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Introduction
In physical environment noise is automatic signal, in all kinds of 

signal generated there is some kind of unwanted noise signals, when 
such a signal is amplified in a communication channel both noise 
and desired signal gets amplified equally, it reduces the clarity of 
communication system, hence noise cancellation is inevitable. ALE 
Filter is a most common noise cancellation system. It uses some kind of 
adaptive algorithm [LMS algorithm]. LMS adaptive block consist of FFT 
and inverse FFT blocks as it handles the signal in frequency domain. 
Multipliers are the most repeated block in LMS-ALE filter, to optimize 
the performance we need to do the optimization from basic multiplier 
block. In this work we use Vedic algorithm for doing the multiplication. 
Compared to conventional booth algorithm Vedic multipliers requires 
less partial product adders, hence it improves the performance in terms 
of delay, resource utilization and power requirement [1-5].

Methodology
ALE filter

Adaptive Line Enhancer [ALE] filter optimized to remove sinusoidal 
noise signals present in the channel. In Figure 1, s(n) represents the 
desired signal, n(n) denotes the noise signal, z- represents de-correlation 
function, and the block is followed by an adaptive predictor unit block. 
De-correlation eliminates any kind of correlation that may exist between 
the noise samples. Predictor can make prediction on the sinusoidal 
component of the noise signals and system will adaptively minimize 
the instantaneous squared error output. Inputs to the adaptive filter or 
predictor unit is units behind the original input signal. Therefore, in 
order to time align the enhanced signal, ŝ(n) with the input signal, x(n) 
the adaptive filter must be able to ‘predict ahead’ in time by optimizing 
its filter coefficients in a least squares sense, hence the instantaneous 
squared error is minimized [5].

Vedic maths

Vedic mathematics or else called Indian mathematic is originated 
in Indian sub-continent at 1200BC. Ancient time significant growth 

to this field is done by great scholars like Aryabhata, rahmagupta, 
Mahavira, Bhaskara II, Nilakantha Somayaji etc. the decimal 
number system that we are using today is first record in Indian 
mathematic books. Vedic maths are the list of mental mathematical 
calculation techniques described in Vedas. Those mental techniques 
are combined together and described in special text called “vedic 
mathematics” [1].

Vedic multiplication algorithm

Vertical and crosswise algorithm is one among the 16 Vedic sutras 
mentioned in the Vedic mathematics. Vertical and crosswise algorithm 
is also called as Urdhva Tiryagbhyam. I use this sutra to optimize the 
multiplier performance. Multiplication example using vertical and 
crosswise algorithm is given below. We want to multiply 33 by 44:

3   3

4   4 ×

1  4   5  22 1 answer
Multiplying vertically on the right we get 3 × 4=12, so we put down 

2 and carry 1 (written 12 above). Then we multiply crosswise and add 
the two results: 3 × 4 + 3 × 4=24. Adding the carried 1 gives 25 so we put 
5 and carry 2 (25). Finally we multiply vertically on the left, get 3 × 4=12 
and add the carried 2 to get 14 which we put down [2].

Complex vedic multiplication

The flow chart in Figure 2 shows the procedure to compute the 
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circles indicate the selected operand for multiplication. q [1:0] is equal 
to Q [1:0], the final result [7].

LMS algorithm

LMS algorithm is the basic adaptive algorithm available, this 
algorithm helps any system to mimic a desired filter by generating 
weights adaptively according to the value to error signal. Figure 5

The LMS algorithm is very useful and easy to compute [8,9]. The 
LMS algorithm will perform Ill, if the adaptive system is an adaptive 
linear combiner, as Ill as, if both the n-dimensional input vector X(k) 
and the desire output

d(k) are available in each iteration, where X(k) is
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And the n-dimensional corresponding set of adjustable weights 
W(k) is
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By having the input vector X(k), the estimated output y(k), can be 
computed as a linear combination of the input vector X(k) with the 
weight vector W(k) as

y(k) = X (k)W(k)T

addition of any two signed numbers, Where x1 denotes both the input 
say a, b have same sign, if both have same sign then x1 take 1, Else x1=0. 
When x1 is high it looks like simple unsigned number addition. The 
result takes the sign of the inputs. If x1=0, we need to compute y1 value. 
Y1 is equal to 1 if first input says 1 > second input b, else it takes 0. If 
y1=1, then I perform a-b operation as a is larger than b, else I perform 
b-a operation, which implies b is larger than a. The output takes the 
same sign as a larger input operand.

The flow chart in Figure 3 shows the procedure to compute the 
subtraction of any two signed numbers, Where x1 denotes both the 
input say a, b have same sign, if both have same sign then x1 take 1, Else 
x1=0. When x1 is high, I need to compute y1 value. Y1 is equal to 1 if 
first input says 1 > second input b, else it takes 0. If y1=1, then I perform 
a-b operation as a is larger than b, else I perform b-a operation, which 
implies b is larger than a. The output takes the same sign as a larger 
input operand. If x1=0, it looks like simple unsigned number addition. 
The result takes the sign of the inputs [6].

Vedic 4 × 4 complex multiplier

Figure 4 shows the 4 × 4 bit multiplication using Vedic algorithm 
[3]. It consists of four 2 × 2 Vedic multiplier units, two 4-bit [N bit 
adder] adders and one 2-bit [N/2 bit adder] units. The orange colored 

Figure 1: LMS-ALE filter block diagram.
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Figure 2: Signed multiplication algorithm [signed addition].
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Figure 3: Signed multiplication algorithm [signed subtraction].
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Figure 4: 4 x 4 Vedic multiplier block diagram.
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Figure 5: LMS algorithm block diagram.
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Figure 6: Power utilization comparison Graph of Radix 8 FFT implemented 
through Vedic algorithm and Booth algorithm.
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Figure 7: Delay comparison table for ALE implemented using conventional 
FFT and Vedic FFT.

Figure 8: Simulation results for adaptive line enhancing filter using Vedic FFT.

Thus, the estimated error e(k), the difference between the estimated 
output y(k), and the desired signal d(k), can be computed as

e(k) = d(k) - y(k) = d(k) - X (k)W(k)T

Results
The above figure is the simulation result obtained when 2 complex 

numbers each of 6 bit wide are multiplied, a and b are the input, each 
has two components a_r, a_i and b_i, b_r. B_r, a_r represents the real 
part and a_i, b_i represents the imaginary part. A_r_s, a_i_s and b_i_s, 
b_r_s represents the sign of real part and imaginary part of inputs 
respectively. The output obtained is c, it also has two components c_r 
[real part] and c_i [imaginary part].

For smaller modules booth algorithm based multipliers consumes 
larges resources, for 4 bit multiplier it uses 73 and 19, 4 input LUTs 
when implemented Booth algorithm and Vedic algorithm. 19 and 42 
numbers of occupied slices when implemented using Vedic algorithm 
and Booth algorithm. When the input gets wider or module becomes 
larger Vedic algorithm based design consumes larges resources and 
booth algorithm based design consumes lesser resources.

Figure 6 shows the power utilization report for Radix 8 FFT [10] 
implemented using Vedic algorithm and Booth algorithm. These 
results are obtained from the X-power analyzer tool of Xilinx ISE 
software. For radix 8 FFT designed using Vedic algorithm the total 
power utilization is 194mw, it consist of three 16 bit Vedic multiplier 
and two 8 bit multiplier. Hence the total power utilization is sum 
of power utilization of each multiplier units. For Radix 8 FFT 
implemented using Booth algorithm the total power utilization is 
around 211mw (Figures 7 and 8).

Conclusion
The Fast multiplier design using Vedic algorithm has outstanding 

performance features in resources utilization, power requirement, delay 
taken, and area requirement. In this work a generic N × N bit Vedic 
multiplier which can perform both signed and unsigned multiplication 
are designed in Xilinx using verilog. An FFT module which can perform 
N × N bit Fourier transformation is designed in Xilinx using the Vedic 
multipliers designed earlier. An ADC module which takes audio input 
from system, converts the floating point value to 18 bit binary value 
are modeled in Matlab. This binary value becomes the input for the 
ALE. ALE block is designed in Xilinx using verilog language. The 
multiplier units in Ale are redesigned using Vedic multipliers. The 
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comparison results between Vedic implementations and conventional 
implementation are also generated for each stage.
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