
Research Article Open Access

Volume 5 • Issue 3 • 1000192
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Open AccessResearch Article

Journal of
Electrical & Electronic SystemsISSN: 2332-0796

Jo
ur

na
l o

f E
lec

trical & Electronic System
s

Jintu and Purushotham, J Electr Electron Syst 2016, 5:3
DOI: 10.4172/2332-0796.1000192

*Corresponding author: Joseph Jintu K, VLSI & Embedded systems PESIT
Bangalore, India, Tel: 080661 86610; E-mail: Jintuk.joseph@gmail.com

Received July 20, 2015; Accepted August 19, 2016; Published August 26, 2016

Citation: Joseph Jintu K, Purushotham U (2016) Implementation of LMS-ALE
Filter Using Vedic Algorithm. J Electr Electron Syst 5: 192. doi: 10.4172/2332-
0796.1000192

Copyright: © 2016 Joseph Jintu K, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Implementation of LMS-ALE Filter Using Vedic Algorithm
Joseph Jintu K1* and Purushotham U2

1VLSI & Embedded systems PESIT Bangalore, India
2Department of Electronics & Communications PESIT Bangalore, India

Keywords: ALE filter; LMS algorithm; Vedic algorithm; Fast
multipliers; Booth multipliers; Radix 8 FFT; Verilog; Xilinx ISE Design
suite; Matlab

Introduction
In physical environment noise is automatic signal, in all kinds of

signal generated there is some kind of unwanted noise signals, when
such a signal is amplified in a communication channel both noise
and desired signal gets amplified equally, it reduces the clarity of
communication system, hence noise cancellation is inevitable. ALE
Filter is a most common noise cancellation system. It uses some kind of
adaptive algorithm [LMS algorithm]. LMS adaptive block consist of FFT
and inverse FFT blocks as it handles the signal in frequency domain.
Multipliers are the most repeated block in LMS-ALE filter, to optimize
the performance we need to do the optimization from basic multiplier
block. In this work we use Vedic algorithm for doing the multiplication.
Compared to conventional booth algorithm Vedic multipliers requires
less partial product adders, hence it improves the performance in terms
of delay, resource utilization and power requirement [1-5].

Methodology
ALE filter

Adaptive Line Enhancer [ALE] filter optimized to remove sinusoidal
noise signals present in the channel. In Figure 1, s(n) represents the
desired signal, n(n) denotes the noise signal, z- represents de-correlation
function, and the block is followed by an adaptive predictor unit block.
De-correlation eliminates any kind of correlation that may exist between
the noise samples. Predictor can make prediction on the sinusoidal
component of the noise signals and system will adaptively minimize
the instantaneous squared error output. Inputs to the adaptive filter or
predictor unit is units behind the original input signal. Therefore, in
order to time align the enhanced signal, ŝ(n) with the input signal, x(n)
the adaptive filter must be able to ‘predict ahead’ in time by optimizing
its filter coefficients in a least squares sense, hence the instantaneous
squared error is minimized [5].

Vedic maths

Vedic mathematics or else called Indian mathematic is originated
in Indian sub-continent at 1200BC. Ancient time significant growth

to this field is done by great scholars like Aryabhata, rahmagupta,
Mahavira, Bhaskara II, Nilakantha Somayaji etc. the decimal
number system that we are using today is first record in Indian
mathematic books. Vedic maths are the list of mental mathematical
calculation techniques described in Vedas. Those mental techniques
are combined together and described in special text called “vedic
mathematics” [1].

Vedic multiplication algorithm

Vertical and crosswise algorithm is one among the 16 Vedic sutras
mentioned in the Vedic mathematics. Vertical and crosswise algorithm
is also called as Urdhva Tiryagbhyam. I use this sutra to optimize the
multiplier performance. Multiplication example using vertical and
crosswise algorithm is given below. We want to multiply 33 by 44:

3 3

4 4 ×

1 4 5 22 1 answer
Multiplying vertically on the right we get 3 × 4=12, so we put down

2 and carry 1 (written 12 above). Then we multiply crosswise and add
the two results: 3 × 4 + 3 × 4=24. Adding the carried 1 gives 25 so we put
5 and carry 2 (25). Finally we multiply vertically on the left, get 3 × 4=12
and add the carried 2 to get 14 which we put down [2].

Complex vedic multiplication

The flow chart in Figure 2 shows the procedure to compute the

Abstract
ALE or adaptive line Enhancers are special kinds of adaptive filters widely used in noise cancellation circuits.

In circuits where we don’t have any prior knowledge of signal and noise, fixed filters unit never works good. Among
adaptive filter ring algorithms LMS algorithm is very common, in our work also we use LMS algorithm. LMS-ALE filters
removes the sinusoidal noise signals present in the channel by calculating the filter coefficients in every iteration. LMS-
ALE filter has large number of multiplier units. FFT or Fast Fourier Transform blocks present in LMS algorithm again
consist of large array of multiplier units. Optimization of LMS-ALE filter lies must start from optimization of multiplier
blocks. Here we use Vedic “Vertical and crosswise algorithm” for multiplier design. When compared to conventional
booth multiplier based LMS-ALE filter units, Vedic multipliers gives more performance in areas like resource utilization,
power requirement, delay etc. The work includes designing Vedic multipliers, complex Vedic multipliers, redesigning
Radix-8 FFT using Vedic multipliers, redesigning LMS block using Vedic FFT, redesigning LMS ALE filter using Vedic
multipliers and Vedic LMS blocks. Major part of design is done in verilog using Xilinx ISE design suite. ADC block
present in LMS-ALE filter is done in Matlab version 2013.

Citation: Joseph Jintu K, Purushotham U (2016) Implementation of LMS-ALE Filter Using Vedic Algorithm. J Electr Electron Syst 5: 192. doi:
10.4172/2332-0796.1000192

Page 2 of 4

Volume 5 • Issue 3 • 1000192
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

circles indicate the selected operand for multiplication. q [1:0] is equal
to Q [1:0], the final result [7].

LMS algorithm

LMS algorithm is the basic adaptive algorithm available, this
algorithm helps any system to mimic a desired filter by generating
weights adaptively according to the value to error signal. Figure 5

The LMS algorithm is very useful and easy to compute [8,9]. The
LMS algorithm will perform Ill, if the adaptive system is an adaptive
linear combiner, as Ill as, if both the n-dimensional input vector X(k)
and the desire output

d(k) are available in each iteration, where X(k) is

()

()
()

()

1

2

.

.

.

n

k

k

X

x

x

kx

k

 =

And the n-dimensional corresponding set of adjustable weights
W(k) is

()

()
()

()

1

2

.

.

.

n

k

k

w

w

W

kw

k

 =

By having the input vector X(k), the estimated output y(k), can be
computed as a linear combination of the input vector X(k) with the
weight vector W(k) as

y(k) = X (k)W(k)T

addition of any two signed numbers, Where x1 denotes both the input
say a, b have same sign, if both have same sign then x1 take 1, Else x1=0.
When x1 is high it looks like simple unsigned number addition. The
result takes the sign of the inputs. If x1=0, we need to compute y1 value.
Y1 is equal to 1 if first input says 1 > second input b, else it takes 0. If
y1=1, then I perform a-b operation as a is larger than b, else I perform
b-a operation, which implies b is larger than a. The output takes the
same sign as a larger input operand.

The flow chart in Figure 3 shows the procedure to compute the
subtraction of any two signed numbers, Where x1 denotes both the
input say a, b have same sign, if both have same sign then x1 take 1, Else
x1=0. When x1 is high, I need to compute y1 value. Y1 is equal to 1 if
first input says 1 > second input b, else it takes 0. If y1=1, then I perform
a-b operation as a is larger than b, else I perform b-a operation, which
implies b is larger than a. The output takes the same sign as a larger
input operand. If x1=0, it looks like simple unsigned number addition.
The result takes the sign of the inputs [6].

Vedic 4 × 4 complex multiplier

Figure 4 shows the 4 × 4 bit multiplication using Vedic algorithm
[3]. It consists of four 2 × 2 Vedic multiplier units, two 4-bit [N bit
adder] adders and one 2-bit [N/2 bit adder] units. The orange colored

Figure 1: LMS-ALE filter block diagram.

No yes
Check x1 = 1?

Check Y1 = 1?
perform A1+A1

assign Sum_s =A1_s
yes

No

A2>A1A2>A1 A1>A2

Find A2-A1
Sum_s = A2_s

Find A1-A2
Sum_S = A1_s

X1: A1_s = A2_s?
A1_s = sign of A1
A2_s = sign of A2

Sum_s = sign of sum
A2 - A1 or A1-A2= unsigned

subtraction
Y1 = A1>A2?

Figure 2: Signed multiplication algorithm [signed addition].

Yes No
Check x1 = 1?

Check Y1 = 1? perform A1+A1
assign Sum_s =A1_s

yes

No

A2>A1 A1>A2

Find A2-A1
Sum_s = A2_s

Find A1-A2
Sum_S = A1_s

X1:A1_s = A2_s?
A1_s = sign of A1
A2_s = sign of A2

Sum_s = sign of sum
A2 - A1 or A1-A2 = unsigned

subtraction
Y1 = A1>A2?

Figure 3: Signed multiplication algorithm [signed subtraction].

b[3:2] b[3:2] b[1:0] b[1:0]

a[3:2] a[1:0] a[3:2] a[1:0]

{ q3[3:0], 0 0 } { 00, q2[3:0]}
q1 [3:0] q0 [3:0]

{00, [3:2]}
[1:0]

2 x 2
multiply

block
multiply

block
multiply

block
multiply

block

2 x 2 2 x 2 2 x 2

Adder Adder

Adder

Q [7:2] Q[1:0]

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0

b3 b2 b1 b0

Figure 4: 4 x 4 Vedic multiplier block diagram.

Citation: Joseph Jintu K, Purushotham U (2016) Implementation of LMS-ALE Filter Using Vedic Algorithm. J Electr Electron Syst 5: 192. doi:
10.4172/2332-0796.1000192

Page 3 of 4

Volume 5 • Issue 3 • 1000192
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Figure 5: LMS algorithm block diagram.

Radix 8 FFT Power utlilization

21.5

21

20.5

20

19.5

19

18.5
Power [dw]

Vedic FFT Booth FFT

Figure 6: Power utilization comparison Graph of Radix 8 FFT implemented
through Vedic algorithm and Booth algorithm.

ALE Delay comparison

Conventional Algorithm

Vedic AlgorithmD
el

ay
 [n

s]

19 20 21 22

Figure 7: Delay comparison table for ALE implemented using conventional
FFT and Vedic FFT.

Figure 8: Simulation results for adaptive line enhancing filter using Vedic FFT.

Thus, the estimated error e(k), the difference between the estimated
output y(k), and the desired signal d(k), can be computed as

e(k) = d(k) - y(k) = d(k) - X (k)W(k)T

Results
The above figure is the simulation result obtained when 2 complex

numbers each of 6 bit wide are multiplied, a and b are the input, each
has two components a_r, a_i and b_i, b_r. B_r, a_r represents the real
part and a_i, b_i represents the imaginary part. A_r_s, a_i_s and b_i_s,
b_r_s represents the sign of real part and imaginary part of inputs
respectively. The output obtained is c, it also has two components c_r
[real part] and c_i [imaginary part].

For smaller modules booth algorithm based multipliers consumes
larges resources, for 4 bit multiplier it uses 73 and 19, 4 input LUTs
when implemented Booth algorithm and Vedic algorithm. 19 and 42
numbers of occupied slices when implemented using Vedic algorithm
and Booth algorithm. When the input gets wider or module becomes
larger Vedic algorithm based design consumes larges resources and
booth algorithm based design consumes lesser resources.

Figure 6 shows the power utilization report for Radix 8 FFT [10]
implemented using Vedic algorithm and Booth algorithm. These
results are obtained from the X-power analyzer tool of Xilinx ISE
software. For radix 8 FFT designed using Vedic algorithm the total
power utilization is 194mw, it consist of three 16 bit Vedic multiplier
and two 8 bit multiplier. Hence the total power utilization is sum
of power utilization of each multiplier units. For Radix 8 FFT
implemented using Booth algorithm the total power utilization is
around 211mw (Figures 7 and 8).

Conclusion
The Fast multiplier design using Vedic algorithm has outstanding

performance features in resources utilization, power requirement, delay
taken, and area requirement. In this work a generic N × N bit Vedic
multiplier which can perform both signed and unsigned multiplication
are designed in Xilinx using verilog. An FFT module which can perform
N × N bit Fourier transformation is designed in Xilinx using the Vedic
multipliers designed earlier. An ADC module which takes audio input
from system, converts the floating point value to 18 bit binary value
are modeled in Matlab. This binary value becomes the input for the
ALE. ALE block is designed in Xilinx using verilog language. The
multiplier units in Ale are redesigned using Vedic multipliers. The

Citation: Joseph Jintu K, Purushotham U (2016) Implementation of LMS-ALE Filter Using Vedic Algorithm. J Electr Electron Syst 5: 192. doi:
10.4172/2332-0796.1000192

Page 4 of 4

Volume 5 • Issue 3 • 1000192
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

comparison results between Vedic implementations and conventional
implementation are also generated for each stage.

References

1. Tirtha SBK (1965) Vedic Mathematics. Motilal Banarsidass, Delhi, India.

2. Mehta P, Gawali D (2009) Conventional Versus Vedic Mathematical Method for
Hardware Implementation of Multiplier. International Conference on Advances
in Computing, Control and Telecommunication Technologies, IEEE computer
society, Trivandrum, Kerala, pp: 640-642.

3. Sudeep MC, Sharath BM, Vucha M (2014) Design and FPGA Implementation
of High Speed Vedic Multiplier. International Journal of Computer Applications
90: 6-9.

4. Agrawal J, Matta V, Arya D (2013) Design And Implementation Of FFT
Processor Using Vedic Multiplier With High Throughput. International Journal
of Emerging Technology And Advanced Engineering 3: 207-211.

5. He Y, He H, Li L, Wu Y, Pan H (2008) The Applications And Simulation Of
Adaptive Filter In Noise Canceling. International Conference on Computer
Science and Software Engineering, IEEE, Wuhan, Hubei 4: 1-4.

6. Premananda BS, Samarth SP, Shashank B, Bhat SS (2013) Design And
Implementation Of 8 Bit Vedic Multiplier. International journal of advanced
research in electrical and electronics and instrumentation engineering 2: 5877-
5882.

7. Saha P, Banarjee A, Bhattacharya P, Dandapat A (2011) High Speed ASIC
Design of Complex Multiplier Using Vedic Mathematics. IEEE students
technical symposium, IIT Kharagpur.

8. http://eewiki.net

9. http://www.xilinx.com

10. Mittal N, Kumar A (2011) Hardware Implementation of FFT Using Vertically
and Crosswise Algorithm. International Journal of Computer Applications 35:
17-20.

http://www.ms.uky.edu/~sohum/ma330/files/manuscripts/Tirthaji_S.B.K.,_Agarwala_V.S.-Vedic_mathematics_or_sixteen_simple_mathematical_formulae_from_the_Vedas-Orient_Book_Distributors_1981.pdf
http://dx.doi.org/10.1109/ACT.2009.162
http://dx.doi.org/10.1109/ACT.2009.162
http://dx.doi.org/10.1109/ACT.2009.162
http://dx.doi.org/10.1109/ACT.2009.162
http://dx.doi.org/10.5120/15802-4641
http://dx.doi.org/10.5120/15802-4641
http://dx.doi.org/10.5120/15802-4641
http://www.ijetae.com/files/Volume3Issue10/IJETAE_1013_33.pdf
http://www.ijetae.com/files/Volume3Issue10/IJETAE_1013_33.pdf
http://www.ijetae.com/files/Volume3Issue10/IJETAE_1013_33.pdf
http://dx.doi.org/10.1109/CSSE.2008.370
http://dx.doi.org/10.1109/CSSE.2008.370
http://dx.doi.org/10.1109/CSSE.2008.370
http://www.ijareeie.com/upload/2013/december/8_Design.pdf
http://www.ijareeie.com/upload/2013/december/8_Design.pdf
http://www.ijareeie.com/upload/2013/december/8_Design.pdf
http://www.ijareeie.com/upload/2013/december/8_Design.pdf
http://dx.doi.org/10.1109/TECHSYM.2011.5783852
http://dx.doi.org/10.1109/TECHSYM.2011.5783852
http://dx.doi.org/10.1109/TECHSYM.2011.5783852
http://eewiki.net
http://www.xilinx.com
http://dx.doi.org/10.5120/4365-6020
http://dx.doi.org/10.5120/4365-6020
http://dx.doi.org/10.5120/4365-6020

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Methodology
	ALE filter
	Vedic maths
	Vedic multiplication algorithm
	Complex vedic multiplication
	Vedic 4 × 4 complex multiplier
	LMS algorithm

	Results
	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	References

