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Abstract
A Myelodysplastic syndrome (MDS) is a disorder characterized by active but ineffective hematopoiesis that 

leads to pancytopenia. MDS, also termed as myeloid neoplasms, is described by different level of cytopenia that 
is a different level of blood cells in the body. Various genes mutations have been reported to associate with MDS. 
To investigate the mechanisms at molecular level underlying MDS patients carrying genetic mutations, the gene 
expression profiles of MDS the patients were compared to that of healthy individuals and analyzed by bioinformatics 
tools. In biological networks, genes having important functional roles can be identified by a measure of the node. 
Networks of genes an in co-expression, candidate hubs also called extremely associated genes have been 
connected with the key disease-related pathway. Thus, this technique was used to discover the MDS related genes 
hub. Affymetrix Human Genome U133 plus 2.0 gene expression dataset of microarray GSE58831 was retrieved 
from GEO (Gene Expression Omnibus) database that contained four 159 diseased samples and 17 samples of 
control. Based on statistical method and co-expression networking, DEGs gene was detected. DAVID an online 
tool was employed for Gene ontology (GO) function and KEGG pathway enrichment analysis of DEGs. Besides, 
PPI (Protein-protein interaction) networks were developed by mapping the DEGs with respect to protein-protein 
interaction set available in databases for the identification of the pathways involving DEGs. PPI interaction networks 
were divided into subnetworks via MCODE algorithm and were examined by Cytoscape. Interferon Signaling 
Pathway, cellular response to zinc ions and negative growth regulation. Immune response, negative regulation of 
transcription from RNA polymerase II promotor, positive regulation of smooth muscle cell proliferation and cellular 
response to Dexamethasone stimulus, extracellular matrix, extracellular space, and extracellular region were the 
main enriched processes and pathways in these DEGs and many of the hub genes’ (UBC, TP53, EGFR, GADPH, 
CREBBP, HDAC1, STAT1, IL6, ESR1, SMAD4) reported in this study were purposed as novel therapeutic targets 
against MDS disease.
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Introduction
A Myelodysplastic syndrome (MDS), also known as preleukemia, is 

a state of disease characterized by active but ineffective hematopoiesis 
leading to pancytopenia [1]. Fatigue, breath shortness, paleness, 
bleeding, and rashes are the general symptoms observed in patients 
with MDS and also known as myeloid neoplasms, described by 
different level of Cytopenia that is a different level of blood cells in 
the body. Association of Cytopenia with dysplasia usually led to acute 
myeloid leukemia. Epidemics of MDS are frequently reported in older 
individuals [2,3]. Many factors have been reported as causes of MDS 
including gene mutation that is broadly considered as a major factor 
contributing to MDS. Gene mutations result in genotypic alteration and 
thus, lead to cytogenetic shifts in gene expression. These cytogenetics 
shifts are usually characterized by abnormal transcription of the gene, 
epigenetic, cell signaling and effects of gene dosage. In addition, many 
frequent cytogenetic aberrations were observed including a long 
arm of chromosome 7, 20 and 5 that lead to a complex karyotype. In 
MDS, most commonly mutated genes are of RNA splicing regulators 
and epigenetic modifiers, along with pathways of signal transduction 
and transcription factors have been frequently targeted towards this 
syndrome [4-6]. MDS was reported to occur because of mutations 
in different genes primarily includes SF3B1, SRSF2, ZRSR2, U2AF1, 
DNMT3A, EZH2, TP53, RUNX1, and TET2. SF3B1 and demonstrated 
independent expression with low mutation frequency, reduced 
expression of TET2 in the stem and progenitor cells, and increased 
DNA methylation activity in MDS [7]. Mutations in TET2 occurred 
with same frequency in MDSs [8]. Different mutations were identified 

but a mutation in SF3B1 gene was concluded as a most important factor. 
MDS epidemics due to a mutation in SF3B1 gene contributed a total of 
19.9% of all the reported cases. Patients with SF3B1 gene were usually 
reported with more complications during the lifespan in comparison 
to the patient with MDS due to other risk factors. SF3B1 gene was 
also documented with mutations in a variety of other tumor types [9]. 
According to IPSS (International Prognostic Scoring System), MDS 
was categorized in different risk groups, such as primary and secondary 
MDS [10]. Abnormalities were observed like clonal karyotype that 
formed nearly 40-50% of primary MDS and about 90% of secondary 
MDS [11]. To date, no inclusive treatment other than Azacitidine, 
Decitabine, and Lenalidomide is available in the markets and approved 
by Food and Drug Administration of United States (US) for MDS. 
However, allogenic therapy was reported as conclusive but currently, 
less than 10% patients undergo such stem cell transplant [12]. Pellagatti 
[13] detected several downregulated genes and gene pathways in MDS 
using gene expression profiling [13-18]. Recently Gerstung et al. [19] 
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described a huge mutation in 738 patients with MDS and presented 
a comprehensive map for the mutational landscape of myelodysplasia 
screen in 111 cancer genes. Expression changes were typically lower 
than 10% as a reoccurrence of mutation and could not be reliably 
mapped in unknown and small subgroups. The genomics data reported 
by Gerstung et al. [19] characterized the gene expression profiles of 159 
MDS patients by comparing with 17 normal individuals to explore the 
expression pattern of the genome in MDS affected individuals [19].

To date, the only agent with high efficacy such as Hypo ethylating 
agent (HMA) has been employed for the treatment that improved 
clinical outcomes in 40-60% of patient, however, no universal and 
inclusive drugs are till date available against MDS. Therefore, we used 
microarray gene expression data reported by Gerstung et al. [19] to 
discover the potential drug targets. This study follows the statistical test 
models along with genes enrichment and protein-protein interaction 
analysis to identify the novel drug targets as a treatment for MDS. 
This examination may facilitate and give a better understanding of the 
detailed molecular mechanisms underlying MDS and thus, assist in the 
selection of suitable and effective treatment strategies for patients with 
MDS.

Methods
Microarray data

Gene expression profiling data of MDS was download from GEO 
(Gene Expression Omnibus) [20] reported by Gerstung et al. [19], 
under accession number GSE58831 [19]. This dataset was based on 
Affymetrix Human Genome U133 plus 2.0 Array GPL570 platforms. 
A total of 176 samples were reported in this dataset, that includes 17 
normal candidates and remaining 159 candidates carried different 
mutations for MDS. Quantile normalization [20] was carried out 
to normalize the dataset via integrated GCRMA package of R v3.0.2 
[21,22]. On the basis of Gerstung et al. [19] reported information, data 
were divided into two groups as normal and diseased (Table 1).

Identification of DEGs

For the identification of differentially expressed genes, statistical 
tools were applying to compare the normal samples with the diseased 
samples to understand the molecular markers disturbed in MDS. 
Student’s t-test, Pearson correlation test, and Benjamin-Hochberg 
method were also applied for multiple testing via R v 3.0.2 as a 
standardized method to identify the database of essential genes (DEGs). 
The parameters were fixed for identification of these essential genes 
contained Benjamin-Hochberg [22] multiple testing methods (FDR 
<0.05) with fold-change ≥ 1 and the adjusted p value <0.05.

Gene ontology and pathway enrichment analysis of DEGs

Gene ontology (GO) analysis such as GO Biological Processes, 
Molecular Function and KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathways analysis are the most common and useful 
annotation of different Genes and its products. Attributes of high 
throughput genomics and transcriptomic data could be obtained 
through GO [23,24]. For the functional analysis, DAVID is an essential 
and most frequent functioning online server which can functionally 
annotate genes with high success [25]. Here, DAVID was used with a 
P value <0.05 to annotate the functional role, KEGG pathways and GO 
enrichment analysis of the identified DEGs [26].

PPI Network Generation
Cytoscape [13] is reliable software for the construction, mapping, 

visualization, and analysis of protein-protein interaction (PPI) networks. 
It works parallel with large databases which provides information 
regarding protein-protein, protein-DNA, and genetic interactions. 
STRING [27], BioGrid [28], GeneMANIA [29] for the retrieval of 
protein interactions. In the present study, we used GeneMANIA, 
STRING, and BioGrid to retrieve the interactions and construction 
of Protein-protein interaction network for the identified DEGs. Many 
topological parameters are available to analyze and compare the 
network. Cytoscape is freely available software which also provides an 
integrated function “Network Analyzer” to analyze the gene/protein 
network. We also used “Network Analyzer” to calculate the parameters 
for all the constructed networks. The primary parameters which were 
analyzed include power law of node distribution, distribution of node 
degree, clustering coefficient, network centralization and density to 
distinguish the three constructed networks [30].

Hub Genes Identification and Molecular Complex 
Detection Analysis of DEGs

A number of plugins are available for Cytoscape to perform different 
analyses. Identifying hub genes which can be employed as probable 
drug targets were identified using a well-known integrated plugin 
Cytohubba [31]. Cytohubba provides the eleven methods of topological 
analysis comprising degree, Edge Percolated Component, Maximum 
Neighborhood Component, Density of Maximum Neighborhood 
Component, Maximal Clique Centrality and six centralities (Bottleneck, 
Eccentricity, Closeness, Radiality, Betweenness, and Stress) based on 
shortest paths. It uses ranking features to rank different nodes in a 
network and based on their values hub genes are reported. “Molecular 
Complex Detection” (MCODE) is a novel clustering algorithm which 
identifies sub-modules, as shown in Figure 1, in large PPI networks. It 
allows fine-tuning of clusters of interest for protein networks. We used 
MCODE [32] along with Cytohubba to identify the interconnected 
dense sub-modules in the network. The hub genes and sub-modules 
were subjected to enrichment analysis again for subsequent verification 
using BinGO [33], an integrated app in Cytoscape.

Figure 1: The figure showing hub genes which mean nodes with high degree. 
Red nodes are highly connected genes, yellow and orange colors are medium 
and low connected genes. 
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Develop Algorithm for PPI using Neural Network 
Algorithms

Step 1: Normalization of dataset: Normalized dataset computed 
by Vnew=(Vold-MinV)/(MaxV-MinV)*(Dmax-Dmin)+Dmin.

Step 2: Input the data for training, the interrelated values of input 
and output execute for training using neural network algorithms.

Step 3: Set network constraint.

Start

[1] Define the sample input and define buffer to store all the 
samples.

[2] Let the learning count=0;

[3] Let the learning count increase by 1;

[4] Training stage iteration begins.

[5] Input one sample and if the desired job output for the sample 
is a new process; there are no knowledge datasets under this process. 
Assign a new process and put new knowledge datasets under this 
process, Go to step 6.

[6] Stop and output training.

Step 4: Calculate the neurons of output, every neurons output 
signals calculated using netj=∑i=1~mwjixi+bj and sigmoidal function is 
making use of change netj for every neuron of hidden layers.

Step 5: Signal of output layers calculation using netk=TVk+δK
L. 

Where TVk is target value of output neurons and δK
L is the error of 

neuron.

Step 6: Compute the error of neuron k until network is congregate 
and the error is computed using SSE=∑i=1~n(Ti-Yi)

2. Where Ti is actual 
assessment and Yi is estimated assessment.

Results
DEGs analysis and co-expression network

The complex biological system is composed of thousands of genes 
and its products. Genes and respective products interacted randomly 
and formed a more complicated network. The expression of these genes 
and respective proteins performed and conveyed much information 
such as signaling, transport, immunity, and defense and disease 
susceptibility. Microarray expression analysis may pose many regular 
variations. Herein, we used “Array Quality Metrics” and “GCRMA” 
to perform the normalization. Comparing two types of datasets, 
control and diseased, using statistical analysis; Student’s t-test, Pearson 
correlation test and Benjamin-Hochberg methods, we identified a total 
of 585 DEGs, wherein the 224 and 361 genes were recorded as Up-
regulator and down-regulator genes, respectively.

GO function and KEGG pathway enrichment analysis

GO analysis approach is the easy and accessible approach for the 
functional annotation of genomics data. Using DAVID database, we 
explored the functional changes in a patient with MDS. GO enrichment 
analysis was performed using the identified DEGs results into a diverse 
array of processes and functions as shown in Table 2. Biological processes 
of up regulated genes were mainly found in Interferon Signaling 
Pathway, Cellular Response to Zinc Ions and negative regulation of 
growth. Immune Response, negative regulation of transcription from 

RNA polymerase II promotor, positive regulation of smooth muscle 
cell proliferation and cellular response to Dexamethasone stimulus 
were the enriched biological processes in down regulated DEGs. 
While only molecular function in down regulated DEGs described 
the transcriptional activator activity, RNA polymerase II core 
promotor proximal region sequence-specific binding with FDR 0.04. 
Furthermore, up regulated DEGs were found in extracellular matrix, 
extracellular space, and extracellular region part. The analysis of KEGG 
pathway enrichment revealed that down regulated DEGs were mainly 
involved in only pathway primary for immunodeficiency while up 
regulated genes were not enriched in any of KEGG pathways (Table 3).

Protein-Protein Interaction Network
A powerful tool to identify and understand the mechanism of 

cellular networking is protein-protein interaction network. It provides 
the basic understanding of both healthy and diseased conditions by 
understanding the distortion in protein cellular network. Nodes are 
proteins/genes while their interactions are edges in the protein-protein 
interaction networks. Herein, DEGs obtained from the analysis of 
microarray gene expression dataset of MDS were mapped and a protein 
interaction network was constructed.

A total of 585 DEGs were mapped onto protein-protein interaction 
network in Cytoscape. These DEGs were retrieved from available public 
databases such as GeneMANIA, STRING, BioGrid and hub genes were 
identified using a Cytoscape app, Cytohubba. Based on the degree of 
connectivity between nodes and hub genes were identified as well as 
ranked. The red nodes were highly connected nodes while the others 
were low and medium. Cytohubba was used to calculate the degree of 
each node in the network, that detected the hubs as nodes with degree 
value >10 (Table 4). The complete DEGs network was divided into a 
highly dense interconnected module using MCODE algorithm. A total 
of 9 modules (Sub-networks were identified) using the k-core value of 
2.0, node score cut-off of 0.2, maximum depth from the seed node of 
100 and graphics processing-unit-based parallelization was employed 
to find modules efficiently. Only sub-networks with a number of nodes 
greater than 15 were selected (Figure 2). Finally, functional enrichment 
of sub-networks was carried out. First, hub genes were checked in sub-
networks and presence of hub genes in the sub-networks revealed that 
our results were reliable.

Figure 2: The depiction is illustrating the subnetworks identified in this study by 
using MCODE algorithm.
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Figure 2 showing hub genes which mean nodes with high degree. 
Red nodes are highly connected genes, yellow and orange color are 
medium and low connected genes. Subnetworks 1,2,3 and 4 were 
enriched in GO terms related to chemical component extracellular 
region part, extracellular matrix. Subnetworks 1 and 2 were enriched 
in Immune response, Negative regulation of transcription from RNA 
Polymerase II promotor. Subnetwork 3 and 4 were enriched in the 
Positive regulation of smooth muscles cell proliferation, Cellular 
response to Zinc ion. P-values of all the enriched GO terms were in the 
range of 1.50E-07 to 8.78E-07 (Table 5 and Figure 1).

Interaction of Hub Nodes with Interaction
Calculate the neurons of output, every neurons output signals 

calculated using neural network algorithms where Table 6 indicate the 

best optimized proteins interactions.

Discussion
Protein-protein interaction network has become a powerful tool for 

identification of targets and analysis of different diseases. In the current 

era, PPI network analysis has been widely utilized to understand the 
mechanism of different diseases, identifying drug targets and metabolic 
process. Analysis of gene expression dataset and identification of 
differentially expressed genes in a disease condition compared to the 
normal run a way of targeting different nodes for the discovery of novel 
drug candidates. Here, we used microarray gene expression dataset 
submitted to GEO under accession number GSE58831. Different 
statistical tools were used such as, Student’s t-test, Pearson correlation, 
and Benjamin Hochberg multiple testing method (FDR<0.05 with a 
fold change>_1) and adjusted P-value 0.05) for the identification of 
DEG, that result into a total of 585 differentially expressed genes, in 
which 361 were downregulated and 224 were upregulated. Among 
the downregulated genes, RAG1 (recombination activating gene 
1) was found to be the most downregulated one with a -4.69-fold
change followed by MME (Membrane metallic-endopeptidase) and 
ARPP21 (cAMP-regulated phosphoprotein 21) with 444 Fold change 
and -4.43, respectively. Of the identified upregulated, DEGsHBG2///
HBG1 (hemoglobin subunit gamma 2///hemoglobin subunit gamma 
1), HBG2///HBG1 (hemoglobin subunit gamma 2///hemoglobin 
subunit gamma 1) and HBG2///HBG1 (hemoglobin subunit gamma 

No. Groups Samples No Condition

1 Group I 159 MDs Mutated

2 Group II 17 Normal

Table 1: Samples classification into groups.

Term Category P-Value FDR Description
GO-0006955 BP 1.50E-07 2.47E-04 Immune response.

GO-0000122 BP 8.78E-07 0.001442789 Negative regulation of transcription from RNA Polymerase 
II promotor.

GO-0048661 BP 3.59E-06 0.005902204 Positive regulation of smooth muscles cell proliferation.
GO-0071549 BP 1.33E-05 0.021784047 Cellular response to dexamethasone stimulus.
GO-0060337 BP 1.33E-06 0.002119021 Type I interferon Signaling pathway.
GO-0071294 BP 1.92E-05 0.030481573 Cellular response to Zinc ion.
GO-0045926 BP 1.92E-05 0.030481573 Negative regulation of growth.
GO-0005667 CC 2.73E-05 0.034948878 Transcription factor complex.

GO-0001077 MF 2.93E-05 0.040182076 Transcription activator activity, RNA polymerase II core 
promotor proximal region sequence-specific binding.

Table 2: The table is categorizing and describing the functional annotation of the DEGs identified in this analysis.

KEGG P-Value FDR Description

KEGG-Pathway 4.97E-05 0.05222364 Primary Immunodeficiency

Table 3: Enriched KEGG pathways of DEGs with low P-values in samples from MDS.

Gene Gene name Degree Go Term
UBC Ubiquitin C 234

TP53 Tumor protein 53 130 Negative regulation of transcription from RNA polymerase II 
promotor.

EGFR Epidermal growth receptor factor 108 Positive regulation of smooth muscles cells Proliferation.
GADPH Glyceraldehyde 3-phosphate dehydrogenase 86 Transcription activation, initiation of apoptosis.

CREBBP Histone Deacetylase 1 82 Negative regulation of transcription from RNA polymerase II 
promotor.

HDAC1 Histone Deacetylase 1 76 Negative regulation of transcription from RNA polymerase II 
promotor.

STAT1 signal transducer and activator of transcription 1 66 Positive regulation of smooth muscles cells Proliferation
IL6 Interleukin 6 64 Positive regulation of smooth muscles cells Proliferation.

ESR1 Estrogen receptor 1 61 Cell signaling.
SMAD4 Mothers against decapentaplegic homolog 4 57 Cell signaling.

Table 4: Top 10 hub nodes identified in PPI network for DEGs from MDS patients and normal.
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Different bioinformatics tools were utilized to discover the hub 
genes, enriched GO terms and KEGG pathways. GO terms related 
to adhesion, signaling were the main terms enriched by DEGs. UBC, 
TP53, EGFR, GADPH, CREBBP, HDAC1, STAT1, IL6, ESR1, and 
SMAD4 were identified as possible potential genes targets for MDS 
disease. However, further studies are required to determine the clinical 
utility of these observations in the therapeutic management of MDS 
related neurological disease.
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2///hemoglobin subunit gamma 1) were the top with 265 Fold change 
followed by 2.37 and 2.33 respectively. Upon subjection to enrichment 
analysis, these DEGs revealed that they were involved in a diverse array 
of processes. Among them, most enriched GO biological processes were 
positive and negative of transcription from Immune response, Negative 
regulation of transcription from RNA Polymerase II promotor, Positive 
regulation of smooth muscles cell proliferation. Mapping of DEGs on 
Cytoscape, top 10 hub genes were identified using Cytohubba. For 
hub genes degree in Cytohubba was set as a parameter. Among the 
top hub genes UBC with highest degree 234, TP53, EGFR, GADPH, 
CREBBP, HDAC1, STAT1, IL6, ESR1 and SMAD4 with a degree 
130,108,86,82,76,66,64,61 and 57 respectively. These hub genes were 
also found in sub-networks as shown in the table as a way of validating 
out the result.

The enrichment of hub genes given in Table 4 reports the same 
category of processes and thus validated our results. The Ubiquitin 
C (UBC) and Tumor protein (TP53) were found as “super hubs” 
genes. Zhang et al. [33] reported the Tumor protein 53(TP53) genes 
mutations occurring in patients with myelodysplastic syndrome (MDS) 
which was associated with abnormalities like a high risk of karyotype 
including 17p and complex cytogenetics. The existence of TP53 
mutations in 17% of MDS was isolated with del(5q). TP53 was reported 
as a most frequently mutated gene with a complex karyotype [34,35]. 
Signal transducer and activator of transcription 1 play a vital role in 
body’s immune response. Herold et al. [36] reported that interleukin-
6(IL-6) exerts positive effect and played a great role in infections, 
inflammations and possible involvement in leukemogenesis. Mothers 
against decapentaplegic homolog 4(SMAD4) gene was an important 
element of tumor suppressor as reported by Dolatshad et al. [36] that 
also showed differential Exon usage overlapping with other gene. Li et 
al. [37] documented the epidermal growth factor receptor (EGFR) gene 
represent somewhat the malignant proliferation and suppress apoptosis 
through an unknown mechanism in MDs because it overexpressed in 
most cases [37]. Furthermore, our finding revealed that a number of 
Hub genes were associated with proteins because they disturbed the 
progression and development of MDS, and provided the important 
route towards therapeutics development against MDS [38].

Conclusion
To examine the relationships between the importance of genes 

and several topological characteristics in human PPI network, system 
biology approach was used in the present study. There are several 
previously reported works with mutations and pathways associated 
with different gene mutation and pathways involved in its pathogenesis. 
Because of this, gene expression data of MDS patients and Healthy 
individual’s samples were used to identify the DEGs relation to MDS. 

Sub Network Score Protein Interaction
1 10.545 34 174
2 8.552 30 124
3 4.167 25 50
4 3.6 16 27

Table 5: Statistics for top five subnetworks identified by MCODE method in PPI network.

Hub node Interaction SSE Score
UBC 185 3.015

EGFR 167 3.004
TP53 145 2.054

STAT1 143 2.045
ESR1 127 1.055

Table 6: Interaction of Hub nodes with interaction.
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