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Introduction
In general, time integration schemes may be categorized into 

two classes: one is an explicit time integration scheme, and the other 
is an implicit time integration scheme [1-4]. The advantages of the 
former class of schemes are simplicity and high parallel efficiency with 
minimal inter processor communications [5-7]. Giraldo [8] showed 
that the spectral element can linearly scale with an explicit leapfrog 
time integration scheme in an atmospheric model. The explicit time 
integration scheme is simple and efficient in paralleling. However, in 
a general linear system, the fastest waves are acoustic waves, which 
have little to no effect on large-scale processes [9-11]. In other words, 
acoustic waves are very fast but have little significance in terms of the 
accuracy of simulations. Explicit systems have to adhere to a very small 
time step restriction caused by a physical phenomenon that is essentially 
inconsequential. To overcome these issues, a time-split integration 
scheme was proposed [12,13-20]. In this scheme, fast acoustic waves 
use a smaller time step while slower waves use a larger time step [21-
25]. The scheme is based on the Runge-Kutta methods. Choi and Hong 
[3] explored the time-split third-order Runge-Kutta explicit method 
described [12,18,19,25]. The scheme is associated with a mass vertical 
coordinate and a flux-form set of non-hydrostatic Euler equations. 
Additionally, each stage of the Runge-Kutta method is divided into a 
number of sub steps in which the time tendencies are updated using 
fast acoustic and gravity wave terms in the governing equations. The 
sub steps use a forward-backward time integration scheme in which 
the vertical coupling terms are treated implicitly. These are described in 
detail [3] and in the references therein. For the latter class of schemes, 
an implicit scheme requires expensive numerical solvers, because the 
non-linear system must be solved by computing the Jacobian matrix. 
Nevertheless, the time step used in implicit schemes is greater than that 
used in explicit schemes. St-Cyr and Neckels [21], the authors discuss 
fully implicit time integration schemes for discontinuous Galerkin 
methods applied to atmospheric flow. In particular, they proposed 
Jacobian-free Newton-Krylov solvers without the computation of 
the Jacobian matrix. Evans et al. [7] studied the fully implicit time 
integration scheme, which was implemented in shallow water equations 
on a sphere with a spectral finite element. From the numerical results, 
they determined the time step that would minimize the total computing 
time while maintaining sufficient accuracy for these problems.

Recently, more attention has been focused on the way in which 
implicit and explicit time integration schemes are combined to form 
semi-implicit schemes in the global atmosphere model [4-24]. Semi-
implicit time integration schemes treat acoustic and gravity waves 
implicitly. Advection is usually semi-Lagrangian [5] but is sometimes 
explicit Eulerian [22]. In either case, the time step is not limited by 
the speed of sound, gravity wave speed or stratification [4]. With 
appropriate linearization, spatial discretization leads to a sparse, 
diagonally dominant matrix that can be solved using iterative solvers. 
Semi-implicit time integration schemes can therefore be very efficient 
due to their ability to use long time steps. Moreover, linearly implicit 
schemes, such as an additive Runge-Kutta scheme, are applied in non-
hydrostatic models [9,10]. A new second-order additive Runge-Kutta 
scheme was introduced [9]. The idea behind the new additive Runge-
Kutta method is the use of two different integrators for non-stiff and 
stiff terms, respectively. An implicit integrator will be used for the stiff 
portion that represents acoustic and gravity waves, whereas an explicit 
integrator will be used for the non-stiff portion that represents the 
advective terms.

Now, we are interested in the semi-implicit time integration scheme 
for a non-hydrostatic problem. In this paper, we attempt to implement 
the new second-order 3-stage additive Runge-Kutta scheme in the 
non-hydrostatic Euler problem. Various factors were considered in the 
selection of the semi-implicit scheme. It is important desirable to keep 
the spatial discretization unchanged and to retain the time integration 
scheme [3] to facilitate a clean comparison between the semi-implicit 
and explicit schemes.

This paper is organized as follows. In Section 2, we consider the 
non-hydrostatic Euler problem used as the governing equations. 
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Abstract
A semi-implicit time integration scheme is implemented in a non-hydrostatic Euler problem on the cubed-sphere 

grid. The semi-implicit time integration scheme is a 3-stage additive RungeKutta method, which is an Implicit-Explicit 
(IMEX) multi-stage single-step scheme. The system treats acoustic and gravity waves implicitly and advection 
explicitly. In the implicit part, we compute the linear system by defining a proper linear operator. Then, the numerical 
results are presented to compare the semi-implicit time integration scheme with the explicit RungeKutta time 
integration scheme in non-hydrostatic Euler equations. In terms of accuracy, we demonstrate that the proposed 
method performs better than other schemes.
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The mass vertical coordinate and a flux-form set of equations are 
presented in this section. In Section 3, we review the s-stage additive 
Runge-Kutta schemes. These are the semi-implicit time integration 
schemes. Then, we define the proper linear operator. Based on these 
equations, we apply the semi-implicit time integration scheme to the 
problem. Finally, some numerical experiments for the idealization test 
are presented in Section 4. The performances of the semi-implicit and 
explicit schemes are compared in terms of error estimations where the 
semi-implicit scheme has some advantages over the explicit scheme. 
This paper ends with the summary and concluding remarks.

Governing Equations
In this section, we consider the non-hydrostatic Euler equations 

with a flux form [3,18]. The governing equations are first formulated 
using a terrain-following mass vertical coordinate [15]. In η-coordinate, 
we define

d

Pdh Pdhtη
µ
−

=

where µd is the mass of the dry air in the column. As usual, let pdh be 
the hydrostatic pressure of the dry atmosphere and let pdht be defined pdh 
at the top. The coupled variables are denoted as

V=µdv

dW µ η= 

Θ=µdθ

where v=[u,v]T represents the velocities in the horizontal (zonal and 
meridional) directions and w=η≡dη/dt represents the velocity in the 
vertical (radial) direction. θ is the potential temperature.

Suppose that the reference state is in hydrostatic balance and is 
strictly only a function of height z . The reference state variables are 
denoted by:

(z)p p p′= +                (1.1a)

( )zϕ ϕ ϕ′= +                (1.1b)

( )d d dzα α α′= +               (1.1c)

( ),d d dx yµ µ µ′= +                (1.1d)

Because the η-coordinate surfaces are not horizontal, the reference 
profiles ,  ,   dp andϕ α

 are functions of variables (x,y,η). New variables 
p′, φ′, α′d and µ′d from the perturbation forms eqn. (1.1) are obtained 
and θ′=θ-θ0 is defined with θ0=300(K).

By using the perturbation variables p′, φ′ and µ′d, the governing 
equations are given as follows:

( )

( ) ( )

ˆ

d

t H n d H

d H d HP H nHP

V v V k V v K

p d
d

ζ µ
α µ α α µ
α ′ Φ

∂ = − ∇ ⋅ − × − ∂ Ω − ∇

 ′ ′ ′ ′− ∇ Φ + ∇ + ∇ +∇ ∂ − +  VF
   (1.2a)

( )

( )
(V )

,

t H w n w

d vapor rain cloud d
d

W

g p q q q gη
α µ µ
α

∂ = −∇ ⋅ − ∂ Ω

 ′ ′+ ∂ − + + − +  wF     (1.2b)

1 V ,t H
d

ηθ θ θ
µ

′ ′ ′ ∂ = − ⋅∇ + Ω∂               (1.2c)

Vt d H ηµ′∂ = −∇ ⋅ − ∂ Ω               (1.2d) 
1 V ,t d H gWηµ−′  ∂ Φ = − ⋅∇ Φ +Ω∂ Φ −             (1.2e)

Where Fv and FW represent the forces of Carioles and curvature, 

respectively. ˆ   VHk fζ = ⋅ ∆ × +  is the absolute vertical vorticity 
with f=2Ωe Sin ψ and e=2Ωe cosψ. Here, Ωe is the angular rotation 

rate of the earth and ψ is the latitude. Let us denote by 
2

2

v
K =  

the horizontal kinetic energy. In these equations, αd and α are the 
inverse density of the dry air and the full air including moisture 
(i.e., α=αd (1+qvapor+qcloud+qrain+···)-1, where q∗ are the mixing ratios for 
hydrometeors), respectively. These are described in detail [3] and 
the values can be found therein. In the governing equations (1.2), 
differential operators are defined by

( )( )     )  (x yH U Vϕ ϕ ϕ∇ ⋅ =∂ + ∂V  and    .d d d dµ µηφ α α∂ ′ = − ′ − ′

Where V=[U,V]T is the vector value and ϕ represents a generic 
variable. 

Since ∂ηφ=−αdµd and ∂ηφ¯=−α¯dµ¯d, we have

   .d d d dµ µηφ α α∂ ′ = − ′ − ′              (1.3)

Also, the full pressure is

0
0

d m

d

Rp p
p

γ
θ
α

 
=  

 
,                (1.4)

Where γ=cp/cv: =1.4 is the ratio of the heat capacity for dry air, Rd 
is the gas constant for dry air, p0=105 Pa is a reference pressure and

( )1 ~ 1 1.61v
m vapor vapor

d

R q q
R

θ θ θ
 

= + ≈ + 
 

.

The Euler problem in eqn. (1.2) employs the spectral element 
method for the horizontal discretization and the finite difference 
method for vertical discretization [3]. In addition, the time-split third-
order Runge-Kutta explicit method [12,17-20,25], which we call SRK3 
in this paper, is used as the time integration scheme. The method 
shows only second order accuracy for nonlinear equations. In the time 
integration scheme, we consider two kinds of time steps. Slow or low-
frequency modes are integrated using a third-order Runge-Kutta time 
integration scheme, as follows:

( )

( )

*

** *

1 **

3

2

n n

n

n n

t R

t R

tR+

∆
Φ = Φ + Φ

∆
Φ = Φ + Φ

Φ = Φ + ∆ Φ

With larger time step ∆t. The values Φn and Φn+1 are represented 
at time level n ∆t and (n+1)∆t, respectively. The high-frequency 
acoustic modes are integrated over a smaller time step ∆τ to maintain 
numerical stability. The horizontally propagating acoustic modes 
and gravity waves are integrated using a forward-backward time 
integration scheme and the vertically propagating acoustic modes and 
buoyancy oscillations are integrated using a vertically implicit scheme. 
The procedures is described in detail [3,18]. From the properties, SRK3 
uses a larger time step than the original explicit Runge-Kutta scheme. 
Models such as the WRF model [18], MPAS [20], and NICAM [17] 
have used the same time integration scheme and have been shown to 
work effectively with ∆t as the time step for low-frequency modes (the 
model time step). High frequency but meteorologically insignificant 
acoustic modes would severely limit the time step ∆t of the third order 
Runge-Kutta scheme in the governing equations.

We consider the non-hydrostatic Euler problem in eqn. (1.2) as 
the governing equations and keep the spatial discretization, which is 
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defined [3], unchanged. We simply replace SRK3 with a semi-implicit 
time integration scheme in the system. In the next section, we will 
explain the scheme.

Semi-implicit Time Integration Schemes
In this section, we will address the use of the additive Runge-

Kutta method as the semi-implicit multi-stage scheme. The governing 
equations can be rewritten in the compact vector form as follows:

( )x S x
t
∂

=
∂

                (2.1)

where the vector value x=[V W θ′ µ′d φ′ ]
T and the right-hand side S(x) 

represents the remaining terms in the equations apart from the time 
derivatives in eqn. (1.2).

S-stage Additive Runge-Kutta (ARK) method

In order to construct the semi-implicit time integration scheme in 
eqn. (2.1), we have to define a linear operator L(x), which approximates 
S(x) and contains the terms responsible for the acoustic and gravity 
waves. Then, the equation (2.1) is rewritten as:

( ) ( ) ( )x S x L x L x
t
∂

=  −  + ∂
              (2.2)

and explicitly discretizes in time the terms in [S(x)-L(x)] while 
implicitly discretizing those in L(x).

As was done [1,9,11,16], we now consider the discretization of 
s-stage ARK method in eqn.(2.2) as the following:

( )
1

1n
a

i
i

n it bx x S X
=

+ + ∆= ∑
with

( )( ) ( )

( )( )

( ) ( )

1

1 1

1

1

1

i i
i j j i

ij i
j j

i j
j j

ij
j

i
j i

ij i

n

j
j

n

X t a S X L X t a L X

t a S X L X

t a L X t L X

x

x

a

=

= =

=

=

−

=

 = ∆ − + ∆ 

 = ∆ − 

+ ∆ + +∆

+

+

∑ ∑

∑

∑





for 

i=1,…….s (2.3).

For n=0,1,··· ,T, the vector xn+1 and xn represent the numerical solution 
at time level (n+1)∆t and n∆t (:=tn), respectively, where ∆t is the time 
step and T is the final time. For each stage, we obtain the value Xi with 
the coefficients { } { } { }  ,    ,      s s

ij ij
s

i
s sA a A a b b b× ×= ∈ = ∈ = = ∈


    for 

i, j=1,··· ,s, from the Butcher tableaux [2,9].

In the Butcher tableaux, the relation is as follows:

c A 

bT 
and

c  A A 

b T 

Where     i j ij i j ijc a and c a= =∑ ∑  represent the time when [S(x)-

L(x)] and L(x) are evaluated, respectively. It means that at each stage 
the values are evaluated at     .n i n it c t and t c t+ ∆ + ∆

From the s-stage ARK method, we have to solve a few implicit parts 
for each step, which is equal to the cardinality of { }:  0 ,    1,··· , .ii iia a i s≠ =   
Additionally, the implicit part of s-stage ARK schemes can achieve A- 
and L-stability properties of an arbitrarily high order [9].

In fact, the scheme is intended to use explicit and implicit 
integrators for the non-stiff and stiff terms, respectively. The stiff part 
represents the acoustic and gravity waves, whereas the non-stiff part 
represents the adventive terms. From this idea, we will introduce a new 
second-order Runge-Kutta method as a semi-implicit time integration 
scheme that performs better than the other second order methods 
considered.

New 3-stage (ARK) method with linear operator

Giraldo [9] developed the original and new versions of the 3-stage 
ARK method. These are second-order method, and we call the new 
version of the 3-stage ARK method ARK2 in this paper. The main 
idea behind ARK2 is 11  0,    0 , ,   2,3ii jja and a a i j= = =≠   . It means that 
L-stable, with minimal cost per step, has at least 3-stage with the first 
stage being explicit. The number of computing implicit part in ARK2 is 
smaller than in ARK. The majority of the computing time in this scheme 
is occupied by solving the implicit part in numerical experiments. 
These aspects are different from the original ARK method.

By applying the order conditions and stability constraints, the 
coefficients of ARK2 are obtained from the Butcher tableaux [2,9] as 
follows:

0 0 00 0 0
1 12 2 0 0 , 1 1 0
2 2

1 2 1 2 1 1 10 12 3 2 3 2 2 2 2 2

A A

  
  
  
  = − = − −  
        − − +    −           

and

1
2 2 0

1 , 2 2
2 2 1

11
2

b c

 
 

  
  = = −  
  
  

− 
 

Since the diagonal components of A are zero, we computed 
explicitly in time the terms [S(x)−L(x)] in eqn. (2.3). For 

11 22 33
1a =0 and a =a =1
2

−  

 the linear system

( )ai i i
iiX t L X F− ∆ =

has been computed only once in eqn. (2.3), where

( )( ) ( )
1 1

3

1 1

i i
i j j

ij
n

ij
j j

F t a S X L X L Xx t a
= −

= =

 = ∆ − + ∆+  ∑ ∑


, for i=2,3.

To proceed, the specific times are ( ), 2 2n nt t t+ − ∆  and tn+∆t.

In the main idea of the semi-implicit scheme, the linear operator 
part is computed implicitly and depends on the problem. If the correct 
operator L is not obtained, the semi-implicit method will not work 
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because the operator L must be selected such that the fastest waves in 
the system are retained, albeit in their linearized forms. Deriving the 
linear operator L(·) in eqn. (2.2) is now straightforward. In this paper, 
we first implemented ARK2 in non-hydrostatic Euler problem. The 
system is based on a mass vertical coordinate.

Here, we assume that α=αd with dry air. From the governing 
equations, we define the linear operator L(·) as follows

( )

( )
[ ]

[ ]

0

1 .

d H d d HP d d HP n dH

n

H

H

p

g p
L x

V

V gW
d

φ

φ

µ φ µ α µ α µ

µ

µ

′′ ′′

 
 ′ ′′ ′′ ′ − ∇ + ∇ + ∇ +∇ ∂ −
 

′′ ′ ∂ − 
 =  
 −∇ ⋅
 
  − ∇ −   

where the new linearization forms of perturbation pressure   p p p′ = −  
and the inverse of density α′d in eqn. (1.3-1.4) are given as follows:

( )d
d d d

0 d d

1p = p and =- +
ì

φ
 ′ ′θ α′′ ′′ ′ ′γ − α ∂ α µ 
θ α 

Note that the full pressure in eqn. (1.4) cannot be written in 
perturbation form because of the exponent function in the expression. 
For small perturbation simulations, accuracy for perturbation variables 
can be maintained by linearizing the perturbation variables. The 
hydrostatic relation in the perturbation system becomes:

[ ]1
d n d d

d

α φ α µ
µ

′ ′ ′=− ∂ + .

Recall that there are no linear parts for the potential temperature 
θ in eqn. (1.2).

High order schemes, specifically the third (4-stage) order ARK3, 

fourth (6-stage) order ARK4, and fifth (8-stage) order ARK5, were 
developed [11]. The schemes presented above are all explicit first-
stage, singly diagonal, second-stage order, L-stable methods. In our 
numerical results, we only attempt to apply the third-order ARK3.

Numerical Results
In this section, we present a numerical example of the Rossby-

Haurwitz wave test for the no hydrostatic Euler problem on a cubed-
sphere grid. We use the ne30np4 resolution (approximately 110 km) in 
the experiments. For horizontal grid spacing, ne indicates the number 
of quadrilateral elements in each direction for each face of the cube, 
and np is the number of Gauss-LegendreLobatto quadrature points. 
Throughout the numerical study in this section, numerical simulations 
are run for 3600(s) with a time step of ∆t.

We will compare the numerical results of the semi-implicit time 
integration scheme ARK2 and the time-split explicit integration 
scheme SRK3. As the reference values of the test, we use the third-order 
explicit Runge-Kutta method, which will be abbreviated as RK3, with 
a very small time step ∆t=0.01(s). In general, RK3 is reasonably simple 
and robust. In these experiments of RK3, time steps smaller than 0.1(s) 
are used. If the time step is greater than 0.1(s), it is blow up. To apply 
the semi-implicit scheme, we have to solve the linear system using a 
numerical iterative solver. In this case, the generalized minimal residual 
method (GMRES) is applied without a preconditioned. The number of 
iterations in the numerical solver depends on the size of the matrix and 
its tolerance (tol). In this paper, we fixed tol=10−4. If we want to obtain 
a more accurate numerical solution by using the iterative solver, we can 
select a smaller tolerance than 10−4.

The numerical results in ARK3, which are zonal wind u, meridional 
wind v, surface pressure ps and temperature θ at 850 hPa with ∆t=2.0(s), 
are presented in Figure 1. They are similar to the numerical results for 
RK3 (at ∆t=0.1(s)) and SRK3 (at ∆t=2.0(s)).

Figure 1: The numerical results u(top, left), v(top, right), ps(bottom, left) and θ(bottom, right) of ARK2 at 850 hPa are plotted with a final 
time T=3600(s) and ∆t=2.0(s).
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The differences between the numerical results u, v, ps and θ for 
SRK3 and those for ARK2 at 850 hPa with ∆t=2.0(s) are presented in 
Figure 2. In figures, the L2-errors of different values for each variable 
are bounded by 10-5. SRK3 has faster computing times than ARK2 at 
the same time step because the linear system must be solved using the 
numerical iterative method in the semi-implicit scheme.

In this paper, the semi-implicit scheme ARK2 is compared with the 
time-split Runge-Kutta explicit scheme SRK3 and we emphasize the 
accuracy of the semi-implicit scheme. We will show that ARK2 is more 
accurate than SRK3 for L2-error estimation. In L2-error estimation, we 
compute only the L2-error of the surface pressure ps in ARK2 and SRK3 

for each time step, as in the following equation:

( ) ( ) 23s sRK h L
p p−

where (ps)RK3, as the reference numerical solution, is the value of the 
surface pressure from RK3 at ∆t=0.01(s). (ps)h, with h=SRK3 or ARK2, 
is the numerical solution of the surface pressure for each time step 
∆t=0.2, 0.4, ··· , 2.0(s).

Since SRK3 is the time-split scheme, each stage of the SRK3 is 
divided by a number of sub steps ns=2,4,8,16. ns is the ratio of the RK3 
time step to the acoustic time step for the second and third RK3 sub 
steps. Figure 3 shows the L2-error of the surface pressure for each 

Figure 2: The differences in the numerical results u(top, left), v(top, right), ps(bottom, left) and θ(bottom, right) for SRK3 and ARK2 at 850 hPa are plotted with a 
final time T=3600(s) and ∆t=2.0(s).

Figure 3: L2-error analysis of the surface pressure for each time step in SRK3 and ARK2. The L2-error estimations of SRK3 with the number of substeps 
ns=2,4,8,16, and ARK2 are plotted. The reference solution is the value of the surface pressure determined using RK3 at ∆t=0.01(s).
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sub step ns. L2-errors for the surface pressure are decreased when ns 
increases. In addition, since ARK2’s values are bounded by 10−8 and 
SRK3’s values are bounded by 10−4, we cannot compare the values 
directly in Figure 3. Thus, the L2-error of surface pressure of only ARK2 
for each time step is presented in the right-hand side of Figure 4. From 
these results, for the same time step, we know that the L2-error of ARK2 
is much smaller than that of SRK3.

We note that construction of the high-order ARK methods is 
complex and difficult. The third order ARK method with 4-stage, 
which we call ARK3, is only computed in this experiments. From Table 
1, we observe that L2-errors for ARK2 and ARK3 are smaller than those 
for SRK3 and the values of ARK3 seem to be the smallest. However, 
since ARK3 has an additional stage, the total computing the time has to 
be increased. Thus, we know that ARK2 and ARK3 are more accurate 
than time split explicit scheme SRK3, while ARK2 and ARK3 are much 
slower than SRK3 in terms of computing time. If we consider the 
proper pre-conditioner in the iterative solver or transformation of the 
system with variable dependency, we can obtain a faster scheme. These 
are the topics of on-going research.

Conclusions
In this paper, we implement the 3-stage additive Runge-Kutta 

method, which is a second-order semi-implicit time integration 
scheme, on the non-hydrostatic Euler problem with mass vertical 
coordinates. In this scheme, we use a larger time step than that used in 
the third-order RungeKutta explicit scheme, as the computing time in 
the semi-implicit scheme is long. This is done with the aim of solving 
the linear system with a numerical iteration scheme. Moreover, the 
time step of the semi-implicit scheme is larger than that of the original 
explicit Runge-Kutta scheme, but smaller than that of the time-
split Runge-Kutta explicit scheme. However, the numerical results 

Figure 4: L2-error analysis of the surface pressure for each time step in ARK2. The L2-error estimations of only ARK2 are plotted. The reference solution is the 
value of the surface pressure determined using RK3 at ∆t=0.01(s).

SRK3 ARK2 ARK3
Ps 4.81e-06 2.26e-09 2.31e-10
u 2.15e-06 8.90e-07 2.01e-07
v 1.85e-06 9.56e-07 2.82e-07
θ 6.95e-07 1.18e-10 8.33e-11

Table 1: At ∆t =1.0(s), L2-error analysis of numerical results ps, u, v and θin SRK3, 
ARK2, and ARK3 as the high order semi-implicit scheme. The reference value is 
obtained using RK3 at ∆t=0.01(s).

demonstrate that the s-stage additive Runge-Kutta semi-implicit time 
integration scheme is more accurate than other explicit schemes in the 
non-hydrostatic Euler problem.

If we use a higher order additive Runge-Kutta semi-implicit scheme 
in this problem, more accurate numerical solutions are obtained.
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