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Abstract
Peripheral blood mononuclear cells (PBMCs) were isolated from 3 groups of she-buffaloes (Tuberculosis, Metritis, and Healthy control) was 
sequenced by RNA-Seq (using Illumina Hiseq 2500 platform). The pre-processed reads, obtained from transcriptome sequencing, were aligned 
to the Bostaurus genome using the Hisat-2 program. Gene expression was studied using the String Tie program. A total of 31982 transcripts were 
identified. Comparisons of the entire 3 groups’ revealed 176 differentially expressed genes (DEGs) in TB vs. healthy groups and 162 DEGs in 
metritis vs. healthy groups. Analysis of gene ontology and pathways (molecular function and biological processes) identified certain pathways like 
cytokine activity, Wnt signaling, PI3K-Akt signaling, MAPK signalling (between TB and healthy groups) and cAMP signaling, Wnt signaling, TGF-
beta signaling, MAPK signaling, PI3K-Akt signaling, etc. between metritis-positive and healthy buffaloes. Network analysis identified the immune-
related genes contributing to the system biology related to the disease-resistance in Nili Ravi buffalo. Besides, five differentially expressed genes 
have been validated using SYBR-green chemistry of qPCR. In the future, these key genes could be studied in detail to explore their potential to be 
promising biomarkers for selecting breeding animals with higher tolerance against these economically devastating diseases.
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Introduction

Buffalo has been an integral part of livestock farming and agriculture 
in Asia for over 5000 years and played a pivotal role in overall agro-socio-
economic development through contributing meat, milk, hide, and draft 
power. India treasures about 57.3% of the world buffalo population (which 
is 109.85 million as per the 2019 national livestock census of India) [1]. 
Buffalo contributes 55% of the total milk production (165.4 million tonnes) 
in India [2]. Nili Ravi, an important bubaline breed in its natural breeding 
tract Punjab (India and Pakistan), is considered as a producer of milk with a 
high-fat content (7-8.5%), meat, and remarkable ability to utilize poor quality 
fodder. 

Scientific knowledge on the incidence of clinical diseases in dairy 
animals allows identifying factors and assists in formulating the priorities 
of breeding and disease-prevention programs [3]. Genetic predisposition 
plays an important role in developing resistance to infectious diseases like 
brucellosis, hemorrhagic septicaemia (HS), tuberculosis (TB), mastitis, 
rinderpest, Johne’s disease (JD), etc. Besides, some of these diseases 
have a zoonotic impact on public health. A study on the occurrence of 
TB in cattle and humans (in India) reported that 15.7% of humans had 
Mycobacterium tuberculosis, 26.8% of cattle had M. bovis. However, 8.7% 
of humans had M. bovis TB and 35.7% of cattle had ‘mixed infections [4]. 
TB has no geographical boundaries and infection occurs in a diverse group 
of animals [5]. Similarly, postpartum metritis is one of the most important 
disorders in bovines, causing high economic losses due to prolonged days-

open as well as inter-calving periods, leading to involuntary culling. The 
incidence rate of uterine infection in she-buffalo (24.7) is found to be much 
higher than in cows [6]. 

Global transcriptome analysis helps unravel all the transcripts available 
in a cell type or tissue. The massive parallel sequencing approach enables 
us to determine the differential expression profile of the genes between 
the experimental groups and to identify the significantly associated modular 
genes [7-9]. The detailed systems biology and related genes associated 
with metritis and tuberculosis are not known in buffalo [10,11]. Research 
endeavors directed towards discovering the underlying genes contributing 
to susceptibility/tolerance of Nili Ravi buffaloes to infectious diseases have 
been done been undertaken. Increasing evidence suggests that mRNA 
expression plays an important role in host-pathogen interactions through 
modulation of both innate and acquired immune responses [12,13]. The 
gene and miRNA expression profile in the PBMCs alters due to diseases 
[14] like TB and metritis. Considering the gap in knowledge on systems 
biology associated with disease resistance in Nili Ravi buffaloes, the 
present study was designed to discover the mRNA repertoire and explore 
the modular genes and pathways associated with resistance/susceptibility 
to tuberculosis (TB) and metritis in this economically important breed of 
water buffalo. 

Materials and Methods

Sample collection and experimental design

Six adult female Nili Ravi water buffaloes (aged between 2 to 4 years), 
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maintained under similar management in the organized institutional dairy 
farm of Guru Angad Dev Veterinary and Animal Sciences University 
(GADVASU), Ludhiana, India were included in the study. These animals 
were divided into 3 groups (two biological replicates each): Tuberculosis 
positive (TB), Metritis positive (Met), and Healthy control (Ctrl) animals. 
Peripheral blood samples (10 ml) were aseptically collected from the 
jugular vein in tubes containing 500 μl of 0.5M EDTA and immediately 
brought to the laboratory to process for PBMCs isolation by density gradient 
centrifugation method [15,16]. We have used PBMC for comparison of RNA 
expression because the diseases have manifestations in the PBMCs due 
to their involvement in innate immunity. The gene expression profile in the 
PBMCs alters due to diseases like TB and metritis [17,18]. This research 
work was certified by the Institutional Animal Ethics Committee (IAEC). All 
the experiments and protocols were conducted at the College of Animal 
Biotechnology, GADVASU.

RNA extraction

The total RNA from all 6 samples was isolated using the mirVanaRNA 
isolation kit (Ambion, Life Technologies, USA). The RNA samples with OD 
(260/280) between 2.0 and 2.2 (assessed by Nanodrop, Thermo Fisher) 
were selected for further processing.

Transcriptomic sequencing

The total RNA samples were outsourced to Agri-Genome Labs Private 
Limited, Kochi, Kerala, India by maintaining proper cold-chain (using dry ice) 
during transit, for next-generation sequencing (NGS) using Illumina Hiseq 
2500 platform (100 bp paired-end reads) and preliminary biocomputational 
analysis of the raw data.

Analysis of sequenced data

The raw data were pre-processed using the FASTX tool. About ~94% 
of the total reads of all the samples passed ≥ 30 Phred score (Table 1). The 
quality of the reads was checked for each of the samples using sequence 
quality score distribution, average base composition, average base quality, 
GC% distribution, check for over-represented sequences as well as 
biasing of kmers, and read-length distribution of forward and reverse reads  
(Table 2). The raw sequence reads in FASTQ format have been published 
through NCBI SRA (https://www.ncbi.nlm.nih.gov/sra/PRJNA514883) with 
the experiment accession numbers SRX5282354 to SRX5282359.

The quality passed reads were subjected to adapter trimming and then 
the pre-processed reads were aligned to the taurine genome (UMD3.1) [19] 
downloaded from Ensembl database (ftp://ftp.ensembl.org/pub/release-89/

gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz) using Hisat2 program 
(version 2.0.5) with default parameters. Then the aligned reads were used 
for estimating expression of the genes and transcripts, using the String_Tie 
program (version 1.3.3b).

Identification of differentially expressed genes (DEGs) 

The average FPKM values of two biological replicates belonging to each 
of the experimental groups were calculated. The non-coding RNA genes (viz. 
miRNA, snoRNA, and snRNA) were removed from the list of 31982 genes 
for each of the experimental groups. The differentially expressed coding 
mRNA genes were identified between the healthy groups with each of the 
diseased groups. The common and unique protein-coding genes among 
the experimental groups being compared and were represented by the 
Venn diagram using online web-tool IneractiVenn (http://www.interactivenn.
net/) and R Program (v.3.2.0) package Venn Diagram v.1.6.9s. The fold 
change of expression was calculated by taking the logarithm (with base 2) 
of the ratio of expression values between the two groups (healthy versus 
diseased) being compared. The genes with fold change were considered 
as differentially expressed genes. Expression heatmaps (on the color scale 
bar; white-orange-red; representing the low-medium-high expression, 
respectively) of the mRNAs for the experimental samples were constructed 
using the WGCNA package [20] of R program (v.3.2.0).

Validation of selected DEGs using qPCR

Five differentially expressed genes were selected for validation of the 
obtained transcriptomic analysis results (primer details given in Table 3). The 
expression of these genes in the whole blood or leukocytes was checked 
from the Genecards database (www. genecards.org/). The primers were 
designed using the available mRNA sequences in NCBI Nucleotide (https://
www.ncbi.nlm.nih.gov/nuccore/) using primer-BLAST (https://www.ncbi.
nlm.nih.gov/ tools/primer-blast/) online tool. The specificity and sensitivity of 
the designed primers were checked by IDT Oligo Analyzer (v.3.1.1) (https://
eu.idtdna.com/pages). Expression of selected differentially expressed 
genes was quantified (in three technical replicates) by real-timePCR (Bio-
Rad) using a miScript SYBR-Green PCR kit (Qiagen, Germany) and beta-
actin as an endogenous control.

Total RNA was isolated (for validation using qPCR) from PBMCs 
extracted from fresh blood samples (three biological replicates of each of 
the 3 experimental groups) using PureLink® RNA Minikit (Ambion) and then 
reverse-transcribed into cDNAs bymiScript II RT Kit (Qiagen, Germany) 

Sample Name* #of raw reads (paired-end) #of bases (Gb) GC% %of data ≥ Q30 Raw read length (bp) 
TB_1 27, 074, 735 5.4 51.11 93.8 100 × 2
TB_2 27, 233, 730 5.4 51.44 94 100 × 2
Metritis_1 25, 307, 169 5 49.41 92.8 100 × 2
Metritis_2 26, 758, 839 5.3 52.56 95 100 × 2
Healthy_1 26, 647, 077 5.3 52.29 95.5 100 × 2
Healthy_2 27, 316, 174 5.4 52.66 95.4 100 × 2
*TB_1: Tuberculosis Positive Sample 1; TB_2: Tuberculosis Positive Sample 2; Metritis_1: Metritis-Positive Sample 1; Metritis_2: Metritis-Positive Sample 2; Healthy_1: 
Healthy Control Sample 1 And Healthy_2: Healthy-Control Sample 2

Table 1. Quality scores of the 6 RNA samples subjected to transcriptomic sequencing.

Sample Name* Total Reads QC Passed QC Passed% Aligned read-count Aligned % Unaligned Read-count Unaligned %
TB_1 54149470 54114736 99.93 37084829 68.53% 17029907 31.47
TB_2 54467460 54417426 99.9 37368446 68.67% 17048980 31.33
Metritis_1 50614338 50574744 99.92 32590365 64.44% 17984379 35.56
Metritis_2 53517678 53419886 99.81 36688778 68.68% 16731108 31.32
Healthy_1 53294154 53238892 99.89 36191799 67.98% 17047093 32.02
Healthy_2 54632348 54600404 99.94 37434037 68.56% 17166367 31.44
*TB: Tuberculosis Positive Sample 1; Metritis: Metritis-Positive Sample; Healthy: Healthy Control Sample

Table 2. Quality checking and detail of read-counts of the 6 experimental samples subjected to paired-end sequencing using Illumina Hiseq 2500 platform.
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according to manufacturer’s protocols. For each sample, a 20 μl reaction 
was setup on the ice having 4 μl of 5x miScriptHiSpec Buffer, 2 μl of 10x 
miScriptNucleics Mix, 2 μl miScriptTranscriptase Mix, 5 μg of RNA sample 
and RNase free water to make up the volume to 20 μl. Reaction tubes were 
incubated for 37ºC for 60 mins, 95ºC for 5 mins in a Veriti thermal cycler 
(Applied Biosystems). 

Real-time PCR was conducted in triplicate (3 technical replicates) using 
miScript® SYBR® Green PCR Kit (Qiagen) using BioRAD CFX96Real-time 
PCR System as per manufacturer’s protocol (i.e., cycling conditions of 95ºC 
for 15 min, followed by a total of 40 cycles of 94ºC for 15 sec and 55ºC 
for 30 sec and 70ºC for 30 sec). The reaction mixture was prepared using 
10 μl of 2x Quanti Tect SYBR Green PCR Master Mix, 2 μl of 10x miScript 
Universal Primer, 2 μl of each forward and reverse primer, 2 μl of template 
cDNA and nuclease-free water to make the final volume 20 μl. For each 
assay, a no-template control (NTC) and No RT control reaction were also 
included. 

Functional annotation and pathway analysis

The differentially expressed protein-coding genes obtained by 
comparing the diseased and the healthy groups were analyzed for gene 
ontology and then subjected to pathway analyses using Database for 
Annotation, Visualization and Integrated Discovery (DAVID) v6.8 (https://
david.ncifcrf.gov/) [21,22] and Panther Classification System v11.1 (http://
www.pantherdb.org/loginRequired.jsp?access=true) [23,24]. The pathway 
analysis results (with enrichment score 1.0 and medium stringency) 
deciphering the biological functions of the DEGs in systems biology have 
been presented as pie-chart. The gene-groups below 1.0 enrichment scores 
have not been considered for further analysis. The important pathways 
identified from DAVID (based on the available literature, as discussed in the 
Result and discussion section) were selected for identifying the important 
genes. The Ensembl Gene Ids were converted to Protein Ids using 
g:Convert Gene ID Converter of g:Profiler (https://biit.cs.ut.ee/gprofiler/
index.cgi) [25]. The proteins encoded by the selected DEGs for each pair 
of groups being compared were then analyzed through String DB [26] to 
construct the protein-protein interaction (PPI) network.

Results and Discussion

Uniquely and differentially expressed genes

A total of 31982 transcripts (Figure 1A) were identified which included 
15772 protein-coding mRNAs (inclusive of multi-copy of some genes) and 
16210 non-coding RNAs (miRNA, misc_RNA, Mt_rRNA, Mt_tRNA, rRNA, 
snoRNA, and snRNA), processed-pseudogenes, pseudogenes, and other 
unidentified transcripts. The Venn diagram (Figure 1B) depicts that 8132 

mRNAs were commonly detected in all three groups. The Fragments 
per Kilobase of transcript per Million mapped reads (FPKM) values of 
each of the six samples for all the 31982 genes have been tabulated in 
Supplementary Table S1. While comparative analysis between the diseased 
and healthy groups revealed uniquely expressed mRNAs that are likely to 
be associated with disease resistance or susceptibility viz., 411 mRNAs 
specific to Tuberculosis-positive group and 468 mRNAs to the healthy 
control group, 373 and 469 uniquely expressed mRNAs in Metritis-positive 
group and healthy control group, respectively. The number of unique genes 
of TB, metritis, and healthy groups was 231, 193, and 273, respectively. 

Identification of differentially expressed genes

The differentially expressed protein-coding genes were identified as 
up and down-regulated based on log2 (FPKM) >2 and <-2, respectively. 
The detailed annotations of all 31982 genes, as well as the lists of all the 
differentially expressed vis-à-vis, uniquely expressed protein-coding genes 
are available in the Supplementary Tables S2 (TB vs. Healthy comparison) 
and S3 (Metritis vs. Healthy comparison). In total, 162 differentially 
expressed (up- and down-regulated) mRNA genes (DEGs) were identified 
in 176 DEGs (mRNA) in TB vs. healthy group (Supplementary Table S2a) 
and metritis vs. healthy group (Supplementary Table S3a). The expression 
profile of the protein-coding genes has been represented in the heat map 
(Figure 2). It indicated that treatment group 2 (i.e. metritis samples) along 
with a healthy control group exhibited the most similar mRNA expression 
profiles, while TB group exhibit a distinguished mRNA expression pattern. 

Primer name Sequence (5'-3') Length NCBI Accession Number Tm (ºC) GC%
Genes for validation: Tuberculosis-positive vs. Healthy control groups
TOMM7-F ctcagtgctcctctcctttctg 22 XM_006074849.1

 
60.09 54.55

TOMM7-R ttcagggtacagatgaggcaac 22 60.03 50
SPTSSB-F agctacggagatatttgggctg 22 XM_006062959.1

 
59.96 50

SPTSSB-R cgctcaattatcttccccagga 22 59.9 50
MSH4-F cgaaaactttggccagctgatt 22 XM_006060238.1

 
60.29 45.45

MSH4-R tctccctacctttcacctctgt 22 59.89 50
Genes for validation: Metritis-positive vs. Healthy control groups
MRPL33-F aagtagttgtttgttgctggcc 22 XM_006046139.1

 
59.9 45.45

MRPL33-R cagtttctcccatagtcggctt 22 60.09 50
GPC3-F ttatccagccgaagaagggaac 22 XM_006074811.1

 
60.09 50

GPC3-R ttccattccttgctgccttttg 22 59.96 45.45
Endogenous control beta-actin
ACTB-F atgatattgccgcgctcgtg 20 NM_001290932.1

 
61.56 55

ACTB-R catcccccacgtacgagtcc 20 62.01 65

Table 3. Detail of the primers used for validation of expression profile of the selected differentially expressed genes by real-time PCR (SYBR Green chemistry).

 

Figure 1A. Venn diagrams representing common and unique transcripts (inclusive 
of mRNAs and other non-coding RNAs) across the experimental groups.
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Validation of DEGs by qPCR

Real-time PCR was performed for gene expression study of selected 
DEGs (Figure 3). The selected 5 differentially expressed genes (3 genes 
for TB vs. Healthy and 2 genes for Metritis vs. Healthy comparative-pairs) 
were analyzed for fold-change using the ddCt method [27]. The FPKM 
values of MSH4 and TOMM7 genes showed up-regulation (mean FPKM 
values 0.19 and 15.67, respectively) and SPTSSB was found to be down-
regulated (mean FPKM value 0.00) in Tuberculosis samples as compared 
to the healthy ones (0.02, 0.00 and 0.71, respectively, for MSH4, TOMM7, 
and SPTSSB), as obtained from the Illumina next generations sequencing 
of the transcriptome (Supplementary Table S1). TB is characterized by 
high bacterial load and weight loss leading to reduced survival [28]. The 
results of the qPCR analysis showed that TOMM7 was up-regulated while 
MSH4 was down-regulated (fold-change 1.21 and 0.83, respectively) in 
TB as compared to the healthy group and SPTSSB was almost same in 
both experimental groups. Ontology study and functional analysis of these 
genes revealed that the Translocase of Outer Mitochondrial Membrane 
7 (TOMM7) gene encodes a subunit-peptide of the translocase enzyme, 
which regulates the assembly and stability of the TOM complex [29]. It is 
well known that host-mitochondria are snipped-targets of several bacteria 

including Mycobacterium [30,31]. The MutS Homolog 4 (MSH4) gene 
encodes a meiosis-specific protein that forms a heterodimer with MSH5 
to bind to a Holliday Junction and thereby provoke ADP-ATP exchange. 
Mutation of this protein is associated with altered or mismatched DNA-
binding during Meiosis-I thus affecting the cell-cycle. Host-cell death 
is caused by the host-pathogen interaction to prevent host immunity to 
overcome the Mycobacterium-infection and promoting host cell necrosis 
[32]. It has been propounded that Mycobacterium promotes programmed 
necrosis of host-cells and thwarts host cell apoptotic signalling [33]. The 
up-regulation of TOMM7 and down-regulation of the MSH4 gene in the 
TB-positive samples are logical and also validated in our qPCR study. The 
Serine Palmitoyltransferase Small Subunit B (SPTSSB) gene encodes 
a peptide that acts as a small SPT subunit associated with SPT activity 
and also involved in conferring acyl-CoA preference to the SPT catalytic 
heterodimer of SPTLC1 [34]. Although this gene was selected based on its 
expression in the blood cells (so that we can easily detect in the PBMCs) 
available at the Gene Cards database (www.genecards.org), it seems 
SPTSSB gene has no direct association with resistance or susceptibility to 
Mycobacterium infection. So the TB-positive sample and the healthy sample 
didn’t show a similar pattern of expression as evident in the NGS data. 

The other two genes that were selected for validation of Metritis-positive 
vs. healthy groups were GPC3 (down-regulated in Metritic samples) and 
MRPL33 (up-regulated in Metritic samples), as presented in the transcriptome 
sequencing data. The MRPL33 has shown up-regulation in the Metritic 
sample in the qPCR validation experiment. Mitochondrial Ribosomal Protein 
L33 (MRPL33) is associated with mitochondrial protein synthesis, viral gene 
translation in infected cells, and organelle biogenesis [35]. In our validation 
study, the MRPL33 was found to be more expressed (Fold-change 1.18) 
in the PBMCs of metritis-positive samples. Perhaps, the bacterial infection 
has stimulated the expression of this gene. Finally, the GPC3h as show 
almost the same level of expression in both groups (Fold-change 0.99). 
This gene encodes Glypican 3 protein that forms the membrane-associated 
protein core of cell surface heparin sulfate proteoglycans. This protein is 
associated with apoptosis-induction, modulation of growth in mesodermal 
tissues, and interactions between IGF2 and its receptor [36]. Thus this gene 
can also be associated with inflammatory responses in the uterine cells. In 
a recent study on genome-wide association study for identifying the DEGs 
expressed in the endometrium of Holstein Cows, Stephen et al. identified 
GPC3 to be expressed poor-fertile cows (logFC=1.61, P=0.03) [37]. There 
is a difference in transcriptomics expression profile (revealed by NGS) and 
qPCR results of the selected 5 genes. This could be attributed to using new 
blood samples for qPCR. Research reports suggest that these genes are 
involved in the disease regulation pathways [38]. 

Gene ontology and functional classification

Gene ontology (GO) for biological processes, molecular functions, 
cellular component, pathway, and protein class of differentially and uniquely 
expressed genes in the comparison of diseased vs. healthy sample groups 
was studied using DAVID, Pather D Band String DB. During a comparison 
between the tuberculosis-positive and the metritis-positive animals with the 
healthy group, in total, 1055 and 1004 protein-coding DEGs were identified, 
respectively, for functional annotations using DAVID. The Ensembl Gene Ids 
were uploaded and 896 (for TB vs. Healthy) and 821 (Metritis vs. Healthy) 
genes from Bostaurus species were selected for further analysis. 

Tuberculosis-positive vs. healthy groups

Each of the enriched GO term with a Bonferroni p-value less than 
0.01 enriched gene ontology (GO) terms belonged to the following 
categories:749 (83.6%), 616 (68.8%) and 651 (72.7%) genes were 
incorporated into the cellular component (CC), molecular function (MF) 
and biological process (BP), respectively. Hypergeometric distribution was 
used to find the significance of enrichment and each enriched GO term 
(Bonferroni p-value <0.01) was adjusted for multiple testing [39]. The 
hypergeometric distribution calculates the likelihood that the annotation of 
GO terms to the section of interacting genes is significantly higher than that 
of the fraction of all the genes in the taurine genome (http://ctdbase.org/

 

Figure 1B. Venn diagrams representing common and unique mRNAs (protein 
coding genes only) across the experimental groups.

Figure 2. Expression profile (FPKM) of transcripts of the differentially expressed 
genes in the experimental samples.
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help/chemGODetailHelp.jsp). The functional annotation chart for the GO 
terms for molecular function (MF) with the default options (Count=2 and 
EASE=0.1) identified 36 molecular activities with the lowest p-value=5.0, 
E-7 and the lowest Bonferroni (2.9, E-4) (Supplementary Table S4). The 
term cytokine activity (GO:0005125) had 22 gene name records (interleukin 
13 (IL13), IL17A, -17F, 2, -21, -22, -36A, -36B, transforming growth factor-
beta 2 (TGFB2), GDF-5, 6 and 7 etc.) (Supplementary Table S5). Other 
important GO-terms enriched for molecular functions are transforming 
growth factor-beta receptor binding (p=8.34, E-06), growth factor activity 
(p=4.98, E-04), extracellular matrix structural constituent (p=0.007), 
cGMP binding (p=0.025), adenylate cyclase activity (p=0.031), cytokine 
receptor binding (p=0.064) etc. These molecular functions attributed to 
resistance to bacterial diseases. KEGG pathway analysis of 289 genes 
with the same threshold as above revealed that the Neuroactive ligand-
receptor interaction (bta04080) pathway (27 genes and p=4.50, E-05) was 
the foremost one. Among the other pathways identified the important ones 
are Tryptophan metabolism (bta00380) (p=4.79, E-05), TGF-beta signaling 
(p=6.46, E-05), cAMP signaling (p=5.32, E-04), Wnt signaling (p=0.015), 
Cytokine-cytokine receptor interaction (p=0.019), PI3K-Akt signaling 
(p=0.042), MAPK signaling (p=0.063) and GMP-PKG signalling (p=0.082) 
pathways (Supplementary Table S6). The pathway analysis of tuberculosis 
susceptibility/resistance reveals that resistance to mycobacterial infection 
needs TH1 biased cell-mediated immunity [40,41] attributed to several 
cytokines viz. IL-2, IL-12, TNF, and IFN-γ. By contrast, the anti-inflammatory 
cytokine IL-10 increases the susceptibility to tuberculosis in humans and 
mice [42-45]. The common pathways associated with TB infections involve 
lung-cell necrosis and neutrophil influx [28]. These authors conducted a study 
on pathways associated with Tuberculosis susceptibility to heterogeneous 
mice populations. Susceptibility to TB was strongly correlated (p<0.05) 
with neutrophil-infiltration (neutrophilia in a later stage) [46] as well as lung 
neutrophil chemokines (CXCL1, CXCL2, CXCL5) and tumor necrosis factor 
(TNF) coupled with cell death. However, the immune cytokines were not 
strongly associated with TB-susceptibility. They identified that the cytokine 
‘chemokine (C-X-C motif) ligand 1’ (CXCL1) as an important peripheral 
biomarker of disease. Transcriptomics study on tuberculosis-infected human 
patients has uncovered a set of dysregulated genes that are components of 
the PI3–Kinase pathway [47]. Besides, IL-1β, a pro-inflammatory cytokine, 
modulates the acute inflammatory processes in the central nervous system 
[48,49]. In our study, functional annotation clustering of the 896 genes with 
high classification stringency and default threshold parameters revealed 
75 clusters with the highest Enrichment Score of 6.85 (Supplementary  
Table S7). 

In total 41 genes were identified contributing to these pathways. 
The Protein-Ids of these genes were extracted using g: Profiler and then 
subjected to String DB for generating protein-protein interaction (PPI) 
network (PPI enrichment p-value <1.0, e-16 and mean local clustering 

coefficient=0.458). Available literature indicates that these pathways are 
very critical in susceptibility or resistance to tuberculosis in humans and 
mice.

Panther analysis of the DEGs (between TB vs. healthy)identified a 
total of 1355 biological process hits were predicted which was categorized 
into 13 groups (including cellular process, metabolic process, biological 
regulation, response to a stimulus, immune system process, etc) (Figure 4). 

It is evident from the protein-protein interaction network that insulin-
like growth factor 1 (IGF1) forms a strong network (high combined score) 
with several proteins, like DCN, TEK, SLC24, CSF3, CSF2, MAPK10, 
IL13, etc. (Supplementary Table S8). Besides, CXCL14, GJA1, DCN, 
CCL11, CCL25 reveals strong interaction with several genes (Figure 5). 
The co-expression data shows that many genes with immune-related direct 
functions (IGF1 with DCN, SLC24, TEK; CSF1 and CSF2, etc.) are co-
expressed. Network analysis using String DB identified the immune-related 
genes (viz, CSF2, CSF3, CXCL14, etc.) contributing to the system biology 
related to the disease in Nili Ravi buffalo. The gene interaction network 
of DEGs was studied with a list of combined scores of gene pairs. The 
combined network enables a topological characterization of the reliability 
strength of gene associations. A detailed and thorough investigation of 
the ontology and functional analysis of the 52 genes incorporated in the 
protein-protein interaction study revealed that these genes are actively 
involved in chemokine related functions, immunity, binding of molecules, 
etc. For example, Colony-stimulating factor 2 and 3 (CSF2 and 3: involved 
in cytokine activity; granulocyte-macrophage colony-stimulating factor 
receptor binding; growth factor activity), Interleukin-13 (IL-13: cytokine 
activity; cytokine receptor binding), Placenta growth factor (PGF: growth 
factor activity; vascular endothelial growth factor receptor binding), 
Growth/differentiation factor 6 (GDF-6: cytokine activity; growth factor 
activity);CCL25 protein (CCR10 chemokine receptor binding; chemokine 
activity); Adenosine receptor A1 (ADORA1: G-protein coupled adenosine 
receptor activity); C-X-C motif chemokine ligand 14 (CXCL14: chemokine 
activity; cell-cell signaling; cell chemotaxis; immune response; positive 
regulation of natural killer cell chemotaxis),etc.

Metritis-positive vs. healthy groups:

Functional category analysis using UP-Keywords incorporated 798 
(96.3%) of the genes. Gene ontology (GO) analysis for enrichment of the 
terms included 701 (84.7%), 561 (67.7%) and 593 (71.5%) genes into 
cellular component (CC), molecular function (MF) and biological process 
(BP), respectively. The functional annotation chart for the enriched GO 
terms for molecular function (MF) with the default options identified 39 
different activities (Supplementary Table S9). The molecular function 
“cytokine activity” (GO: 0005125) included 16 genes (viz. WNT2, growth 
differentiation factor 15 (GDF15), GDF7, interleukin 17B (IL-17B), IL-
2, -22, -36A, -36B, -4, transforming growth factor-beta 2 (TGFB2) etc) 

Figure 3. Expression profiling determined by qPCR (SYBR Green chemistry) of the differentially expressed genes selected for comparison in terms of fold change between 
PBMCs from Diseased vs. Healthy samples.
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Figure 4. Pie chart of gene ontology of the biological process of the differentially and uniquely expressed protein-coding genes between tuberculosis-positive and healthy 
groups.

Figure 5. Protein-protein interaction network analyzed by selecting the genes that are intricately involved in the important pathways contributing to resistance or susceptibility 
to tuberculosis.
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(Supplementary Table S10). The molecular functional enrichment analysis 
identified other activities like transforming growth factor-beta receptor 
binding (p=2.70, E-04), calcium ion binding (p=4.20, E-04), growth factor 
activity (p=3.46, E-03), Wnt-protein binding (p=0.005), extracellular matrix 
binding (p=0.013), hormone activity (p=0.034), and voltage-gated calcium 
channel activity (0.050). 

KEG pathway analysis (279 genes selected by DAVID) with default 
parameters identified the following important pathways: camp signaling 
(p=3.47, E-04), Neuroactive ligand-receptor interaction (p=4.51, E-04), 
Wnt signaling (p=4.92, E-04), TGF-beta signalling (p=8.80, E-04), MAPK 
signalling (p=0.013), PI3K-Akt signalling (p=0.017), Steroid hormone 
biosynthesis (p=0.0178), Oxytocin signalling (p=0.0178) pathways 
(Supplementary Table S11). 

Similar types of results have been reported on bovine metritis. The 
result of a whole-genome association study (GWAS) 671 human subjects 
in Thailand identified a chromosome 1p13 association (rs1418425, 
p=2.54, E−8) with TB [50]. This RefSeq variant is located adjacent to the 
gene encoding the leukocyte surface glycoprotein CD53 which has been 
correlated with active Tuberculosis [50]. Another GWAS suggested that 
another important pathway is the innate immune type-I interferon signaling 
cascade that carries circulating biomarker-signature of pulmonary as well 
as macrophage response to mycobacterial infection. Upon progression of 
TB infection, a fine-tune between two pathways, namely, mitogen-activated 
protein kinase (p38 MAPK) [51] and phosphatidylinositol 3-kinase (PI3-K) 
signaling controls the neutrophil chemotaxis. The P13-K pathway has 
immense importance in neutrophilia, occurrence, and progression of TB [47]. 
The directional migration of ‘phosphatidylinositol 4, 5-bisphosphate’ and 
‘phosphatidylinositol-trisphosphate’ is modulated by the PI3-Kpathway [52-
54]. However, these genes of P13-K pathway (PI3-K δ, AKT, mTORC1, and 
MNK) are down-regulated during early infection through a set of microRNAs 
[10,55]. Jurado et al. demonstrated that CD3+PD-1+ lymphocytes are 
increased in peripheral blood in TB patients [56]. The PD1 plays a central 
role in host-pathogen interaction by interfering with T cell effector functions 
against Mycobacterium tuberculosis. Another pathway that is controlled by 
histone deacetylase has been associated with resistance to M. tuberculosis 
infection and this pathway is critical to confer innate immunity against 

early infection [57]. In bovines, the TNFSF8/TNFRSF8 pathway has been 
reported to augment the IFγ production upon M. bovis BCG stimulation [58]. 

Functional annotation clustering was performed by DAVID using 829 
taurine genes (selected by DAVID) under classification stringency and 
default threshold parameters. The results showed 61 clusters with the 
highest Enrichment Score of 4.93 (Supplementary Table S12). 

Panther analysis of the DEGs for Metritis-positive and healthy control 
groups detected 1341 process hits (falling in 13 categories) (Figure 6). 

The protein-protein interaction network was constructed using String 
DB with 29 genes (protein-Ids converted by g:Profiler) selected from 
the important pathways (PPI enrichment p-value <1.0, e-16; mean local 
clustering coefficient=0.66) from the analysis discussed above (Figure 7) 
(Supplementary Table S13). Salilew-Wondim and team investigated the 
effect of clinical and subclinical endometritis on the endometrial pathways 
and unveiled the molecular signatures in 42–60 days postpartum Holstein 
Frisian cows [59]. The endometrial transcriptomic (using GeneChip® 
Bovine Genome Array) and miRNome (by Exiqon microRNA PCR Human 
Panel arrays) profiling revealed different expression level of 203 genes 
in diseased animals. They reported that 92 genes (viz. PTHLH, INHBA, 
DAPL1, and SERPINA1) and 111 genes (viz. MAOB, CXCR4, HSD11B 
and, BOLA) were significantly up-regulated down-regulated, respectively, 
in clinical endometritis group. Gene annotation analysis revealed the most 
affected pathways and molecular mechanisms were the immune system 
process, cell adhesion, regulation of apoptotic signaling pathway, Enzyme-
linked receptor protein signaling, and G-protein coupled receptor (GPCR) 
signaling pathways, neurogenesis, and chemotaxis in endometritis animal 
groups. NF-κB, a key molecule to initiate signaling cascade against 
inflammatory diseases. Zhang et al. used a mouse model to elucidate the 
molecular pathways and determine the anti-inflammatory effect of IFN-τ 
on endometritis caused by Staphylococcus aureus [60]. They reported 
that IFN-τ inhibited the phosphorylation of IκB, NF-κB p65, and MAPKs 
(p38, JNK, and ERK). This further prompts the activation of MyD88-
dependent signaling pathways that finally induces MAPK activation. The 
activation of TLR2 due to bacterial infection initiates a cascade of molecular 

Figure 6. Pie chart of gene ontology of the biological process of the differentially and uniquely expressed protein-coding genes between metritis-positive and healthy 
groups.
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mechanisms, viz. activation of the innate inflammatory response which 
further induces the NF-κB and MAPK pathways to affect the release of pro-
inflammatory cytokines. Besides, TNF-α can contribute to the production 
of pro-inflammatory cytokines by activating the intracellular IκBα and JNK 
signaling pathways through TLRs [61-63].

Conclusion
In this study, we have identified the differentially expressed (Log2 

FPKM ratio >2 and <2) mRNA genes between diseased (Tuberculosis, 
Metritis) versus healthy (control) Nili Ravi buffaloes. The gene ontology and 
pathway analysis associated with the diseased and control group revealed 
that cytokine activity, transforming growth factor-beta receptor binding, Wnt 
signaling, Cytokine-cytokine receptor interaction, PI3K-Akt signaling, MAPK 
signaling and GMP-PKG signaling pathways related genes play important 
role in TB susceptibility. Similarly, the important pathways associated with 
metritis-susceptibility are cAMP signaling, Neuroactive ligand-receptor 
interaction, Wnt signaling, TGF-beta signaling, MAPK signaling, PI3K-Akt 
signaling. Further studies aimed at targeting these modular genes could 
be used effectively in the future for marker-assisted selection for better 
tolerance against these economically devastating diseases in buffaloes.
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