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Abstract
The now physically founded exponent 3/2 that governs the relation of normal force to depth3/2 in conical/pyramidal 

indentation is a physically founded (FN = k h3/2). Strictly linear plots obtain non-iterated penetration resistance k (mN/
µm3/2) as slope, initial effects (including tip rounding), adhesion energy, and phase transitions with their transformation 
energy and activation energy. The reason for the failing of the Sneddon theory, claiming wrong exponent 2 (as do 
ABAQUS or ANSYS finite element simulations) is their neglect of long-range effects by shearing. Previous undue 
trials to rationalize the non-occurrence of exponent 2 are polynomial fittings and "best or variable exponent" iterations 
for curve fittings that lose all unique information from the loading curve. Also ISO 14577 unloading hardness HISO and 
reduced elastic modulus Er-ISO lack physical reality. They are redefined to physical dimensions as new indentation 
parameters Hphys and Er-phys. For the first time physically sound indentation hardness Hphys is obtained without 
iterations solely from loading curves. Also all mechanical indentation parameters relying on Sneddon's exponent 2 
are unphysical. They require redefinition with new dimensions. This applies also to visco-elastic-plastic parameters 
in a recent NIST tutorial. The present ISO-standards create dilemma with physics. But the risk from using wrong 
mechanical parameters against physics is dangerous, subject to change.
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Abbreviations
AFM: Atomic Force Microscopy;

CFG: Common Fine Grain;

FE: Finite Element; 

ISO: International Standardization Organization; 

JKR: Johnson, Kendall, and Roberts technique; 

NIST: National Institute of Standardization and Technology; 

PEEK: Polyetheretherketone; 

PMMA: Polymethylmethacrylate;

POM: Polyoxymethylene; 

UFG: Ultra-fine grain

Introduction
Instrumental nano-, micro-, and macro-indentations are still 

primarily standardized with diamond Berkovich indenters according to 
ISO 14577. These standards rest on diverging mathematical deductions 
of Love [1] and Sneddon [2] claiming proportionality of the applied 
normal force FN (they called it P) and h2 for the loading curves (h is 
penetration depth) for all kinds of (pseudo)conical indenters. This 
found widespread belief in publications and textbooks, but experimental 
loading curves do not show such relation. Several iterative "excuses" for 
this inconsistency were proposed, and finite element (FE) simulations 
continue to converge with exponent 2 on h. Claims that these would 
reproduce experimental loading curves are incorrect [3,4], the published 
experimental curves analyze with exponent 3/2. In that situation ISO 
14577 concentrated on the iterative analysis of the unloading curve 
with freely iterated exponent on h (between 1 and 3) for gaining values 
of indentation hardness HISO and reduced elastic modulus Er-ISO. Such 

iterations are with respect to standard materials and projected area Ahc. 
Analyses (rather than fitting) of FN versus h3/2 plots of published loading 
curves in the literature (and of own ones) starting from 2000 by the 
present author [5] validated the exponent 3/2 by linear regression with 
excellent correlation coefficients of at least r >0.999 and in less noisy 
cases r >0.9999 for the materials penetration resistance k (mN/µm3/2). 
Nevertheless, this met with severe difficulties from anonymous referees 
for being supported and published, as these claimed to consistently find 
"exponent 2" on h. But analysis for exponent 2 or 3/2 is a matter of 
some minutes with Excel®, provided correct experimentation. Liability 
facts and unexpected applications with precise calculation were hardly 
appreciated. Only the correct analysis (Eq. 1) with excellent linear 
regression reveals surface effects (including tip rounding), influence 
of tip angle and radius on k, gradients, mechanical pretreatment, 
alternating layers, elbows, nanopores, phase transitions under load, 
transition energies, activation energies, and correct adhesion energies, 
all by simple mathematics without iterations (Eq. 1) [4,6-9]. 

FN = k h3/2 (1)

The constant k (mN/µm3/2) is the penetration resistance, a materials 
property that is obtained with the highest precision in the (nano) 
indentation experiment, rather than multi-iterated hardness, reduced 
modulus, etc. After the recent physical foundation of the exponent 
3/2, giving the explanation why it must be so, by considering both the 
simultaneous volume-formation and the thereby created total pressure 
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with elementary mathematics [10], the physical law (1) is additionally 
enforced beyond any doubt and cannot be denied any more. We must 
herewith point out the necessity of using this new state of the art for 
removal of the dilemma between ISO 14577 and physics (for undue 
NIST tutorial from 2009) for all mechanical parameters that rely on h2. 
They must be re-defined, and all the corresponding mechanical data 
require correction. Also the critics of three different working groups 
on the exponent 3/2 on h [11] (before its physical deduction) deserves 
retraction: the self-similarity of conical/pyramidal indenters is by no 
means a "straightforward proof " for the unsupported exponent 2 on h, 
but it violates the basic energy conservation principle. 

Materials and Methods
A fully calibrated Hysitron Inc. TriboScope® Nanomechanical Test 

Instrument with a two-dimensional transducer and leveling device 
in load control mode was used for the author`s nanoindentations 
after due calibration, including instrument compliance. The radii of 
the cube corner (55 nm) and Berkovich (110 nm) diamond indenters 
were directly measured by AFM in tapping mode. Three-dimensional 
microscopic inspection of the indenter tips secured smooth side faces 
of the diamonds for at least 2 µm from the (not resolved) apex. The 
samples were glued to magnetically hold plates and leveled at slopes 
of ± 1° in x and y directions under AFM control with disabled plain-
fit, and loading times were 10−30 s for 400−500 or 3000 data pairs 
[4]. The whole data set of the loading curve was used for analysis, 
using Excel®. Most analyses were however with published loading 
curves from the literature, as rapid sketches with pencil, paper, 
and calculator (10-20 data pairs), but for linear regressions always 
by digitization to give 50-70 almost uniformly arranged data pairs 
using the Plot Digitizer 2.5.1 program (www.Softpedia.com), unless 
complete original data sets could be obtained from the scientists. The 
precise kink positions were obtained by equating the linear branches 
before and after the phase change, and precise axis cuts from the 
regression lines. It was tried to cover all different materials types, 
all different indentation modes, equipments, response mechanisms, 
depth ranges, penetration resistance sizes, from numerous authors 
from all around the globe. Only the experimental curves are relevant, 
not the simulated ones.

Results and Discussion
Information loss by finite element simulations, beliefs, poly-
nomial fittings, and exponent iterations

Finite element simulations of loading curves (ABAQUS or ANSYS, 
etc.) consistently converge with the exponent 2 on h (e.g. [3]). There is 
thus never match with experimental results. However, there are claims 
that microindentations would require "exponent 2". For example, Oliver 
and Pharr [12] depicted in 1992 deep non-discussed Berkovich micro-
indentation loading curves of soda lime glass, sapphire, fused quartz, 
and α-quartz (001) up to 120 mN load, for obtaining unloading curves 
for hardness and elastic modulus iterations. But the former were not 
focal for that paper on unloading curves. All of these "loading curves" 
analyze with the impossible FN versus h2 relation, but experimental 
curves from various authors (including WC Oliver) go with h3/2 

(including those with phase change kink), as for example analyzed 
in [4,13]. I apologize for having believed in their validity in 2005/6 
[14]. There is, however, no exponential differences between nano- and 
micro- or macro-indentations (as long as these proceed properly with 
smooth tips and without cracks). All of these loading curves obey Eq. 
(1) [4,6,8]. It is thus not clear why the loading curves in [12] analyze 
with the (now disproved) Love/Sneddon exponent. Importantly, only 

the correct exponent could reveal the phase change of the standard 
fused quartz for H and Er iterations at about 2.5 mN load [4,13].

The polynomial fitting (FN = c0h
2 + c1h + c2) for the total loading 

curve [15] has been widely applauded. But it provides no information 
about initial effects, gradients, or phase transformations at all, and 
polynomial fittings are unreliable in view of linear regressions. 
Furthermore, iterated parameters c0 and c1 are often used to calculate 
exceedingly large "effective tip radii" up to 3.3 µm (for example for a 
Vickers with 68° semi-angle Θ that is close to the one of Berkovich at 
65.3°), depending on the yield-strength/modulus ratio [15]. However, 
blunt Berkovich tip radii range from 150 to 300 nm. Such uncredible 
polynomial fitting parameters, are being used as an excuse for not 
obtaining the believed exponent 2 at the expense of linear regression 
with the physical exponent 3/2. Importantly, properly executed 
experimental loading curves are required for exponential analyses. This 
implies indenters with flat side-faces, vertical (not tilted) indenting 
onto homogeneous materials with plain surfaces that must not be 
influenced by nearby impressions, or too close sample edges or sample 
borderlines, in order to avoid strange results with spurious too large 
exponents up to >1.5 or even >2. Unfortunately, leveling equipment for 
skew surfaces (with AFM precision check) often lack in commercial 
nanoindentation instruments. Nevertheless, measurements with blunt 
Berkovich (R ≈ 300 nm) giving unusually long initial effects were tried 
to "discredit" the exponent 3/2 with the FN versus h3/2 plot of fused 
quartz in Figure 1 [16]. However, this plot confuses the 3 initial-effect 
points with the not considered straight line through the points # 4−17 
at the actual kink position where the steeper second linear branch 
starts. Rather, the authors absurdly intersect a line through points # 
1−3 with the extrapolated second straight line from point17 onwards. 
Such intersection is far away from the plot. The false claim is then made 
that "Kaupp" would also have intersected with initial effect points at 
his analyses of the same material in [4,13,14,17]. However, Kaupp 
has always excluded initial effects at his regressions, and he provided 
obvious reasons for their occurrence. The actual kink (k1 and k2 lines) 
is at about 3.4 mN and 195 nm. This is not too far away from the values 
for the known sharp Berkovich indents (2-2.5 mN and 120-160 nm) 
[4,13,14,17] at very minor initial effects. The experimental data printed 
curves of [16] are therefore supporting but not at all "discrediting" the 
exponent of Eq. (1), if considering the unusually extended initial effect 
range (axis cut of the k1 line at about −1.2 mN; not drawn in [16]) at 
this indentation. Nevertheless, the authors in [16] deny their obvious 
support of h3/2. Rather they undertook exponent fittings with F = khn 

Figure 1: Load (dotted) and JKR fitted unloading curve (full) on PDMS from a 
spherical indentation with radius of 192 µm; ∆F=48.73 µN; ∆h=1.0603 µm [6]. 
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recalculate these for h3/2 with the aim to discredit the experimental 
(now physically founded [10]) exponent 3/2, because such treatment 
inevitably gives bent curves. Such a "treated" curve was used for 
drawing tangents at the start and the end in Figure 2 of [11] that 
intersect far away from the plot, for designing a false discrediting term 
called "Double P-h3/2 fit after Kaupp et al." [11]. However, Kaupp et al. 
do not fit treated data but are analyzing experimental loading curves 
according to the physically deduced universal Eq. (1) [10] to uncover 
individual properties (e.g. phase change yes or no) that are wiped out 
by data fittings or simulations as in [11,16]. It is unclear, where the data 
of [11] in opposition to physics [10] and to the published ones came 
from, and who did the calculations for fused quartz up to 300 mN 
load on what assumptions. The polynomial or FE correlations (Table 
1) [11] are not helpful (for example phase changes are unavoidable for 
the partially crystallized POM and PEEK thermoplastics or compacted 
Al). Figure 2 in [11] report either very different exponents (1.6 
to 2.15 between 200 and 1300 nm depth) in different loading ranges, 
or a "constant exponent 2" for the linear P versus h2 plot, respectively: 
a very severe discrepancy! And the above reference [16] is invoked 
with its unintentional support of Eq. (1) and the phase transition of 
fused quartz. Furthermore, earlier experimental loading curves of the 
author K Durst et al. [4] (e.g. spruce or UFG and CFG Fe), as analyzed 
in Figure 2, precisely follow Eq. (1) with sharp kinks at 0.53, 0.87, 27.5, 
and 40.9 mN load. 

Penetration resistance reveals phase transformations 

When within the loading range of the linear plot a sudden sharp 
kink discontinuity occurs, this is the onset of a phase change under 
load (numerous images for fused quartz and all types of materials 
[4,13,14,17]. This is one of the reasons for errors that have not been 
addressed with HISO and Er-ISO determinations. Only properly analyzed 
loading curves (Eq. 1) detect or exclude (Table 1) and plots in [4] 
phase changes of all kinds (not only structural transitions), but neither 
exponent fittings nor present FE simulations can do so. Phase changes 
occur with many materials already in the nanoindentation range. 
Only rarely and exceptionally were phase transitions concluded from 
“elbows” in unloading curves, but then without any transition-onset 
information. A widely studied example, also with more advanced 
techniques, is silicon [7]. Original material is characterized by the 
penetration resistance k1 before the kink in linearized loading curves. 
After the kink the k2-value is obtained for transformed material in a 
matrix of the original one [4]. It provides an important bargain when 
both k1 and k2 (mN/µm3/2) are known: The transition energy [6], and 
temperature dependent also the activation energy of the transition are 
revealed [7]. When the onset of phase changes is not uncovered, there 
is often a risk that such transition-onset has occurred before the applied 

(not italicized for distinction from physical k values) for varying depths 
onto fused quartz for proposing varying depth/exponent and depth/k 
relations. They refrain from indicating the dimensions of the so obtained 
variable proportionality constants. The published data sequence for 
different final depths onto fused quartz is as follows [16] (only the 
dimensions are now added): Up to 40 nm depth, n=1.5, k=0.99411 
mN/nm1.5; upto 60 nm, n=1.64533, k=0.61897 mN/nm1.64533; upto 80 
nm, n=1.75285, k=0.41377 mN/nm1.75285; upto 300 nm, n=1.82723, 
k=3.00003E-4 mN/nm1.82723 for the overall curve [16]. It does not help 
to compare with FE simulations including further parameters. All of 
that is physically unsound and totally meaningless, but obviously not 
recognized by the authors, referees, and editors [16]. Clearly, one was 
not willing to recognize specific properties of materials under loading 
stress and strangely strived for concurring with the disproved Sneddon 
theory. The exponent on h is with mathematical precision 3/2 and 
the dimension of k is (force/length3/2) [10]. Minimal deviations are 
experimental errors. Initial effects (including tip rounding contribution) 
are quite common, and phase transitions upon indentation loads prior 
to macroscopic cracking are frequent. These are important properties! 

Different iteration induced flaws, provides the JKR (Johnson, 
Kendall, and Roberts) treatment of adhesion forces, even though 
these iterations start with the Hertzian exponent 3/2 for spherical 
tips or rounded AFM cantilevers. However, based on the penetration 
resistance k the +166% error of the JKR-adhesion work is easily 
revealed both from indentations and AFM force curves. This has first 
been described in [6] and is another important application of Eq. 
(1). Both curves (loading and iterated unloading) in Figure 1 strictly 
follow Eq. 1 as well. Thus the full gained adhesion work (determined 
as pulloff work) is calculated by the triangle area, as described by ∆F 
and ∆h, of the unloading curve giving the absolute value for Wpulloff=0.5 
∆F ∆h=25.8342 µN/µm. The published JKR treatment reported the Δγ 
-value (that is called a basic JKR-formula) as Δγ=“2 Fadhesion(h) /3πR(h)”, 
where R=192 µm is “the radius of curvature of the tip, and the reported 
Δγ is 0.05389 µN/µm, which is dimensionally a force constant, but it 
can also be interpreted as work over area by extension of the formula, 
as indicated by the bracketed h. By division of the absolute Wpullof value 
from our not iterating ENERGY technique [6] by the calotte surface 
of the spherical tip (2 πRh) one obtains Wadh/area=0.5 Fadhesion h/2π R 
h=0.02020 µN/µm, now with the same dimension for comparison with 
the JKR Δγ. We immediately see from the quoted Δγ formula that JKR 
divides 4 times the work over 1.5 times the area, instead of ENERGY 
technique's correct work/area. The mathematically exact error of JKR 
calculates therefore from the wrong numerals 2/3 in its "basic formula" 
instead of 0.5/2. The ratio 2/3 over 05/2 is 8/3=2.6667. This corresponds 
to a JKR error for Δγ of (8 −3)100/3=+ 166% that is nicely confirmed 
by the numerical data: 0.05389/0.02020=2.66716. This huge JKR error 
is particularly detrimental, as it also occurs (with the same 166% error) 
in AFM force-measurements (a typical example is presented in [6]) 
and that these Δγ -values are used for the "determination" of reduced 
elastic modulus values according to the JKR formula Er=9πR2 Δγ /2a0

3 
that are thousand-fold "determined", used, and tabulated, particularly 
with soft medical/biological samples. There must be correction of all 
the tabulated elastic moduli from JKR-adhesion work.

Particularly strange are suggestions to deny the universal exponent 
3/2 on h, and the unexpected practical applications of Eq. (1), but to 
base the exponential analysis on FE simulations [11]. The authors from 
the three research groups do not separate out the initial surface effects 
and deny often occurring phase transformations, obviously because 
the search for them is impossible with FE simulations. It is unscientific 
to use fitted data or FE-simulated curves that converge to h2, and to 

Figure 2: Deduction of the long-range work energy upon pyramidal/conical 
indentations. 
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load. Clearly, not detected phase changes bear a high risk for materials' 
failure upon aging under load and heat stress, when the mechanical 
load at the given temperature surpasses the transformation onset, for 
example with alloys, or ceramics, and other composites. Such failure 
upon impact can grow-up to disasters. Already that urges the correction 
of the corresponding ISO-standards as soon as possible.

Hardness and modulus

ISO 14577 uses the unloading curve for iteratively obtaining the 
hardness HISO with respect to standard materials (mostly fused quartz, 
or Al) with freely iterated exponent (m: 1−3). These iterations converge 
with respect to the standard material of "known" mechanical properties. 
However, the standard materials have in most cases different surface 
effects, and both undergo widely ignored phase transitions after their 
onset discontinuity (fused quartz in the nano-, aluminum in the micro-
indentation region) [4,13]. 

The main objection of referees against Eq. (1) was the definition 
of the universal hardness (Martens hardness) as normal force over 
projected area Aproj = πh2 tan α2 (α = effective cone angle of 70.2996°) 
(Eq. 2) with unit mN/µm2 = GPa. This covers the volume of a tube Aproj 
hmax. But Eq. (2) is undue, as it implies the false "FN ∝ h2" as in Eq. (3).

 Huniversal = FNmax/Aproj                      (2)

 FNmax = π R2 Huniversal and R/h = tanα would give "FNmax = πh2 

tanα2Huniversal"                        (3)

ISO uses normal force over contact area Ahc (effective πR2) as 
opposed to the cone area (2πR2/tanα). Thus the covered volume is 
meant as the tube Ahc hmax or Ahc hc. But physics [6] beats definitions. The 
"contact height" hc is defined with reference to the standard at peak load 
Eq. (4), where ε=0.75 is an accepted but also debated dimensionless 
geometric factor, and S is unloading stiffness (mN/µm), the unloading 
slope at peak load. The iterative determination of HISO fits to the 
generally unrelated fused quartz that experiences some sink-in (hs = 
hmax− hc, depending on the indenter) for Ahc at peak load. The iteration 
requires FN=B (hmax−hf)

m where B, hfinal, and exponent m (between 1 and 
3) are freely iterated for the fitting down to 20% or eventually 50% of 
FNmax, which is also troublesome indeed [14,17]. S at peak load is then 
obtained by differentiation [S=Bm(hmax-hf)

(m-1)] to obtain hc, for the 
calculation of Ahc = 33/2hc

2tan2θ = 24.56 hc
2 as a first guess for Berkovich 

(θ = 65.3°) indentations. HISO is then iterated according to Eq. (5). Thus, 
HISO (Eq. 5) also implies an FN ∝ hc

2 relation, which is against physics as 
is Eq. (3), both violating the physically founded Eq. (1) [10] that is also 
valid for FNmax, of course. Furthermore, any sink-in or pile-up is part of 
the energy requiring long-range effects.

 hc = hmax − εFNmax/S                   (4)

 HISO = FNmax/Ahc = FNmax/(24.5hc
2 + C1hc + C2hc

1/2 + C3hc
1/4 + ∙ ∙ ∙ ∙+ 

C8hc
1/128) [mN/µm2]                      (5)

Rather strange trials to "save" h2 and thus Ahc for the hardness 
iterations are still invoking the trivial "self-similarity" of conical or 
pyramidal indenters for claiming " Ac ∝ h2 " and "H=P/Ac" (P stands 
for FN) [11]. Such assertion is surprising since it is amply known and 
discussed, that the shear-force from the cone or pyramid produces 
far-reaching phenomena to the sides and below the defined tube 
volume (these include sink-in or pile-up, plastic deformation, elastic 
stress, rosettes, shear-bands, and so on) [6]. Such long-range processes 
convert or store energy that is lost for the impression. The denial of 
such loss inexcusably violates the basic first energy law (applied work 
= produced work/energy): Equation (1) and simple algebra deduce 

that precisely 20% of the applied work (for all materials) is used for the 
sum of long-range effects and lost for the indentation depth [6-10]. The 
energy loss for the penetration as deduced in [6], is summarized in the 
basic Figure 2. The experimental loading curve follows FN=k h3/2 (Eq. 1) 
in all cases, also the spherical ones and the indentation work is obtained 
by integration to give Windent=0.4 k h5/2 . This compares with the linearly 
applied work (area of the triangle up to the chosen depth h), which 
amounts to Wapplied=0.5 FN, h=0.5 k h5/2 by substitution of FN. It is thus 
arithmetically clear, that precisely 20% of the applied work is lost for the 
indentation work due to the sum of long-range work contributions [6]. 
This is therefore valid for all materials and mechanisms (e.g. elastic and 
plastic deformations, material's migrations, sink-in, pile-up, viscous 
flow) for all pyramidal/conical properly executed indentations, when 
detectable initial surface effects (that also contain tip rounding effects) 
are corrected for. In the case of sharply detected (kink in the plot of 
Eq. 1) phase change onset (endo- or exo-thermic), a second energetic 
term that includes the transition energy is calculated accordingly [6]. 
Both Windent and Wlongrange require their part from the normally applied 
force FN, mathematically at an always constant ratio [6]. Thus, Eq. 
(2) (universal hardness) and (5) (ISO-hardness) violate not only the 
physically founded indentation law (1) but both hardness definitions 
also violate the first energy law, because they do not take into account 
that part of FNmax that is lost for 20% of the work. They have been doing 
so for half a century. 

In order to stay within the energy law it is not necessary to care for 
a definition of ensuing "lengths" for the long-range work. The change 
of the ISO 14577 hardness HISO has to occur in such a way that the FN 
∝ h3/2 relation (Eq. 1) and thus the first energy law are not violated. 
The same is necessary for Huniversal. The viable redefinition of Huniversal or 
the previous ISO-hardness, is thus by multiplication of FNmax/Aprojected 
(or FNmax/Ahc) with hmax

1/2 (Eq. 6). Since sink-in and pile-up effects do 
not influence the exponent [10], the Hphys-values (that do not longer 
depend on a standard) do not require Ahc, and the universal FN ∝ h3/2 
relation and the first energy law are obeyed by taking into account the 
long-range losses (long-range energy that requires part of the applied 
force) (Eq. 7). The dimension of physical indentation hardness Hphys 
has thus the units mN/µm3/2=GPa µm1/2, the same as the dimension of 
penetration resistance k in Eq. (1). By substitution of FNmax in (7) with 
(1) one obtains therefore a precise and simple way to obtain the physical 
indentation hardness Hphys directly from conical/pyramidal indenters' 
loading curves (Eq. 8). The hmax

3/2 factors cancel out for Hphys. It follows 
from Eq. (1) (that is also valid for FNmax) that only the loading curve is

Hphys = FNmax hmax
1/2/Aproj                                    (6)

FNmax = πR2 Hphys/hmax
1/2 and R/hmax= tan α gives FNmax = π hmax

3/2 

tanα2Hphys                                    (7) 

Hphys = k /π tan α2
 (mΝ/µm3/2)                         (8)

required for Hphys (Eq. 8), with the dimension of the penetration 
resistance k, opens an easy and simple way to obtain the physically 
sound hardness Hphys (mN/µm3/2), without iterations, only from the 
loading curve with the unbeatable penetration resistance k1 (before the 
kink) by linear regression. The tip rounding initial effect is not part of 
the linear regression of the penetration resistance (but it plays a role for 
adjustments between different pyramids/cones [4,18]). For the first time, 
this new technique controls the final load below any phase transition 
onset. The precise technique makes obsolete the iterative determination 
of a "contact area", and undue experiments (e.g. tilted, too tight with 
others, etc.) are easily detected. Unfortunately, conversions of previous 
HISO into Hphys values are not easy due to the various iterations within 
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the ISO-treatment, but Huniversal does not have iterations due to totally 
different standard. The hmax values would however require the loading 
curves or original data. The correction of indentation Huniversal (GPa) 
into Hphys (GPa µm1/2) works by 

a) isolaton of hmax
2: 

Huniversal π tanα2/ FNma =1/ hmax
2 (mN/µm2; non physical); HISO known, 

FNmax must be known;

b) calculation for hmax
3/2:

Hphys π tan α2/ FNmax=1/ hmax
3/2 (mN/µm3/2; physical); Hphys can be 

calculated, when FNmax is known.

The results are exemplified in Table 1 from a paper [3] that published 
both experimental loading curve and finite element simulation loading 
curves far below of a phase change onset. One remarks considerable 
differences between HISO (from unloading curve with excessive 
iterations of aluminum on silicon for fit with the standard) and Huniversal 
(invoking h2) without correction. On the other hand, it is clear that the 
corrected Huniversal = Hphys is very different from the uncorrected Huniversal, 
numerically (hmax was 0.250 µm, giving the factor 2 for huniversal/hphys) and, 
of course dimensionally. Importantly, it is easiest to correct the finite 
element H-value, because the unphysical exponent 2 cancels out by the 
correction with hmax

1/2, and Hphys and simulated Hcorr are quite similar. 
However such good correspondence is only possible when absence 
of phase change onset is experimentally secured at hmax, which finite 
element simulation cannot predict or exclude. The necessary k and k' 
values must still be determined from loading curves (Eq.1 or analogous 
for simulated k' with different dimension). 

Similar to HISO, the definition of the modulus Er-ISO contains Ahc, 
which does not comply with the long-range effects at peak load, against 
physics Eq. (9) [8]. A quantitative connection to the penetration 
resistance k of the loading curve is however lost, because the unloading 
slope is needed for S (mN/µm). Also here, peak load must be below 
any kink load in the linearized loading curve (Eq. 1), in order to study 
the pristine material. It follows for both reasons that Er-ISO values of 
indentations (Eq. 9) are not appropriate, because they also violate 
physics by neglecting the energy consuming shearing effects. As in the 
case of hardness, the correction factor with respect to absolute values 
must be hmax

1/2, when using Aproj (not the iterated Ahc) for obtaining 
the physically correct dimension. This is done for Er-phys

2 with its 
substitutions as in Eq. (10), from which Eq. (11) follows arithmetically. 
The physical dimension of indentation Er-phys is thus (mΝ/µm7/4) or 
(GPa µm1/4). Future stiffness determinations for the physical modulus 
from indentations require proper modification.

Er-ISO = 1/2S /2 Ahc
1/2                         (9)

Er-phys
2 = hmax

1/2 πS2/4Aproj = hmax
1/2πS2/4πR2 = hmax

1/2 S2/4hmax
2tanα2 = 

S2/4hmax
3/2 tanα2                  (10)

 Er-phys = S/2hmax
7/4 tanα                    (11)

The correction of indentation Er-ISO (GPa) into Er-phys (GPa µm1/4) 
works by

(a) isolation of hmax
2:

Er-ISO
2 4 tanα2 /S2 = 1/hmax

2 ((Er-ISO: mN/µm2; is non physical); Er-ISO is 
known; hmax and reliable S before phase change onset must be known;

(b) calculation for hmax
3/2:

Er-phys
2 4 tanα2 /S2 = 1/hmax

3/2 (Er-phys: mN/µm7/4 is physical); Er-phys can 
be calculated, when hmax and reliable S are known.

The application of non-physical HISO and non-physical Er-ISO, as well 
as from these derived further mechanical parameters in theoretical 
and practical mechanics, bears high risks for materials' performance 
and must be stopped. Tabulated materials' properties must become 
reliable for centuries. Therefore, the most precise and undeniable 
penetration resistance k, Hphys, and Er-phys should be urgently used for 
the characterization of materials and the compatibility of different 
materials, including solder etc. [8,9]. 

Undue tutorial parameters

 All "Sneddon theory"-derived mechanical indentation parameters 
rely directly or indirectly on the presumed incorrect “FN ∝h 2” relation. 
This is exemplary demonstrated with some of the incorrect parameters 
that ensue. For example, NIST authors [19] published a tutorial in 
2009, as based on their earlier publication [20], with the erroneous 
deduction of six "viscous-elastic-plastic mechanical parameters". The 
authors used their loading-rate dependent Berkovich indentations 
onto PMMA and claimed that all of their published curves [19,20] 
would obey the Sneddon exponent 2 on h. But NIST could have easily 
found out that their loading curves of PMMA with a sharp Berkovich 
indenter fantastically support the universal FN versus h3/2 plots (Eq. 
(1)) with excellent straight lines for all of their loading rates from zero 
to their very deep penetrations (down to maximal depth of 6.5 µm), 
within less than 10 min, and with excellent linear regression. So NIST 
missed the validity of exponent 3/2 instead of 2. Rather, starting with 
the non-supported equations "FNp = α1H hp

2" and "FNe = α2Er he
2" (sub-p 

for plastic, sub-e for elastic) and after various steps (with inclusion of a 
"quadratic viscous element") they defined thus six incorrect mechanical 
parameters: 

"y = (α1H/ α2Er)
1/2" as "indentation plastic yield resistance", 

"d = 3τ/2tr" as "indentation viscous flow resistance" (with tr as 
rise time), and the double logarithmic plot of y versus d was termed 
"indentation behavior map", 

"1/e = 1 + 1/y + 1/d" (with e as “elastic fraction”), 

"H = FNmax y
2/hmax

2 α1 e
2", and "Er = FNmax/hmax

2 α2 e
2". 

Technique hmax
n k or k'(a) Basis Hardness only from the loading curve (not HISO)

Experimental 
with hmax

1/2 factor hmax
3/2 k = 7.4425 (mN/µm3/2) FN = kh3/2 Hphys = k/πtanα2 = 0.30373 (mN/µm3/2) 

independent on FN and  hmax (before phase change)
Experimental 
no correction hmax

3/2 k = 7.4425 (mN/µm3/2) FN = kh2 wrongly HISO = 0.761; Huniv = k/πtanα2= 0.60745 (mN/µm2) 
k +hmax

1/2 are needed for correction (value + dimension)
Finite element 
no correction hmax

2 k' = 4.7433 (mN/µm2) FN = k'h2 Huncorr = k'/πtanα2  = 0.60167 (mN/µm2)
false dimension, multiply with hmax

1/2 when available

Finite element with hmax
1/2 factor hmax

2 k' = 4.7433 (mN/µm2) FN = k'h2 Hcorr = k'hmax
1/2/πtanα2  = 0.30083 (mN/µm3/2)

(k' with dimension mN/µm2, must be determined)
(a) simulated parameters are not italicized .
Table 1: Comparison of an experimental unloading curve HISO of Al on Si with loading curve Hphys and ANSYS finite element simulated corrected or uncorrected H-values 
from [3].
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There is no experimental or physical basis for that and these papers 
from NIST (a prominent ISO member) require urgent retraction (after 
the successful physical deduction of Eq. (1) [10]). It is to be expected that 
a tutorial from representatives of the US-agency, which is responsive for 
standardizations with close to legal character, will be largely understood 
as a "state-of-the-art". But it is against physics. Therefore, an enormous 
risk has been arisen with this "tutorial" that has already been widely 
taught and used to produce and tabulate wrong data, with the potential 
of doing harm primarily to biology and medicine, but also to all further 
research on (nano) mechanics.

Furthermore, all the other textbook mechanical indentation 
parameters that directly or indirectly rely on h2 require re-deduction, 
by starting with the physically correct exponent 3/2, and it has always 
to be considered that their dimensions will unavoidably change. The 
indentation experiment is now a quantitative technique on the basis 
of the new physics with the penetration resistance k, the inverse of 
which has been called penetrability [4]. The easily obtained penetration 
resistance, detects phase transition onset and conversion energy as well 
as activation energy, etc. and it provides detection of physically correct 
indentation hardness Hphys with correct dimension, all from the loading 
curves without iterations or simulations.

Conclusion
The recent physical foundation of the universal exponent 3/2 on 

pyramidal/conical indentations enforces appreciation of the abundant 
empiric results, and that has important consequences. Thus, the 
ISO 14577 indentation hardness HISO, the reduced elastic modulus 
Er-ISO, and the three from deduced mechanical parameters must be 
urgently corrected in dimension and value, to provide the physically 
sound Hphys, Er-phys, and there from deduced parameters. Their perhaps 
odd appearing dimensions are the peculiarity of indentations with 
applying both normal force and lateral force at the same time. The 
present ISO definitions rely on a wrongly proposed [1-2] "FN ∝h2" 
relation and thus also on the undue reference to "projected area Ahc". 
Its application does not consider the far-reaching shear-force effects 
outside the Ahch tube and is thus violating the basic first energy law. 
Physically sound hardness is now for the first time obtained from the 
loading curves without iterations or simulations by only using simple 
algebra, and Hphys is now a genuine physical parameter. Also all other 
mechanical parameters for pyramidal and conical indentation that 
rely directly or indirectly on disproved "h2" from the loading curves 
require redefinition and re-determination by using h3/2 instead of "h2". 
The almost universally published wrong mechanical parameters from 
indentations and AFM force curves constitute high risks that are often 
adopted and defended, subject to change. The large errors caused by 
the wrong exponent are exponential dependent, not proportional. Any 
non-appreciation of the physical exponent is at risk for the stability of 
incorrectly-calculated composite materials and solders, as for example 
implanted endo-prostheses (mechanical adjustments to the actual bones 
of the composite, "bone cements", alloys, composite ceramics, coatings, 
and inlays, adhesion energies etc.), or composed materials of daily life 
(for example longevity of turbines, cars, airplanes, medical implants, 
etc.). Wrong parameters against physics (values and dimensions) must 
be adjusted to avoid scratching and failure, when materials are under 
mechanical and thermal stress. It is the penetration resistance k (mN/
µm3/2) of the components that must closely be adjusted to coincide for 
the applied force and temperature ranges. Of particular importance are 
the now easily recognized phase changes under load as detected by the 
onset of sharp kink discontinuities in the FN versus h3/2 plots that must 
always be considered. Different components have their transitions at 

different pressure and different temperature onsets. Thus, their now 
also available transformation- and activation-energies require the 
capabilities of the penetration resistance k (mN/µm3/2). This should 
help in adjusting the components of mechanical and thermal stressed 
super alloys with their grains and domains that must be optimized, etc. 

Textbooks must be rewritten, new dimensions of mechanical 
indentation parameters accepted. This is a tremendous task, because 
all mechanical parameter's dimensions become different. For spherical 
indentations h3/2 is long iteratively used, but please do not use JKR-
technique with 166% error. Thus, both the Hertzian-type (h3/2) and 
Sneddon-type (h2) analyses that are offered to choose from at some 
instrumental AFM-software require correction or cancellation. HISO, 
Er-ISO, Er, and all mechanical parameters that are derived from h2 
exhibit huge systematic errors after very complicated data treatments 
with iterations, simulations, and approximations. Fortunately, the 
now available physics avoids iterative data-fittings and allows for 
precise algebraic data evaluation. Nobody in the field can reasonably 
continue proceeding against basic physics. The numerous unexpected 
possibilities with quantitative indentation loading (or AFM force-curves' 
scanning) must be pursued on the available easy and precise algebra. 
Further unexpected applications are expected by the measurement 
of penetration resistance, Hphys, Erphys, Wadh, and mechanical phase 
transformation onsets with energies of transformation and energies of 
activation.

ISO and its member NIST cannot abruptly but only considerately 
change their standards, because all academic and industrial players are 
trained with their non-physical formulas and thinking from the hard 
to repeat or realize high mathematics of [1-2] that did not consider 
the first energy law. Therefore, ISO/NIST should now release a caveat 
relating to their ISO 14577 standards, telling that new physical results 
(with proper citation of open access work [10]) is being processed 
for unexpected revision, as a first step. This would create relieve from 
dilemma of ISO against physics and exempt security engineers in 
industry and administration who are bound to ISO standards from the 
dilemma concerning liability questions when using either physical state 
of the art or non-physical standards. Worldwide ISO is slow in making 
the urgent change of their ISO 14577 standards. The clear wording 
is required to speed this process for a smooth non-chaotic change to 
physical standards for the sake of every days' security.
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