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Abstract

Immunological Synapse (IS) is a multi-molecular assembly functional structure formed at the interface of T
lymphocyte and antigen presenting cell. These molecules include antigen presenting molecules, adhesion
molecules, co-stimulatory molecules, and inhibitors or checkpoint molecules, etc. The spatial and temporal changes
of these molecules determine the structure type and the function of the IS, which further affect the fate of T cells. To
date, some molecules involved in the IS formation have been suggested as the targets of immunotherapy. Here, we
reviewed the current investigations in the structure and function of the IS, and the molecules participated in the IS
formation.

Keywords: Immunological synapse; Adhesion molecules; Co-
stimulatory molecules; Checkpoint molecules

Introduction
T lymphocyte activation plays a vital role in the adaptive immune

response, and relies upon molecular signalling and cellular
communication initiated by direct cell-cell contact. The signalling and
adhesion molecules accumulated at the interface of T lymphocytes and
antigen presenting cells (APCs) and formed a multi-molecular
assembly platform, called immunological synapse (IS) [1], which is
critical in the activation, effective function and development of T
lymphocytes. These molecules include signalling molecules, adhesion
molecules, and co-stimulatory/checkpoint, etc. The spatial and
temporal changes of these molecules at the interface of T lymphocyte
and APC regulate the structure of the IS and T lymphocyte immune
response. Blocking adhesion molecules inhibits T lymphocyte
activation and the contacts of T lymphocytes and APCs [2]. Co-
stimulatory and checkpoint receptors alter the functional outcome of
the immunological synapse formation substantially and can also
influence the structure of synapse [3,4]. Understanding the structure
and function of the IS and the mechanisms of the IS formation might
be conducive to seek the target for immunotherapy. Immunotherapy
targeting checkpoint receptors have provided the most promise [5,6].
This review summaries the development of the structure of the
immunological synapse, the function of IS, and the molecular factors
those participated the formation and the function of the IS.

Diverse Structures of the Immunological Synapse
The immunological synapse is a multi-molecular assembly of

receptors and adhesion molecules formed at the interface of T cell and
APC during the antigen recognition. The formation of the IS is a
dynamic process, which involved the movement and spatial location of
surface molecules, cytoskeleton proteins, and signal transduction
molecules (Table 1) in the synapse. The molecules participated in the

synapse formation play different role in T-cell activation and synapse
formation (Table 1).

Molecules T cell APC Function

Surface
molecules

TCR, CD3, CD4, CD8,
CD2, CD27, CD28,
CD43, CD45, IFr-R,
CCR5, CXCR4, PrPC,
agrin, Ca2+

microdomain correlated
proteins, Integrins
(VLA-4, LFA-1)

MHC,
ICAM-1/3,
CD40,
B7-1/2,
CD70, CD81,
Notch
pathway,
PrPc

adhesion, presenting
antigen, intracellular
signal transduction
and induce calcium
releasing, promote
cytoskeletal
movement and T cell
differentiation

Cytoskeletal
protein

F-actin, tubulin,
cytoskeleton associated
protein, ERM, MTOC

F-actin,
tubulin,
MTOC

cytoskeletal
movement, signal
transduction

Signal
transduction
molecules

tyrosine kinase family,
LAT, SLP-76, WASP,
GTPases

Akt, WASP,
Small
GTPase Rho

Signal transduction,
cytoskeleton
movement, regulate
Ca2+ releasing

Table 1: Molecules involved in the formation and regulation of the
immunological synapse.

According to the different molecular localization, the IS structure is
distinguished into three types (Figure 1) [7]. One is the bullseye IS,
which was first observed by Kupfer [1] and co-authors as a classical
mature synapse formed between T cells and the artificial planar lipid
bilayer containing fluorescence labelled peptide major
histocompatibility complex (pMHC) and intercellular adhesion
molecule [1] (ICAM-1) embedded. In the centre of the bullseye IS, T
cell receptors (TCRs) and the other signaling molecules assembled a
central supramolecular activation clusters (cSMAC) [1]. The cSMAC is
dominated by the interaction of TCR and pMHC. Adhesion molecule
interactions, such as the interaction of lymphocyte function-associated
antigen [1] (LFA-1) and ICAM-1, occur surrounding the cSMAC and
form the peripheral SMAC (pSMAC) [1,7]. Another type of structure
is the multifocal IS, which is characterised as accumulated LFA-1-
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ICAM-1 molecules at the T-cell–APC interface, which is interspersed
by multiple small clusters of TCR-pMHC complexes and
phosphorylated signalling molecules [8-10]. In addition, an
immunological kinapse (IK), which has a polarized shape with a well-
defined lamella and uropod, was observed when cells interacted with
planar lipid bilayers. In the IK, TCRs clusters are polarized to the
uropod, while adhesion molecules are accumulated to the lamella [11].
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Figure 1: Different structures of immunological synapse. (A)
Bullseye immunological synapse; (B) Multifocal immunological
synapse; (C) Immunological kinapse. The TCR micro-domains
were shown as yellow, whereas the LFA-1 micro-domains were
shown as blue. APC: Antigen Presenting Cells; EC: Endothelial
Cells; cSMAC: central Supramolecular Activation Clusters; pSMAC:
peripheral Supramolecular Activation Clusters.

The multifocal IS was commonly observed between T cells and DCs
[8,9]. The bullseye IS was observed between T cells and planar lipid
bilayers, or between CD8+ cytotoxic T lymphocytes (CTLs) or natural
killers (NKs) and target cells [1,12,13]. Recently, the bullseye IS was
found to form at the T-DC contact, and its formation was correlated
with the staphylococcal enterotoxin B (SEB) stimulation and cytotoxic
T-lymphocyte antigen-4 (CTLA-4, CD152) translocation into IS [14].

The IS formation is a dynamic process, including both the dynamic
molecular movement at the interface and the dynamic movement of T
cells and DCs. During the IS formation, the TCR and pMHC
molecules are bound with each other and form some micro-clusters,
then these clusters are fused to the center of the synapse and form
cSMAC. Meanwhile, the LFA-1 and ICAM-1 molecules are interacted
with each other and are accumulated in the T-DC contact, followed by
the rearrangement from the central to the peripheral of the synapse
[15]. A large-scale, actin-dependent rearrangement of receptors,
downstream signaling molecules and adhesion molecules accumulate
into synapse and a relatively stable IS is formed. The newly generated
microclusters move centripetally from the periphery to the cSMAC,
where signaling is extinguished and the TCR is down-modulated
[16,17]. In addition, the morphological shape of the T cell changes
during the contact of T cell and DC. The T cell firstly moves fast and
“pecks” with the APC repeatedly, contacts for a short time and
detaches. This first stage will sustain for about 30 minutes. Then the
motility of the T cell is decreased, and T cell undergoes a relatively
long-lived contact with the APC (about several hours). Finally, the T
cell detaches from the DC, restores the rapid motility and the
“peaking”, and starts proliferation [18,19]. The dynamic movement of
synapse molecules and the cells are suggested correlates with the T cell
activation.

Functions of the Immunological Synapse
The different structures of the IS are proposed leading to the

different IS function and regulating T-cell activation. Although the
function is controversial [20], the IS is still believed to be a platform for
enriching signaling molecules and controlling T-cell activation. In
vitro and in silico experiments showed that the IS was an adaptive
controller to boost TCR triggering and attenuated strong signals [21].
Especially cSMAC formation is believed to be associated with TCR
down modulation [21]. cSMAC formation without ZAP70 (Zeta-
chain-associated protein kinase 70), LAT (linker for T-cell activation),
PLCγ1 (phospholipase Cγ1) location into the IS induce CD4+ T cells
tolerance [22-25]. Our previous report showed that the bullseye IS
formed between a naїve T cell and a DC pulsed with SEB or OVA
peptide (323-339) was correlated with a low level of calcium response
in the T cell and the loss of molecules involved in the TCR signaling
pathway, such as ZAP-70, PLCγ1 and PKC-θ, in the IS. Such IS
accumulated CTLA-4 to maintain the structure of synapse and played
a suppressive role in the early T cell activation [14]. However, in the
same cell-cell contact model, the multifocal IS showed a significantly
higher level of calcium response in the T cell. The multifocal IS
accumulated more ZAP-70, PLCγ1 and PKC-θ molecules than the
bullseye IS did [14]. The results suggested the multifocal IS as a
positive regulatory synapse for T-cell activation.

Another important function of the IS is the directed secretion of
soluble components into the synaptic cleft [26]. This function usually
occurs in CTL or NK cell-mediated killing of infected cells or tumor
cells. Cytolytic granules, perforin or cytokines were directly delivered
to a secretary domain near the endo-cSMAC compartment [27]. The
bullseye IS was believed to be the main synapse type for this function.
IK was also reported to have such function in the NK cell mediated
tumor cell. Converting IKs into ISs by the tumor-specific antibodies
increased the killing efficiency of the tumor cells [28]. Comparison of
synaptic versus kinaptic killing in the context of CD8 versus CD4
cytotoxic T cells in vitro showed that a stable IS had about 3-fold
killing efficiency than IK [29,30]. The potential advantage of the
bullseye IS was concentrating the cytolytic components on the contact
surface to kill the target cells. Thus, increasing the proportion of the
stable IS formation might contribute to the immune therapy in
clearing tumor cells or infected cells. Additionally, T help cells were
shown capable of secreting some cytokines, including IFN-γ and IL-10,
directly to the APC through the bullseye IS [31].

Besides the cytokines and granules secretion, cyclic adenosine 3’,5’-
monophosphate (cAMP) was reported to influx into conventional T
cells or antigen-presenting cells through cell-cell contact to control
immune activation [32]. cAMP was generated after the initial binding
of hormones, neurotransmitters, and ligands to cell-surface receptors
[33]. Then, cAMP activated the canonical protein kinase A (PKA)
pathway and the exchange protein activated by cyclic AMP (EPAC)
non-canonical pathway [34,35]. cAMP suppressed actin
polymerization at the interface of DCs and conventional T cells.
Regulatory T cells (Tregs) generated and accumulated high levels of
cAMP and transfer it into the target cells through cell-cell gap
junctions to play a suppressive role [36,37]. Additionally, MHC clusters
was reported to be transferred from cell-cell contact [38]. MHC class II
can be directly transferred to the CD4+ T cell from the APC through
the IS upon cellular dissociation [38].

Overall, the multifocal IS is important for signal integration, and the
bullseye IS tends to deliver the effector molecules and regulate of T-cell
activation. T-cell priming necessitates the formation of an

Citation: Lin W, Fan Z (2016) Immunological Synapse Molecules. J Immuno Biol 1: 111. doi:10.4172/2476-1966.1000111

Page 2 of 6

J Immuno Biol, an open access journal
ISSN:2476-1966

Volume 1 • Issue 3 • 1000111



immunological kinapse. Interacting naїve CD4+ T cells with planar
bilayers showed that these cells alternated between forming a bullseye
IS or a migratory immunological kinapse [11]. The bullseye IS can be
transitioned form multifocal IS in T-DC pulsed SEB model [14]. The
changed structure from the multifocal IS to the bullseye IS to the
kinapse might reflect the initiation of T-cell activation, the quenching
of T-cell activation and T-cell migration, respectively. This suggests the
IS as a modulator platform for the function of early T-cell activation.

There are three molecular functions of the IS suggested in
medicating the early immune response. One is moving some activated
signaling molecules away from the IS. After the stable mature IS
formed, signaling molecules, such as ZAP-70 and PLC-γ, are
extinguished and the TCR is down-modulated. Another function is
recruiting some molecules from the periphery to the cSMAC to
regulate T cell functions and fates. For example, CTLA-4, a check
pointed protein was generated and trans-located into cSMAC and
pSMAC to maintain the suppressive synapse and stop T-cell activation
[14]. The third function is secreting soluble molecules from one cell to
another cell. The secreted molecules may affect the function of T-cell
through binding with probability receptors [32]. The detail mechanism
still needs further investigated.

Factors Affect the Formation and Function of the
Immunological Synapse
The factors regulating the IS formation and T-cell activation were

well studied but insufficient. The molecules known participating in the
IS formation includes adhesion molecules, co-stimulated molecules,
checkpoint molecules, and cytoskeletons (Table 2). During cell
recognition, the localization of these molecules in the synapse
indicates how they regulate in T-cell functions. Eliminating or
promoting some molecules into the IS may provide new insights for
understanding the IS biology and be benefit to immune therapy.

Surface molecules
Molecules expressed on the T cell surface are uniformly distributed

before the T cell activation. When T cells contacting with other cells or
being stimulated by antigens, some molecules are clustered to increase
the affinity for their binding ligands and provide amplified signals for
the intracellular cascade reaction of the T-cell activation. These surface
molecules include adhesion molecules, co-stimulated molecules, and
checkpoint molecules (Table 2). Adhesion molecules are critical for
sensitive antigen recognition. On T cells, LFA-1 is the main adhesion
molecule involved in the IS. LFA-1, also known as αLβ2 integrin or
CD11a/CD18, is a member of the integrin family. It is a heterodimer
with an unique α subunit that shares the β subunit with three other
cell-surface heterodimers, each of which has an α subunit with a
distinct expression pattern [39,40]. ICAM-1, which is a member of the
Ig superfamily, is one of the main ligands for LFA-1. LFA-1 binding
with ICAM-1 was reported to be accumulated at the interface of T cell
and APC at the first stage of the IS formation. The activation state of
LFA-1 (extension) on T cells is critical to induce targeted movements
of both ICAM-1 and MHC class II to the IS on APCs [41]. And the
LFA-1 cluster size determined transport and spatial distributions of
LFA-1 in the IS [42]. In the absence of antigen stimulation or TCR-
pMHC recognition, LFA-1 could interact with ICAM-1 to form a
transmitted cell-cell contact and induce calcium signaling in T cells
[43]. The LFA-1 outside-in signaling (binding with ICAM-1) may
activate T-cell through the Src family kinase Fyn, which might be
distinguished from the TCR-pMHC signaling. Thus, LFA-1-ICAM-1

interaction might be an early stage factor that initiated the IS
formation and T-cell activation. Additionally, CD2 and CD58 were
defined as a heterophilic adhesion receptor pair [44]. CD2 and CD58
are both the members of the immunoglobulin (Ig) superfamily. The
complex of CD2 and CD58 interaction is similar in length to the TCR
and pMHC complex, suggesting that CD2 may closely cooperate with
the TCR [45]. However, same as LFA-1, CD2 engages the ligands in the
pSMAC, even though the CD2-CD58 interactions are the correct
length to be co-localized with TCR-pMHC complex in the cSMAC
(Table 2). Integrins are the drug targets in many diseases [46], which
indicating LFA-1 as a potential target for the IS related
immunotherapy.

In the absence of co-stimulation, T cells lead to a second round of
colonial deletion that protects the host against immune responses to
the harmless environmental antigens. Costimulatory receptors can
enhance adhesion and signaling transduction and coordinate the
activation of TCR signaling pathway. These molecules include CD28,
ICOS, the TNF receptor (TNFR) superfamily including CD27, GITR
(CD357), 4-1BB (CD137), and OX40 (CD134), and so on (Table 2).
CD28 is an Ig superfamily member with a homodimeric structure and
a cytoplasmic domain. It recruits and activates Lck and indirectly,
protein kinase C (PKC)-θ, an important PKC isoform in T cells to
contribute to the activation of NF-κB transcription factors and
promotes IL-2 production [47]. The activity of CD28 is dependent
upon the up-regulation of B7-1 (CD80) and B7-2 (CD86) on APCs
[48]. CD28-CD80/CD86 interaction promotes T-cell activation and
migration [47]. A single point mutation in the CD28 cytosolic tail
(tyrosine 188) interferes with the ability of CD28 to preferentially
accumulate at the cSMAC, which lead to CD28-mediated localization
of PKC-θ to the cSMAC disrupted and the efficient signal transduction
interfered.

Type T cell APC Localization in IS

Adhesion
molecules

LFA-1 (CD11a/
CD18)

ICAM-1 (CD54)

pSMACICAM-2 (CD102)

ICAM-3 (CD50)

VLA-4 (CD49d/
CD29)

VCAM-1
(CD106) Unknown

Co-
stimulated
molecules

CD28
B7-1 (CD80)

cSMAC
B7-2 (CD86)

ICOS B7-H2 (B7RP-1) Colocalized with PI3K in IS

Unknown B7-H3 Unknown

Unknown B7-H4 Unknown

Unknown B7-H5 Unknown

4-1BBCD137 4-1BBL localized in synapse but
separately from pMHC I/II

CD2 LFA-3 (CD58) pSMAC

CD9 Unknown Unknown

CD44 Unknown Unknown

CD45L CD45 dSAMC, it can enter the
cSMAC at later stages
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OX40 OX40L localized in synapse but
separately from pMHC I/II

CD70/CD27 CD70L (CD27)/
CD70 cSMAC

CD30 (Ki-1) CD30L (CD153) Unknown

CD81 Unknown Unknown

CD82 Unknown Unknown

CD53 Unknown Unknown

CD63 Unknown Unknown

Tim-1 (Th2 cell) Tim-4 Unknown

Inhibitor /
check
point

Tim-3 (Th1 cell) Galectin-9 pSMAC or dSMAC

CTLA-4
(CD152)

B7-1 (CD80)
pSMAC and cSMAC

B7-2 (CD86)

CD5 Unknown Unknown

PD-1 B7-H1 (PD-L1,
PD-L2) pSMAC and cSMAC

BTLA HVEM Unknown

Table 2: Localizations of the surface molecules involved in the
immunological synapse.

Cytotoxic T-lymphocyte antigen-4 (CTLA-4, CD152) as a
checkpoint protein competes with CD28 for binding to CD80 more
potently than for CD86 [49]. CTLA-4 is constitutively expressed in the
regulatory T cells and is coupled to the endocytic pathway, which leads
to the removal of CD80 and CD86 from APCs and impairs CD28-
dependent responses of other T cells [50]. CTLA-4 localized at the
pSMAC and cSMAC. The transportation of CTLA-4 into synapse
mediated the stable bullseye IS formation. Up-regulating the LFA-1
movement and interaction of LFA-1-ICAM-1 might be a possible
reason for CTLA-4 to promote the formation of a stable synapse [51].
Another checkpoint receptor is the programmed cell death-1 (PD-1,
CD279). PD-1 binds PD-1 ligand 1 and 2 (PD-L1, CD274 and PD-L2,
CD273) [52] and is recruited to the IS in a manner related to MHC-
peptide strength and abundance [53]. An interesting aspect of PD-1 is
that it is expressed on and suppresses the activity of Tregs. Thus,
blockade of PD-1 may increase Treg function, suggesting a rationale
for combining anti-PD-1 with anti-CTLA-4 [54], the latter suppresses
Treg function. Other checkpoint inhibitors include Vista and SIRPα
(CD172A) [55,56]. CTLA-4, PD-1 and PD-1 legends have been served
as the target for cancer therapy to enhance the immunological cellular
toxicity for tumor cells [57,58].

Cytoskeleton
Cytoskeleton is a complex network of the interlinking filaments and

tubules that distributed throughout the cytoplasm, from the nucleus to
the plasma membrane. Among them, the filamentous actin (F-actin)
network has been carefully studied. It plays a critical role in the IS
formation, the morphological change of T cells and the TCR signalling
[59,60]. Forming the IS by organising distinct supramolecular
activation clusters through actin cytoskeleton rearrangements [1,15].
The centripetal movement of TCR and LFA-1 microclusters are actin

dependent and parallels the retrograde actin flow that occurs during
cell spreading and migration [16]. TCR signaling initiates in numerous
microclusters at the periphery of the synapse [61], which migrate
toward the center where they coalesce to form the cSMAC. Actin
retrograde flow has been shown to promote these molecules to move
into the synapse. As treatment of T cells with latrunculin, an inhibitor
of actin polymerization, halts the transport of TCR microclusters to
the cSMAC and abrogates formation of new signaling assemblies
[16,61]. However, the mechanism of this actin retrograde flow is not
well understood.

TCRs are accumulated into the F-actin excluded cSMAC, indicating
that the TCR trafficking to the cSMAC is F-actin independent. The
actin nucleation promotion factors Wiskott–Aldrich syndrome protein
(WASp), WASp family verprolin homologous protein [2], and HS1 are
thought to cooperate with Arp2/3 to polymerize F-actin from the
plasma membrane triggering centripetal inward movement toward the
F-actin-poor cSMAC, where subsequent depolymerization is thought
to occur [62,63]. These proteins might promote TCR transportation.
Myosin IIA has also been implicated in TCR microcluster
translocation to the cSMAC and maintenance of synapse architecture
[64].

Microtubule organizing center (MTOC) also plays a key role in the
engagement of molecular motors, directional transport of granules,
and polarization of subcellular structures and molecules. MOTC is
localized in the uropod [65] in migrating T cells. The position of
MOTC changes dramatically upon target cell recognition. It
translocates from the rear of the cell to the leading edge where the
synapse forms [66], to accumulate in the distal SMAC (dSMAC). The
same organization is found not only in the synapses formed between
cytotoxic T lymphocytes (CTLs) and target cells but also in other
cytolytic cells, including natural killer (NK) and invariant NKT cells
[67], as well as in CD4+ T cells where the MOTC also docks within the
center of the synapse [68] and actin accumulates toward the edge of
the cell.

Besides mediating the IS formation, F-actin modulates T-cell
activation. The amount of F-actin accumulated in the IS modulate the
calcium releasing in T cells by controlling the localization of calcium
micro domain in the synapse. Treatment of T cells with actin
depolymerising agents leads to loss of Ca2+ mobilization and
downstream transcriptional activation [69]. Not only does T-cell
receptor (TCR) ligation initiate a robust actin polymerization response,
but actin dynamics are also required for effective TCR signaling as
inhibitors of actin polymerization disrupt T-cell activation [70].

Synapse and antigen
Antigen stimulation is important for the aggregation of TCR,

especially for TCR localization into cSMAC. The TCR microclusters
are translocated into the actin poor cSMAC by a specific-antigen
dependent mechanism [17]. With antigen stimulation, only antigen-
specific CD4+ T cells formed the bullseye and the multifocal IS [14].
Both of them are effective synapses to form TCR clusters to participate
in the specific immune response. Non-antigen-specific CD4+ T cells
interacted with DCs and formed synapses with CD28 accumulation,
but not TCR accumulation [14]. Without antigen stimulation, none IS
was formed between T cell and DC. The different type and specificity
of the antigen determined the different type of the IS formation and
the activation of T cells. SEB could induce more percentage of the
bullseye IS formation at the T-DC contact than OVA peptide (323-339)
did [14]. That might be different type of antigens influent the amount
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of TCR localization or aggregation in the IS, which may lead to the
formation of the IS and the T-cells activation. Antigens from virus or
tumour cells escape T cell recognition might be these antigen are a low
affinity antigen for TCR recognition and could not induce efficient
TCR clusters accumulate to form synapse. Additionally, antigen from
virus is more likely to recognize the adhesion molecules or integrin in
immune cells, or penetrates into the cell to bind with cytoskeleton to
disrupt the movement of molecules to form synapse of T-APC synapse
formation.

Conclusion
The structure of the IS was affected by the localization of molecules

in IS, which were regulated by the affinity of receptor-ligand and
cytoskeleton, and the antigens. The researches of the IS have provided
the molecular target for immune therapy. Regulating the localization of
specific molecules or cytoskeleton on the IS might provide a better idea
for immune therapy.
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