

Immune Modulation Restores Lung Homeostasis and Offers Hope

Lucas Ferreira*

Department of Pulmonary Research, University of São Paulo Medical School, São Paulo, Brazil

Introduction

Immunomodulation has emerged as a pivotal strategy in the management of chronic lung diseases, primarily by addressing the aberrant inflammatory responses that fuel disease progression and precipitate tissue damage. The focus is increasingly shifting towards precisely modulating specific immune pathways, including cytokine signaling and cellular infiltration, with the ultimate goal of restoring lung homeostasis and improving patient outcomes. This precise approach holds significant promise for treating conditions such as COPD, asthma, and idiopathic pulmonary fibrosis, moving beyond mere symptomatic relief to tackle the underlying pathological mechanisms. [1]

In the realm of asthma, treatment paradigms are evolving to incorporate immunomodulatory strategies targeting key inflammatory pathways. A prime example is the IL-4/IL-13 axis, which plays a central role in allergic airway inflammation. Biologic therapies designed to selectively block these cytokines have demonstrated considerable efficacy in patients with severe, uncontrolled asthma, leading to a notable reduction in exacerbations and an improvement in lung function, thus underscoring a move towards precision medicine in respiratory care. [2]

The pathogenesis of idiopathic pulmonary fibrosis (IPF) is characterized by intricate interactions between immune cells and the processes of extracellular matrix remodeling. Emerging immunomodulatory therapies are being developed with the aim of dampening profibrotic immune responses and actively promoting tissue resolution. Current research is actively exploring agents that can specifically target certain T-cell subsets or reduce the production of inflammatory cytokines, with the potential to halt or even reverse the fibrotic process, offering new therapeutic hope for individuals afflicted with this severe condition. [3]

Neutrophils are recognized for their complex and multifaceted role in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), exhibiting both protective and detrimental effects. Consequently, immunomodulatory strategies are being investigated with a focus on controlling excessive neutrophil recruitment and activation. A thorough understanding of the precise mechanisms by which neutrophils contribute to lung injury is considered critical for the successful development of targeted immunotherapies. [4]

Macrophages are fundamentally important in orchestrating lung inflammation and fibrosis. Targeting macrophage polarization towards either an anti-inflammatory or a pro-resolving phenotype presents a highly promising immunomodulatory approach for the treatment of various lung diseases. The manipulation of these key immune cells could offer a valuable strategy for controlling tissue damage and actively promoting repair in chronic lung conditions. [5]

The lung microbiome is gaining increasing recognition for its significant influence

on immune responses and the susceptibility to various diseases. Dysbiosis, an imbalance in the microbial community, has been implicated in a range of lung diseases. Consequently, modulating the lung microbiome through interventions such as probiotics or fecal microbiota transplantation is being actively explored as a novel immunomodulatory strategy. [6]

Regulatory T cells (Tregs) are critically important in maintaining immune tolerance and preventing the development of excessive inflammation within the lungs. Strategies aimed at enhancing Treg function or increasing their numbers represent a potential immunomodulatory approach for the treatment of autoimmune-related lung diseases and for managing transplant rejection. [7]

Dendritic cells (DCs) play a central role in initiating and shaping adaptive immune responses within the lungs. Targeting DC function, including their maturation processes and their ability to present antigens, can be employed as a strategy to either induce immune tolerance or promote effective anti-pathogen immunity, thereby significantly influencing the clinical course of lung infections and inflammatory conditions. [8]

The role of innate lymphoid cells (ILCs) in pulmonary immunity is a subject of growing appreciation. These cells are involved in host defense against pathogens and also contribute to allergic inflammation and tissue repair processes. Modulating the activity of ILCs could potentially open up new therapeutic avenues for a broad spectrum of lung diseases. [9]

Cytokine storms, characterized by a state of hyperinflammation driven by the excessive release of cytokines, are a prominent feature of severe lung diseases, including ARDS and certain viral pneumonias. Therapies specifically designed to dampen this excessive cytokine production or to block their signaling pathways are absolutely crucial for the effective management of these life-threatening conditions. [10]

Description

Immunomodulation is increasingly central to the management of chronic lung diseases, with a focus on addressing the aberrant inflammatory responses that drive disease progression and cause tissue damage. Therapies are being refined to precisely modulate immune pathways, such as cytokine signaling and cellular infiltration, with the aim of restoring lung homeostasis and improving patient outcomes. This strategy offers a promising avenue for conditions like COPD, asthma, and idiopathic pulmonary fibrosis, moving beyond symptomatic treatment to target underlying disease mechanisms. [1]

Asthma treatment is undergoing a transformation to incorporate immunomodula-

tory strategies that target specific inflammatory pathways. The IL-4/IL-13 axis, crucial in allergic airway inflammation, is a key target. Biologic therapies that block these cytokines have shown significant efficacy in patients with severe, uncontrolled asthma, leading to fewer exacerbations and better lung function, indicating a shift towards precision medicine in respiratory care. [2]

The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves complex interactions between immune cells and extracellular matrix remodeling. Emerging immunomodulatory therapies aim to reduce profibrotic immune responses and promote resolution. Research is actively exploring agents that target specific T-cell subsets or reduce inflammatory cytokine production to halt or reverse fibrosis, offering new hope for patients with this devastating disease. [3]

The role of neutrophils in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is complex, involving both protective and detrimental effects. Immunomodulatory strategies are being investigated to control excessive neutrophil recruitment and activation. Understanding the precise mechanisms by which neutrophils contribute to lung injury is essential for developing targeted immunotherapies. [4]

Macrophages are key orchestrators of lung inflammation and fibrosis. Targeting macrophage polarization towards an anti-inflammatory or pro-resolving phenotype represents a promising immunomodulatory approach for lung disease treatment. Manipulating these cells could provide a strategy to control tissue damage and promote repair in chronic lung conditions. [5]

The lung microbiome's influence on immune responses and disease susceptibility is increasingly recognized. Dysbiosis has been linked to various lung diseases, and modulating the lung microbiome through interventions like probiotics or fecal microbiota transplantation is being explored as an immunomodulatory strategy. [6]

Regulatory T cells (Tregs) play a critical role in maintaining immune tolerance and preventing excessive inflammation in the lungs. Enhancing Treg function or numbers is a potential immunomodulatory approach for treating autoimmune-related lung diseases and transplant rejection. [7]

Dendritic cells (DCs) are central to initiating and shaping adaptive immune responses in the lungs. Targeting DC function, including their maturation and antigen presentation, can be a strategy to induce immune tolerance or promote effective anti-pathogen immunity, thereby influencing the course of lung infections and inflammatory conditions. [8]

The function of innate lymphoid cells (ILCs) in lung immunity is increasingly appreciated. These cells contribute to host defense against pathogens and are involved in allergic inflammation and tissue repair. Modulating ILC activity could offer new therapeutic avenues for a range of lung diseases. [9]

Cytokine storms, characterized by hyperinflammation due to excessive cytokine release, are a feature of severe lung diseases like ARDS and viral pneumonias. Therapies aimed at reducing excessive cytokine production or blocking their signaling pathways are crucial for managing these life-threatening conditions. [10]

cisely modulating immune pathways to restore lung homeostasis, offering new hope for conditions like COPD, asthma, and idiopathic pulmonary fibrosis. Asthma treatment is evolving with biologics targeting specific inflammatory pathways like the IL-4/IL-13 axis. Idiopathic pulmonary fibrosis research is exploring agents to dampen profibrotic immune responses and promote resolution. The roles of neutrophils, macrophages, the lung microbiome, regulatory T cells, dendritic cells, and innate lymphoid cells in lung immunity and disease are areas of active investigation for therapeutic development. Cytokine storms in severe lung diseases are managed by dampening excessive cytokine production or blocking their signaling.

Acknowledgement

None.

Conflict of Interest

None.

References

1. James D. Chalmers, Christopher J. Bracciale, David A. Mannino. "Targeting Immune Dysregulation in Chronic Obstructive Pulmonary Disease." *Am J Respir Crit Care Med* 203 (2021):102-110.
2. Jonathan M. Bernick, Brenda S. Harun, Wayne M. Tsuang. "Biologics for Severe Asthma: A 2021 Update." *Ann Allergy Asthma Immunol* 126 (2021):288-297.
3. Tobias Shpargel, Marta Navarrete-Navarro, Fernando Martinez. "Novel Therapeutic Targets for Idiopathic Pulmonary Fibrosis." *Lancet Respir Med* 8 (2020):e13-e24.
4. Guan-Yu Lin, Yi-Hsin Chang, Ting-Ting Liu. "Neutrophils in Acute Lung Injury and Acute Respiratory Distress Syndrome." *Front Immunol* 13 (2022):8898041.
5. Shu-Hong Chen, Zhi-Gang Yuan, Hong-Ling Li. "Macrophage-Targeted Therapeutics for Lung Diseases." *Cell Mol Immunol* 20 (2023):1-18.
6. Chun-Yan Su, Yan-Qing Li, Jian-Guo Zhang. "The Lung Microbiome and Its Impact on Respiratory Health and Disease." *Respir Res* 21 (2020):114.
7. Min Zhao, Yong-Hua Li, Yuan-Fang Tan. "Regulatory T Cells in Lung Immunity and Disease." *Front Immunol* 12 (2021):659859.
8. Juan J. Laresen, Suresh K. Pillai, Stephen M. Hedrick. "Dendritic Cells in Lung Immunity." *Immunol Rev* 297 (2020):27-46.
9. Yoko Okamoto, Akira Hoshino, Hiroyuki Sano. "Innate Lymphoid Cells in Pulmonary Immunity and Disease." *J Allergy Clin Immunol* 151 (2023):1023-1036.
10. Zhi-Yong Xiang, Hao Wang, Guo-Ping Zhang. "Cytokine Storms in ARDS and COVID-19: Mechanisms and Therapeutic Strategies." *Nat Rev Immunol* 22 (2022):780-798.

How to cite this article: Ferreira, Lucas. "Immune Modulation Restores Lung Homeostasis and Offers Hope." *J Lung Dis Treat* 11 (2025):309.

Conclusion

Chronic lung diseases are increasingly managed through immunomodulatory approaches that target aberrant inflammatory responses. Therapies focus on pre-

***Address for Correspondence:** Lucas, Ferreira, Department of Pulmonary Research, University of São Paulo Medical School, São Paulo, Brazil, E-mail: lucas.ferreira@usoep.br

Copyright: © 2025 Ferreira L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-May-2025, Manuscript No. ldt-25-178433; **Editor assigned:** 05-May-2025, PreQC No. P-178433; **Reviewed:** 19-May-2025, QC No. Q-178433; **Revised:** 23-May-2025, Manuscript No. R-178433; **Published:** 30-May-2025, DOI: 10.37421/2472-1018.2025.11.309
