
Volume 4(4): 071-000 (2011) - 071
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Research Article Open Access

Mostafa et al., J Comput Sci Syst Biol 2011, 4:4
DOI: 10.4172/jcsb.1000078

Research Article Open Access

Keywords: Round robin; Changeable time quantum; Survived tasks;
Residual time; Cyclic queue

Introduction
When a computer is multi-programmed, it frequently has multiple

processes competing for the CPU at the same time. When more than
one process is in the ready state and there is only one CPU available,
the operating system must decide which process to run first. The part of
operating system that makes the choice is called short term scheduler
or CPU scheduler. The algorithm that it uses is called scheduling
algorithm. There are several scheduling algorithms. Different
scheduling algorithms have different properties and the choice of a
particular algorithm may favor one class of processes over another.
Many criteria have been suggested for comparing CPU scheduling
algorithms and deciding which one is the best algorithm [19].

Some of the criteria include (i)Fairness (ii)CPU utilization (iii)
Throughput (iv)Turnaround time (v)Waiting time (vi)Response time
(vii)Context switches. It is desirable to maximize CPU utilization and
throughput, to minimize turnaround time, waiting time, response time
and context switches and to avoid starvation of any process [13,20].
Some of the scheduling algorithms are briefly described below: FCFS:
In First come First serve scheduling algorithm the process that request
first is scheduled for execution [13,19,20]. SJF: In shortest Job first
scheduling algorithm the process with the minimum burst time is
scheduled for execution [13,20]. SRTN: In shortest Remaining time
next scheduling algorithm, the process with shortest remaining time is
scheduled for execution [19]. Priority: in Priority Scheduling algorithm
the process with highest priority is scheduled for execution [13,19,20].
Multilevel queue scheduling: In this the ready queue is partitioned into
several separate queues. The processes are permanently assigned to one
queue generally based on some property of the process such as memory
size, process priority or process type. Each queue has its own scheduling
algorithm. There is scheduling among the queues, which is commonly
implemented as fixed-priority preemptive scheduling. Each queue has
absolute priority over low priority queues [13]. Multilevel feedback-
queue scheduling: This is like Multilevel queue scheduling but allows
a process to move between queues [13]. Fair share Scheduling: Fair
share scheduler considers the execution history of a related group of
processes, along with the individual execution history of each process
in making scheduling decision. The user community is divided into
a fair- share groups. Each group is allocated a fraction of CPU time.

Scheduling is done on the basis of priority of the process, its recent
processor usage and the recent processor usages of the group to which
the process belongs. Each process is assigned a base priority. The priority
of a process drops as the process uses the processor and as the group to
which process belongs uses the processor [19]. Guaranteed scheduling:
In this a ratio of actual CPU time a process had and its entitled CPU
time is calculated. The process with this lowest ration is scheduled [20].
Lottery Scheduling: The basic idea is to give processes lottery tickets
for CPU time. Whenever a scheduling decision has to be made, a
lottery ticket is chosen at random and the process holding the ticket
gets the CPU [20]. HRRN: In this, response ratio is calculated for each
process. The process with the highest ratio is scheduled for execution
[19] Round-robin: In this, the CPU scheduler goes around the ready
queue allocating the CPU to each process for a time interval of up to
one time quantum. If time quantum is too large, the response time of
the processes is too much which may not be tolerated in interactive
environment. If time quantum is too small, it causes unnecessarily
frequent context switch leading to more overheads resulting in less
throughput. In this paper we proposed a new technique depending on
making the value of the time quantum changeable, this value is neither
too large nor too small such that every process has got reasonable
response time and the throughput of the system is not decreased due to
unnecessarily context switches.

To this end, we utilize the following assumptions throughout this
paper to simplify the problem formulation:

• tasks are belong to interactive environment, i.e., tasks
are premptive. In an environment with interactive users,
preemption is essential to keep one process from hogging the
CPU and denying service to the others. Even if no process

*Corresponding author: Samih M. Mostafa, Faculty of Science, Mathematics
Department, South Valley University, Qena, Egypt, E-mail: samih_montser@yahoo.com

Received March 28, 2011; Accepted November 06, 2011; Published November
11, 2011

Citation: Mostafa SM, Hamad SH, Rida SZ (2011) Improving Scheduling Criteria
of Preemptive Tasks Scheduled under Round Robin Algorithm using Changeable
Time Quantum. J Comput Sci Syst Biol 4: 071-000. doi:10.4172/jcsb.1000078

Copyright: © 2011 Mostafa SM, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License,which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Problem statement: In Round Robin Scheduling the time quantum is fixed and then processes are scheduled

such that no process get CPU time more than one time quantum in one go. If time quantum is too large, the response
time of the processes is too much which may not be tolerated in interactive environment. If time quantum is too small,
it causes unnecessarily frequent context switch leading to more overheads resulting in less throughput. In this paper
a method using changeable time quantum has been proposed that decides a value that is neither too large nor too
small such that this value gives the beast scheduling criteria and every process has got reasonable response time
and the throughput of the system is not decreased due to unnecessarily context switches.

Improving Scheduling Criteria of Preemptive Tasks Scheduled under Round
Robin Algorithm using Changeable Time Quantum
Samih M. Mostafa1*, Safwat H. Hamad2 and S. Z. Rida1

1Faculty of Science, Mathematics Department, South Valley University, Qena, Egypt
2Faculty of Computer & Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt

Journal of
Computer Science & Systems BiologyJo

ur
na

l o
f C

om
pu

ter Science & System
s Biology

ISSN: 0974-7230

Citation: Mostafa SM, Hamad SH, Rida SZ (2011) Improving Scheduling Criteria of Preemptive Tasks Scheduled under Round Robin Algorithm using
Changeable Time Quantum. J Comput Sci Syst Biol 4: 071-000. doi:10.4172/jcsb.1000078

Volume 4(4): 071-000 (2011) - 072
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

intentionally ran forever, due to a program bug, one process
might shut out all the others indefinitely. Preemption is needed
to prevent this behavior,

•	 tasks are of variable size in terms of number of instructions
which may range anywhere from instructions up to thousands
or greater for some interactive tasks.

•	 no task is rated more important than any other task,

•	 each task is considered to be independent of all others, i.e.,
there is no communication be tween tasks running on the
processor,

•	 the CPU cost of each task is assumed to be known.

•	 new tasks are permitted to enter the queue.

From these assumptions, it is clear that the problem has been
reduced to almost the simplest formulation. The most common
method of task scheduling in interactive systems that apply when these
assumptions are made is the round-robin (RR). RR is also one of the
oldest, simplest and most widely used proportional share scheduling
algorithms, and because of its usefulness, many proportional share
scheduling mechanisms have been developed [1,4,6-11,16]. In
addition, RR algorithms have low scheduling overhead of O(1), which
means scheduling the next task takes a constant time [3,5,15].

Briefly: RR scheduling dose not reorder the tasks but allows
preemption to occur so that tasks that take longer than a designated
time quantum are put to the back of the cyclic queue for processing at
a later time. This paper elaborates the RR scheduling policy by allowing
the time quantum to vary after each round through the cyclic queue.
The terms task and job are used almost interchangeably in this text.

With the simple problem formulation, the main purpose of the
proposed work is to minimize the following criteria:

i) average waiting time,

ii) average turnaround time. The turnaround time is defined as
the interval from the time of submission of a process to the
time of completion. Turnaround time is the sum of the periods
spent waiting to get into memory, waiting in the ready queue,
executing on the CPU, and doing I/O and

iii) the context switches.

The main factor with the preemptive scheduler is the size of the
time quantum. Setting the time quantum too short causes too many
processes switches and lowers the CPU efficiency, but setting it too
long may cause poor response to short interactive requests. A quantum
around 20-50 msec is often a reasonable compromise [14].

Latest algorithms [2,12,17,18] try to modify RR by adjusting the
time quantum. In the successive sections we will introduce how we can
improve the round-robin algorithm by readjust ing the size of the time
quantum to achieve the above criteria. In each round in the queue,
the time quantum will be modified according to the burst times of
the tasks. Using Changeable Time Quantum (CTQ) gives significant
improvement in desired criteria.

Materials and Methods
CTQ Definitions

To provide a more in depth description of CTQ, we first define

more precisely the state CTQ associates with each round, and then
describe in detail how CTQ uses that state to schedule tasks. We define
the terminology list we use in (Table 1).

The following equations determine the time quantum TQ that gives
the smallest average waiting time in each round. TQ is ranged from α
up to the given operating system time slice (OSTS), where α ≤ OSTS

1
[]

[] *

1,2,3,...[]
[]

1 [] *

1,2,3,...

i
i

i

i
i

BT T
if BT T l TQ

TQ
lNTQ T

BT T
if BT T l TQ

TQ
l

  ≠  
 ==
 − =


=

 (1)

(Table 2) exhibits an example, in which each task with its burst
time:

if we use a time quantum of 4 msec, we see from the Gantt Chart:

T1 T2 T3 T1 T1 T1 T1 T1
 0 4 7 10 14 18 22 26 30

that the NTQ[T1] is 5, the NTQ[T2] is 0, and the NTQ[T3] is 0,
although the number of context switches of T1 is 1, the number of
context switches of T2 is 0, and the number of context switches of T3
is 0.

1

1

1,

0
0 0

0

*
[]

0
(*)
(1)*

i
k

i
k k k

i
i

k k i

n
k k i

k
k k i i k i

i k i

TQ if NTQ
if NTQ

BT if NTQ

NTQ TQ
SLTQ T

BT if NTQ NTQ and k i
BT if NTQ NTQ and k i

if NTQ
NTQ TQ if NTQ NTQ and k i
NTQ TQ if NTQ NTQ and k i

−

=

= ≠

 >  + =  =   


 += 

< ≠ 
 = <  > ≥ > 
 + > < 

∑

∑










 
 
 
 
 

(2)

In the above example the SLTQ[T1] is 26, the SLTQ[T2] is 4, and
the SLTQ[T3] is 7.

[] [] []*i i iWT T SLTQ T NTQ T TQ= − (3)

1

[]
n

i
i

TWT WT T
=

=∑ (4)

Ti Task i.

NTQ[Ti]=NTQi The number of times the task Ti exploits the time quantum
TQ.

BT[Ti]= BTi The burst time of the task Ti.

TQ The time quantum.

n The number of the tasks.

SLTQ[Ti] The starting of the last time quantum of Ti .

WT[Ti] The waiting time of task Ti .

TWT The total waiting time of all tasks.

AVGWT The average waiting time of the tasks in the run queue.

RST[Ti] The residual time of Ti .

Table 1: CTQ Terminology.

TASK BURST TIME

T1 24

T2 3

T3 3

Table 2: Example 1.

Citation: Mostafa SM, Hamad SH, Rida SZ (2011) Improving Scheduling Criteria of Preemptive Tasks Scheduled under Round Robin Algorithm using
Changeable Time Quantum. J Comput Sci Syst Biol 4: 071-000. doi:10.4172/jcsb.1000078

Volume 4(4): 071-000 (2011) - 073
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

/AVGWT TWT n= (5)

The changeable consideration

CTQ combines the benefit of low overhead round-robin scheduling
with low average response time and low average waiting time, this
depends on the size of the preselected time quantum. If we have n tasks
in a round r1 and m tasks that have burst times equal to or less than the
time quantum used in r1, then there are n-m tasks in the next round,
where n ≥ m. The residual time of the task Ti in the round number q is
determined from the equation:

1

1

[] [] []
q

i i
k

RST T BT T TQ k
−

=

= −∑ (6)

where TQ[k] is the time quantum in the round number k. In each
successive round we implement the equations with respect to the
residual times of the survived tasks. Figure 1 represents the pseudo-
code of the proposed algorithm.

Illustrative counter examples

To demonstrate the previous consideration we will take two cases
of example. In the first one, the tasks arrive at the same time and in the
second; the tasks arrive at different times. Consider the following set of
tasks in (Table 3) that arrive at time 0, each of which with the length of
the CPU burst time.

1 x   denotes the largest integer smaller than or equal to X.

When we apply the (CTQ) technique, the time quantum in the first
round is equal to 25, TQ[1]=25.

(ROUND NO. 1)

(TQ[1] =25)

T1 T2 T3 T4 T5
0 23 48 73 98 100

The survived tasks are T2, T3, and T4 each of which with the length
of the CPU burst time. After implementing the equations, we

Task ID Residual Time
T1 0
T2 50
T3 68
T4 23
T5 0

obtain TQ[2] = 25, the Gantt Chart is:

(ROUND NO. 2)
(TQ[2] =25)

T2 T3 T4
100 125 150 173

from the survived tasks,

Task ID Residual Time
T1 0
T2 25
T3 43
T4 0
T5 0

the equations give TQ[3] = 43, the Gantt Chart is:

(ROUND NO. 3)
(TQ[3] = 43)

T2 T3
173 198 241

In this example there are three rounds; at each one a different time
quantum is used. Table 4 gives each task waiting time, turnaround
time and each task’s response time.

Now we will consider the above example when the tasks arrive at
different arrival times. (Table 5) summarizes the burst time and arrival
time of each task. We will compare the round-robin with fixed time
quantum equal to 50 msec against our algorithm. (Tables 6, 7) show the
policy of each algorithm.

In what follows, the number in parentheses in the comment field is
the remaining service time for the process. In order of execution:

While (ready queue <> null)
 *If (largest Burst Time (LBT) of tasks > Specific Burst Time(SBT))
 Execute tasks in Fixed Round Robin (FRR) manner
 Else
 Sort tasks on ready queue in an ascending order

For I = α to OSTS
Implement equations 1 – 5
Compute average waiting at each I

 End For
 Choose I that gives the smallest average waiting time (I=TQ in this round)
 Compute Residual Times of tasks from equation 6
 If (new tasks arrive to ready queue)
 Go to *
 End If
End While

Figure 1: Pseudocode of Changeable Time Quantum (CTQ) algorithm.

Task ID Burst Time

T1 23

T2 75

T3 93

T4 48

T5 2

Table 3: Example 2A.

Task ID Residual Time Waiting
Time

Turnaround
Time Context Switches

T1 0 0 23 0
T2 0 123 198 2
T3 0 148 241 2
T4 0 125 173 1
T5 0 98 100 0

Table 4: CTQ policy of Example 2A.

Task ID Burst Time Arrival Time

T1 23 0

T2 75 20

T3 93 22

T4 48 50

T5 2 55

Table 5: Example 2B.

Citation: Mostafa SM, Hamad SH, Rida SZ (2011) Improving Scheduling Criteria of Preemptive Tasks Scheduled under Round Robin Algorithm using
Changeable Time Quantum. J Comput Sci Syst Biol 4: 071-000. doi:10.4172/jcsb.1000078

Volume 4(4): 071-000 (2011) - 074
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Time Ready Queue Time
Quantum Comments

0 T1 TQ = 23 T1(23) arrives, run

20 T1, T2 T2(75) arrives and is appended to the
queue, T1(3) continues to run

22 T1, T2, T3 T3(93) arrives and is appended to the
queue, T1(1) continues to run

23 T2, T3

TQ = 38

T1(0) finished, so T2(75) runs

50 T2, T3, T4 T4(48) arrives and is appended to the
queue, T2(48) continues to run

55 T2, T3, T4, T5 T5(2) arrives and is appended to the
queue, T2(43) continues to run

61 T3, T4, T5, T2 The quantum expires, so T2(37) moves to
the end of the queue and T3(93) runs

99 T4, T5, T2, T3

TQ = 50

The quantum expires, so T3(55) moves to
the end of the queue and T4(48) runs

147 T5, T2, T3 T4(0) finished, so T5(2) runs

149 T2, T3 T5(0) finished, so T2(37) runs

186 T3 T2(0) finished, so T3(55) runs

We modified this algorithm by sorting the tasks in each round in an
ascending order to profit from knocking out short jobs relatively faster
in a hope to increase the throughput and reduce the average waiting
time [2,14]. Sorting tasks gives more improvement in scheduling
criteria.

Simulation Studies and Results
This work is considered to be a modified RR algorithm in a

small specific portion of the burst times of tasks. To demonstrate the
effectiveness of the CTQ, we built a scheduling simulator that is a user-
space program which takes five inputs, the scheduling algorithm, the
number of tasks, the burst time, the arrival time of each task, and the
first time quantum that will be used in the traditional round-robin. The

simulator randomly assigns burst times and arrival times to tasks.

To measure the effectiveness, we ran simulations for the proposed
algorithm against fixed round-robin algorithm and BRR[2] considered
on 30 different combinations of n and BT’s, the burst times of the tasks
varying from 1 to Specific Burst Time(SBT) = 100 msec . For each
set of (n, BT), we ran different number of tasks with different CPU
lengths and different arrival times. In this research, the task arrival was
modeled as a Poisson random process. Hence, the inter-arrival times
are exponentially distributed. A task arrival generator was developed
to take care of the process of random arrival of different tasks to the
system. The generator produces the inter-arrival times utilizing some
specific mean (arrival intensity) of the distribution function. We split
our simulation into two cases; in the first case the tasks arrive at the
same time, we call this set of 30 processes DATA1 and in the second
case, the tasks arrive at different times. We call the second set of 30
processes DATA2.

To avoid unnecessary context switches, we ranged the selected
TQ from α up to OSTS. Here in DATA1 and DATA2; OSTS is equal
to 50 msec and α is equal to 1/2 OSTS. (Figures 2, 3 and 4) show the
improvement of our algorithm over the two algorithms in first case,
and (Figures 5 and 7) show the improvement in second case.

Discussion
A lot of attempts were developed to find a solution for the high

turnaround time, high waiting time and the overhead of extra
context switches in round robin algorithm, regardless of the different
methodologies used in these attempts; however all of them rely based
on the fixed-time-quantum.

The proposed algorithm called Changeable Time Quantum (CTQ)
based on dynamic-time-quantum was designed to solve all critical
previously mentioned problems in a practical, simple and applicable
manner.

Job ID Service
Time

Arrival
Time

Start
Time

Finish
Time Preemption Turnaround

Time
Waiting
Time

Context
Switches

T1 23 0 0 23 23 0 0

T2 75
25 20 23

173
73
198

end of quantum; T3 starts 178 103 1

T3 93
43 22 73

198
123
241

end of quantum; T4 starts 219 126 1

T4 48 50 123 171 121 73 0

T5 2 55 171 173 118 116 0

Mean 131.8 83.6

Table 6: Round-Robin policy of Example 2B.

Job ID Service
Time

Arrival
Time

Start
Time

Finish
Time

TQ
Preemption Turnaround

Time
Waiting
Time

Context
SwitchesR1 R2 R3

T1 23 0 0 23 23 23 0 0

T2 75
37 20 23

149
61
186

38

50

end of quantum; T3
starts 166 91 1

T3 93
55 22 61

186
99
241

end of quantum; T4
starts 219 126 1

T4 48 50 99 147 97 49 0

T5 2 55 147 149 94 92 0

Mean 119.8 71.6

Table 7: CTQ policy of Example 2B.

Citation: Mostafa SM, Hamad SH, Rida SZ (2011) Improving Scheduling Criteria of Preemptive Tasks Scheduled under Round Robin Algorithm using
Changeable Time Quantum. J Comput Sci Syst Biol 4: 071-000. doi:10.4172/jcsb.1000078

Volume 4(4): 071-000 (2011) - 075
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

AV
ER

AG
E

W
AI

TI
NG

 T
IM

E

NO. of TASKS

 FRR
 CTQ
 BRR

Figure 2: Average waiting time of DATA1.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

AV
ER

AG
E

TU
RN

AR
O

UN
D

TI
M

E

NO. of TASKS

 FRR
 CTQ
 BRR

Figure 3: Average turnaround time of DATA1.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

NO
. o

f C
O

NT
EX

T
SW

IT
CH

ES

NO. of TASKS

 FRR
 CTQ
 BRR

Figure 4: No. of context switches of DATA1.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

AV
ER

AG
E

W
AI

TI
NG

 T
IM

E

NO. of TASKS

 FRR
 CTQ
 BRR

Figure 5: Average waiting time of DATA2.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

AV
ER

AG
E

TU
RN

AR
O

UN
D

TI
M

E

NO. of TASKS

 FRR
 CTQ
 BRR

Figure 6: Average turnaround time of DATA2.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

NO
. o

f C
O

NT
EX

T
SW

IT
CH

ES

NO. of TASKS

 FRR
 CTQ
 BRR

Figure 7: No. of context switches of DATA2.

Citation: Mostafa SM, Hamad SH, Rida SZ (2011) Improving Scheduling Criteria of Preemptive Tasks Scheduled under Round Robin Algorithm using
Changeable Time Quantum. J Comput Sci Syst Biol 4: 071-000. doi:10.4172/jcsb.1000078

Volume 4(4): 071-000 (2011) - 076
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

The above comparisons show that the proposed algorithm provides
much better results than other approaches based on fixed time quantum
in all scheduling criteria.

Conclusion
In this study, a dynamic method was used to improve scheduling

criteria in a uni-processor. In this work we don’t use a fixed time
quantum as usually used in scheduling algorithms, but we make the
value of the time quantum changeable in each round according to the
residual times of the tasks. The candidate time quantum in each round
gives the smallest average waiting time consequently the smallest
average turnaround time. Also we take into account the overhead
resulting from the unnecessary context switches, so we try to keep the
number of context switches as low as possible.

References

1. Demers A, Keshav S, Shenker S (1989) Analysis and Simulation of a Fair
Queueing Algorithm. In Pro ceedings of ACM SIGCOMM ’89, Austin, TX, 1–12.

2. Helmy T, Dekdouk A (2007) Burst round robin as a proportional-share
scheduling algorithm. In Proceedings of The fourth IEEE-GCC Conference
on Towards Techno-Industrial Innovations, pp. 424-428, 11-14, at the Gulf
International Convention Center, Bahrain.

3. Caprita B, Chan, WC, Nieh J (2003) Group Round-Robin: Improving the
Fairness and Complex ity of Packet Scheduling. Technical Report CUCS-018-
03, Columbia University.

4. Nieh J, Vaill C, Zhong H (2001) Virtual-Time Round-Robin: An O(1) Proportional
Share Scheduler. In Proceedings of the 2001 USENIX Annual Technical
Conference.

5. Abeni L, Lipari G, Buttazzo G (1999) Constant bandwidth vs. proportional share
resource alloca tion. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, Florence, Italy.

6. Jeffay K, Donelson FS, Anderson J, Moorthy A (1998) Proportional share
scheduling of operating system services for realtime application. In Proceedings
of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain.

7. Bennett J, Zhang H (1996) WFQ: Worst-case Fair Weighted Fair Queueing. in
Proceedings of INFOCOM ’96, San Francisco, CA.

8. Shreedhar M, Varghese G (1995) Efficient Fair Queueing Using Deficit Round-
Robin in Proceed ings of ACM SIGCOMM ’95, 4: 231-242.

9. Parekh A, Gallager R (1993) A Generalized Processor Sharing Approach to
Flow Control in Inte grated Services Networks: The Single-Node Case. IEEE/
ACM Transactions on Networking, 1: 344–357.

10. Essick R, (1990) An Event-Based Fair Share Scheduler. in Proceedings of the
Winter 1990 USENIX Confe rence, USENIX Berkeley, CA, USA, 147–162.

11. Henry G (1984) The Fair Share Scheduler. AT&T Bell Laboratories Technical
Journal, 63: 1845–1857.

12. Harwood A, Shen H (2001) Using fundamental electrical theory for varying
time quantum uni-processor scheduling. Journal of Systems Architecture: the
EUROMICRO Journal, Volume 47, issue 2, Feb.

13. Silberschatz A, Galvin PB, Gagne G (2005) Operating Systems Concepts.
John Wiley and Sons. 6Ed.

14. Tanenbaum A (2001) Modern Operating Systems. Second Ed.

15. Caprita B, Chan WC, Nieth J, Stein C et al. (2005) Group ratio round-robin:
O(1) proportional share scheduling for uni-processor and multiprocessor
systems. In USENIX Annual Technical Con ference.

16. Kay J, Lauder P (1988) “A Fair Share Scheduler” Communications of the ACM,
31: 44–55.

17. Rami JM (2009) Self-Adjustment Time Quantum in Round Robin Algorithm
Depending on Burst Time of the Now Running Processes. American Journal of
Applied Sciences, 6: 1831-1837.

18. Alam B, Doja M.N, Biswas R (2008) Finding Time Quantum of Round Robin
CPU Scheduling Algorithm Using Fuzzy Logic. Proceedings of the International
Conference on Computer and Electrical Engineering, pp. 795-798.

19. Stallings W (2006) Operating Systems Internal and Design Principles. 5th
Edition.

20. Tanenbaum AS, Albert SW (2005) Operating Systems Design and
Implementation. Second Edition.

http://eprints.kfupm.edu.sa/1462/
http://eprints.kfupm.edu.sa/1462/
http://eprints.kfupm.edu.sa/1462/
http://eprints.kfupm.edu.sa/1462/
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4740925%2F4740926%2F04741092.pdf%3Farnumber%3D4741092&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4740925%2F4740926%2F04741092.pdf%3Farnumber%3D4741092&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4740925%2F4740926%2F04741092.pdf%3Farnumber%3D4741092&authDecision=-203

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Materials and Methods
	CTQ Definitions
	The changeable consideration
	Illustrative counter examples

	Simulation Studies and Results
	Discussion
	Conclusion
	References
	Table 1
	Table 2
	Figure 1
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

