-
ence of N-and C-HR interactions may be expected, where amino acid 
sequences are highly conserved across all subtypes. However, in non-B 
subtype HIV-1, N42S predominantly emerged as a resistance-related 
mutation [124,125]. 

Resistance to the next generation inhibitors: Next generation inhibi-
tors have been designed using several strategies, such as the introduc-
tion of specific amino acid motifs and secondary mutations into the 
sequence of the original peptide inhibitors [115] to enhance the sta-
bility of the α-helical structure between inhibitors and fusion domain 
at the N-HR. In contrast to T-20, primary mutations to third genera-
tion inhibitors were not selected in vitro [127,128]; therefore, the ac-
cumulation of multiple mutations is likely necessary for the develop-
ment of resistance. In the case of SC34EK, 13 amino acid substitutions 
(D36G, Q41R, N43K, A96D, N126K, E151K, H132Y, V182I, P203S, 
L204I, S241F, H258Q, and A312T) were introduced and single amino 
acid substitutions only conferred weak resistance (<6-fold) [127]. For 
another peptide, T-2635, 12 amino acids in 10 positions (A6V, L33S, 
Q66R/L, K77E/N, T94N, N100D, N126K, H132Q, E136G, and E151G) 
were selected, and single mutations did not confer resistance to T-2635 
[128]. Interestingly, some of these mutations were located outside the 
N-HR and C-HR. Cross-resistance between SC34EK and T-2635 was 
only examined for the SC34EK-resistant virus and revealed little cross-
resistance [127]. Further studies of resistance profiles might be helpful 
in defining new strategies for the design of fusion inhibitors that can 
suppress the replication of resistant variants of HIV-1.

Conclusion
The emergence of viruses resistant to entry inhibitors, as well as 

other classes of antiviral agents (reverse transcriptase or protease in-
hibitors), has been reported in vitro and in vivo. Resistance to entry 
inhibitors, including attachment inhibitors and coreceptor antagonists, 
is mainly conferred as a result of missense mutations within the gp120 
subunit of the env gene, which differ from one inhibitor to another. 
Alternatively, treatment failure can occur through the expansion of 
pre-existing CXCR4-using virus for CCR5 antagonists, and vice versa. 
Agents that target gp41-dependent fusion select for HIV-1 variants 
with mutationswithin the gp41 envelope gene. These results indicate 
the incredible flexibility of the HIV-1 genome to escape from a variety 
of entry inhibitors. Therefore, the development of novel entry inhibi-
tors for clinical use is needed to limit escape mutants by effective com-
bination therapy. 
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