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Introduction 
An Ockham algebra is a bounded distributive lattice with a dual 

endomorphism. The class of all Ockham algebras contains the well-
known classes for examples Boolean algebras, de Morgan algebras, 
Kleene algebras and Stone algebras [1]. Blyth and Varlet [2] defined a 
subclass of Ockham algebras so called MS-algebras which generalizes 
both de Morgan algebras and Stone algebras. These algebras belong to 
the class of Ockham algebras introduced by Berman [3]. The class of all 
MS-algebras forms an equational class. Blyth and Varlet characterized 
the subvarieties of MS-algebras in Ref. [4]. Recently, Luo and Zeng [5] 
characterized the MS-algebras on which all congruences are in a one-to-
one correspondence with the kernel ideals. In Ref. [6], Rao, introduced 
the concepts of boosters and β-filters of MS-algebras. In Ref. [7], Rao 
introduced and characterized the concepts of D-filters and e- filters of 
MS-algebras. Also, in Ref. [8] Rao introduced and characterized the 
concept of δ-Ideals in pseudo-complemented distributive lattices. Many 
various properties of Ockham algebras and MS-algebras are considered 
in Ref. [9-14].

In this paper, we defined δ-Ideals and principal δ-Ideals in MS-
algebras and some basic properties of δ-Ideals and principal δ-Ideals 
are studied. It is proved that the class Iδ (L) of all δ-Ideals of an MS-
algebra L is a complete distributive lattice. It is proved that the set of 
all principal δ-Ideals of an MS-algebra can be made into a de Morgan 
algebra. A set of equivalent conditions is obtained to characterize 
δ-Ideals of MS-algebras by means of principal δ-Ideals. Finally, some 
properties of δ-Ideals are studied with respect to homomorphisms. The 
concept of δ-Ideals preserving homomorphism from an MS-algebra 
L into another MS-algebra L1 is introduced as a homomorphism h 
satisfying the condition h(δ(F)=(h(F)), for any δ-Ideals I=δ(F) of L, 
where F is a filter of L. It is proved that the images and the inverse 
images, under this homomorphism, of a δ-Ideals are again δ-Ideals. If 
an MS-algebras L is homomorphic to an MS-algebra L1, then the lattice 
Mº(L) of all principal δ-Ideals of L is homomorphic to Mº(L1) the lattice 
of all principal δ-Ideals of L1 and the lattice Iδ(L) of all δ-Ideals of L is 
homomorphic to the lattice Iδ(L1) of all δ-Ideals of L1.

Preliminaries 
In this section, we present certain definitions and results. We refer 

the reader to Ref. [1,2,4,9] as a guide references.

Definition 2.1

A de Morgan algebra is an algebra (L, ∨, ∧, ˉ,0,1) of type (2, 2, 1, 0, 
0) where (L, ∨, ∧, 0, 1) is a bounded distributive lattice and the unary

operation of involution satisfies : 

( ) 1, 0x x, x y x y= ∨ = ∧ =  

Definition 2.2

An MS-algebra is an algebra (L, ∨, ∧, °,0,1) of type (2, 2, 1, 0, 0) 
where (L, ∨, ∧, 0, 1) is a bounded distributive lattice and the unary 
operation ° satisfies : 

x ≤ x°°, (x ∧ y)°=x° ∨ y°, 1°=0.

We recall some of the basic properties of MS-algebras which were 
proved in Ref. [2].

Theorem 2.3

For any two elements a, b of an MS-algebra L, we have

(1) 0°=1

(2) a ≤ b ⇒ b° ≤ a°

(3) a°°°=a°

(4) (a ∨ b)°=a° ∧ b°

(5) (a ∨ b)°°=a°° ∨ b°°

(6) (a ∧ b)°°=a°° ∧ b°°.

For any MS-algebra L, let I(L) denote to the set of all ideals of L. It
is known that (I(L); ∧, ∨) is a distributive lattice, where I ∧ J= I ∩ J and 
I ∨ J={i ∨ j : i ∈ I, j ∈ J}. Also, [a)={x ∈ L:x ≤ a}((a]={x ∈ L:x ≥ a}) is a 
principal ideal (filter) of L generated by a.

For any MS-algebra L we can define the set of closed elements L°°={a 
∈ L:a=a°°}. It is known that (L°°, ∨, ∧, °, 0, 1) is a de Morgan subalgebra 
of L. An element a ∈ L is called a dense element if a°=0. Then the set 
D(L) of all dense elements of L forms a filter in L. An element x ∈ L is 
called a fixed point of L if xº=x.
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Example 3.5

Let L=(0, x, y, z, 1 : 0 < x < y < z < 1} be a five element chain and 
xº=x, yº= zº=0. Clearly (L, º) is an MS-algebra. We observe that the 
ideals {0}, {0, x} and L are δ-Ideals of L but the ideals {0, x, y} and {0, x, 
y, z} are not.

Lemma 3.6

A proper δ-ideal of an MS-algebra L contains no dense element.

Proof: Let I be a proper δ-Ideal. Then I=δ(F) for some filter F of L. 
Suppose x ∈ δ(F) ∩ D(L). Then we get 0=xº ∈ F, which is a contradiction. 
Therefore δ(F) ∩ D(L)= ϕ.

The following lemma produces some more examples for δ-Ideals of 
an MS-algebra from the subvariety K2.

Lemma 3.7

Let L be an MS-algebra from K2. Then we have

(1) L∧ is a δ-Ideal of L, 

(2) Every prime ideal P with P ∩ L∧= ϕ and L∧⊆ P is a δ-Ideal of 
L, whenever L has no fixed point. 

Proof

(1) It is known that, if L ∈ K2, then L∨={x ∨ xº : x ∈ L} is a filter of L, 
L^={ x ∧ xº: x ∈ L} is an ideal of L and x ∈ L^ ⇔ xº ∈ L∨ for all x ∈ L. It 
is enough to deduce that δ(L∨)= L^. Let x ∈ δ(L∨). Then xº ∈ L∨, which 
yields x ≤ xºº ∈ L^. Then x ∈ L^. Conversely, let x ∈ L^. Then xº ∈ L∨. 
Therefore x ∈ δ(L∨). Consequently L^ is a δ-ideal of L. 

(2) Suppose that P is a prime ideal of L such that P ∩ L∧= ϕ and L∧ 
⊆ P. Let x ∈ P. Then x ∧ xº ∈ L^ and x ∨ xº ∈ L∨. Hence x ∨ xº ∉ P. Thus 
we get xº ∉ P, which yields that xº ∈ (L-P). Thus x ∈ δ(L-P). Therefore P 
⊆ δ(L-P). Conversely, let x ∈ δ(L-P). Then xº ∈ (L-P). Thus xº ∉ P. Now 
x ∧ xº ∈ P and P is prime imply x ∈ P. Hence δ(L-P) ⊆ P. Therefore P 
is a δ-ideal of L.

Now, let us denote the set of all δ-Ideals of L by Iδ(L). Then, in the 
following Theorem, we prove that Iδ(L) forms a complete distributive 
lattice.

Theorem 3.8

Let L be an MS-algebra. Then Iδ(L) forms a complete distributive 
lattice.

Proof: It is obviously that {0} and L are the smallest and the greatest 
δ-Ideals of L. Now, for every two δ-Ideals I and J we prove that I ∩ J 
and I ∨ J are again δ-Ideals. Since I and J are δ-Ideals, then there exist 
filters F and G of L such that I=δ(F) and J=δ(G). So we have to show the 
following:

δ(F ∩ G)=δ(F) ∩ δ(G) and δ(F ∨ G)=δ(F) ∨ δ(G).

Since F ∩ G ⊆ F and F ∩ G ⊆ G, then by Lemma 3.2(5), we get δ(F 
∩ G) ⊆ δ(F) ∩ δ(G). Conversely, let x ∈ δ(F) ∩ δ(G). Then xº ∈ F ∩ G. 
Hence x ∈ δ(F ∩ G). Therefore δ(F) ∩ δ(G) ⊆ δ(F ∩ G). Now, δ(F ∨ G) 
is a δ-Ideal of L. Since δ(F), δ(G) ⊆ δ(F ∨ G), then δ(F ∨ G) is an upper 
bound of δ(F) and δ(G) in Iδ (L). Let δ(H) be a δ-Ideal of L such that δ(F) 
⊆ δ(H) and δ(G) ⊆ δ(H) where H is a filter of L. We claim that δ(F ∨ G) 
⊆ δ(H). Let x ∈ δ(F ∨ G), then xº ∈ F ∨ G. Hence xº =f ∧ g for some f ∈ 
F and g ∈ G. Since fº ∈ δ(F) and gº ∈ δ(G) (see Lemma 3.3(3)), then fº 
∈ δ(H) and gº ∈ δ(H). Now we have

Properties of δ-Ideals 
In this Section, the concept of δ-Ideals and principal δ-Ideals are 

introduced in MS-algebras. Many properties of δ-Ideals and principal 
δ-Ideals are investigated in the class of all MS-algebras. We observed 
that the class of all principal δ-Ideals of an MS-algebra L is a de Morgan 
algebra. It is proved that the class of all δ-Ideals of any MS-algebra forms 
a complete distributive lattice. A characterization of δ-Ideals in terms of 
principal δ-Ideals is obtained.

Definition 3.1
Let L be an MS-algebra. Then for any filter F of L, de ne the set δ(F) 

as follows:

δ(F)= {x ∈ L:xº ∈ F}

Clearly, δ([1))={0} and δ([0))=L. The following two Lemmas are 
direct consequence of the above definition.

Lemma 3.2
Let L be an MS-algebra. Then δ(F) is an ideal of L.

Proof: Clearly 0 ∈ δ(F). Let x, y ∈ (F). Then xº, yº ∈ F. Hence (x ∨ 
y)º=xº ∧ yº ∈ F. Thus x ∨ y ∈ F. Again, let x ∈ δ(F) and rº ≤ x. Then rº ≥ 
xº ∈ F implies rº ∈ F. Therefore δ(F) is an ideal of L.

Lemma 3.3
Let L be an MS-algebra. Then for any two filters F, G of L, we have 

the following:

(1) F ∩ δ(F)=ϕ, whenever L ∈ S, 

(2) x ∈ δ(F) implies xºº ∈ δ(F), 

(3) x ∈ F implies xº ∈ δ(F), 

(4) F=L if and only if δ(F)= L, 

(5) F ⊆ G implies δ(F) ⊆δ(G), 

(6) δ (D(L))={0}, 

(7) δ(F) is a prime, whenever F is a prime filter of L. 

Proof: (1) Suppose x ∈ F ∩ δ(F). Then x ∈ F and xº ∈ F. Since 
F is a filter and L is a Stone algebra, we get 0=xº ∧ x ∈ F, which is a 
contradiction. Therefore F ∩ δ(F)=ϕ.

(2) Let x ∈ δ(F). Then xººº=xº ∈ F implies xºº ∈ δ(F). 

(3) Let x ∈ F. Then xºº ≥ x ∈ F implies xº ∈ δ(F). 

(4) Let F=L. Then 0=0ºº ∈ F implies 1=0º ∈ δ(F). Therefore 
δ(F)= L. Conversely, let δ(F)=L. Then 1ºº=1 ∈ F. Hence 0=1º∈ δ(F). 
Then δ(F)= L.

(5) Let F ⊆ G. Suppose x ∈ δ(F). Then xº ∈ F ⊆ G. Therefore x ∈ 
δ(G) and (δ(F) ⊆δ(G). 

(6) Let x ∈ δ (D(L)). Then xº ∈ δ (D(L). Hence x≤ xºº=0. 
Therefore δ (D(L))={0}. 

(7) Let F be a prime filter of L. Assume x ∧ y ∈ δ(F) and y ∉ F. 
Then xº ∨ yº =(x ∧ y)º 2 F and yº ∈ F. Since F is prime filter, then xº ∈ 
F. Hence xº ∈ δ(F). Therefore δ(F) is prime ideal of L.

The concept of δ-Ideals is introduced in the following.

Definition 3.4

Let L be an MS-algebra. An ideal I of L is called a δ-Ideal if I=δ(F) 
for some filter F of L.
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fº ∈ δ(H) and gº ∈ δ(H)  ⇒ fº ∨ gº ∈ δ(H) 

    ⇒ xºº=(f ∧ g)º ∈ δ(H) 

     ⇒ x ∈ δ(H) by Lemma 3.3(2).

Hence δ(F ∨ G) is the supreumum of both δ(F) and δ(G) in Iδ(L). 
Therefore (Iδ(L), ∩, ∨, {0}, L) is a bounded sublattice of the lattice I (L) 
of all ideals of L. Hence Iδ(L) is a bounded distributive lattice. It is clear 
that Iδ(L) is a partially ordered set with respect to set-inclusion. Then 
by the extension of the properties δ(F ∩ G)=δ(F) ∩ δ(G) and δ(F ∨ 
G)=δ(F) ∨ δ(G), we can obtain that Iδ(L) is a complete lattice. Therefore 
Iδ(L) is a complete distributive lattice. 

Definition 3.9

A δ-Ideal I of an MS-algebra L is called principal δ-Ideal if there 
exists x ∈ L such that I=δ([x)).

It is observed in the following Theorem that any principal ideal 
generated by a closed element of an MS-algebra is a δ- Ideal. 

Theorem 3.10

Let L be an MS-algebra. Then for any x ∈ L, δ([x)) is a principal 
δ-Ideal of L.

Proof: It is enough to show that (xº]=δ([x)). Let a ∈ (xº]. Then a 
≤ xº. Hence aº ≥ xºº ≥ x implies aº ∈ (xº]. Thus a ∈ δ([x)). Conversely, 
suppose that a ∈ δ([x)). Then a ∈ δ([x) implies aº ≥ x. Hence a ≤ aºº ≤ 
x. This yields that a ∈ (xº]. Therefore (xº] is a δ-Ideal of L.

Some properties of principal δ-Ideal are given in the following:

Lemma 3.11

Let L be an MS-algebra. Then we have the following statements:

(1) for all a ∈ L, δ([a))=(aº], 

(2) for all a ∈ L, δ([a))=δ([aºº)), 

(3) for all d ∈ D(L), δ([d))={0}, 

(4) for all x ∈ F, δ([x))=δ(F) for any filter F of L. 

Proof: (1) It is clear from the above Theorem 3.10.

(2) Using (1) and the fact, aºº=aº, we get, 

(3) δ([aºº))=(aººº]=(aº]= δ([a)). 

(5) For every d ∈ D(L), we have δ([d))=dº= (0]. 

(6) Let x ∈ F. Suppose y ∈ δ([x)). Then we get, 

y ∈ δ([x)) ⇒ yº ∈ [x)

         ⇒ yº ≥ x ∈ F

         ⇒ yº ∈ F

         ⇒ yº ∈ δ(F)

Therefore δ([x)) ⊆δ(F). 
Let us denote that Mº(L)={δ([x)):x ∈ L}={(xº] : x ∈ L}. Then, in the 
following Theorem, it is observed that Mº(L) is a de Morgan algebra.

Theorem 3.12: For any MS-algebra L, Mº(L) is a sublattice of the 
lattice Iδ(L) of all δ-Ideals of L and Mº(L) can be made into a de Morgan 
algebra. Moreover, the mapping x ↦ (xº] is a dual homomorphism of 
L into Mδ(L).

Proof: Let δ([x)), δ([y)) ∈ Mº(L) for some x, y ∈ L. Then we get 

δ([x)) ∩ δ([y))= δ([x ∨ y)) ∈ Mº(L) and δ([x)) ∨ δ([y))= δ([x ∨ y)) ∈ 
Mº(L). Also, {0}=δ([1)) ∈ Mº(L) and L= δ([0)) ∈ Mº(L). Hence Mº(L) 
is a bounded sublattice of Iδ(L) and hence a distributive lattice. Now, 
define a unary operation on ˉ Mº(L) by [ )( ) ([ ))ºx xδ δ= . Then we have

[ )( ) º º

º º º

([ ))

( ]

( ]

([ ) ,)

 º

x x

x

x

x

δ δ

=

=

= δ

=

and

([ )º ))
([ º º ))
([ º )

([ ))  ([ )) ([   ))

([ ))  ([ )),

(

[ º ))
([ º ) ([ º ))

  

([0)).[1))

x y
x y
x

x y x

y
x
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y

x y

δ
δ
δ
δ

δ

δ δ

δ

δ

δ

δ δ=
=
=
=
=
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∨

=

=







Therefore Mº(L) is a de Morgan algebra. The remaining part can 
be easily observed. A characterization of δ-Ideals in terms of principal 
δ-Ideals is investigated in the following.

Theorem 3.13: For any ideal I in an MS-algebra L, then the 
following conditions are equivalent:

(1) I is a δ-Ideals

(2) I=∪a∈I δ([aº))

(3) For any x, y in L, δ([xº))= δ([yº)) and x ∈ I imply y ∈ I.

Proof: (1) ⇒ (2): Let I be a δ-Ideal. Then I=δ(F) for some filter F of 
L. Let x ∈ I. So we get

x ∈ I δ(F) ⇒ xº ∈ F

        ⇒ xºº ∈ δ([xº)) ⊆ δ(F)

        ⇒ x ∈ δ([xº)) ⊆ 
a I∈
  δ([aº)).

Then I ⊆ a I∈ δ([aº)) Conversely, let x ∈ a I∈ δ([aº)). Then we have,

 x ∈ a I∈ δ([aº))  ⇒ x ∈ δ([yº)) for some y ∈ I

 ⇒ x ∈ (yºº] ⊆ I as yºº ∈ I

 ⇒ 
a I∈
  ([aº)) ⊆ I.

Then I = a I∈ δ([aº)).

 (2) ⇒ (3): Let I = i I∈ δ([aº)). Suppose δ([xº))= δ([yº)) and x ∈ I. 
Then we get,

δ([xº))= δ([yº)) and x ∈ I  ⇒ δ([yº))=δ([xº)) ⊆
a I∈
 δ([aº))=I

 ⇒ yºº ⊆ I

 ⇒ yºº ∈ I ⇒ y ∈ I.

(3) ⇒ (1): Assume the condition (3). Consider F={x ∈ L: xº ∈ I}. 
Let x, y ∈ F. Then xº, yº ∈ I. Hence (x ∧ y)º= xº ∨ yº ∈ I. Thus x ∧ y ∈ 
F. Now let x ∈ F and z ∈ L such that z ≥ x. Then zº ≤ xº ∈ I implies zº ∈ 
I. Thus z ∈ F and F is a filter of L. We claim that I= δ(F). Let x ∈ δ(F). 
Then we get,

x ∈ δ(F) ⇒ xº ∈ F
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x ∈ δ(h(F))  ⇒ x=h(y), y ∈ δ(F)

  ⇒ xº=h(yº), yº ∈ F

  ⇒ xº=h(yº), yº ∈ (h(F) as yº ∈ F

  ⇒ x ∈ h(δ(F)).

Theorem 4.2

Let f : L → M be a homomorphism of an MS-algebra L into an MS-
algebra M. Then we have,

(1) for any δ-ideal H of M, f -1(H) is a δ-ideal of L, 

(2) Ker f is a δ-ideal of L. 

Proof: (1) Since H is a δ-ideal of M, then H=δ(F) for some filter F 
of M. We claim f -1(H)= δ(f -1(F)), where f -1(H) is an ideal of L. Now,

x ∈ f -1(H)  ⇒ f(x)=y, y ∈ H=δ(F)

   ⇒ (f(x))º=f(xº)= y, yº ∈ F

   ⇒ xº ∈ {f -1(yº)} ⊆ f -1(F)

   ⇒ x ∈ δ(f -1 (F)).

Conversely, x ∈ δ(f -1(F)). Then we have,

x ∈ δ(f -1(F))  ⇒ xº ∈ f -1(F)

  ⇒ (f(x))º=f(xº) ∈ F

  ⇒ f(x) ∈ δ(F)=H

  ⇒ xº ∈ f -1(H)

 ⇒ δ(f -1 (F)) ⊆ f -1(H)

Therefore f -1(H) is a δ-ideal of L.

(2) Since f is a homomorphism, then Ker f ={x ∈ L: f(x)=0} and 
Coker f={x ∈ L: f(x)=1 are ideal and filter of L respectively. We claim 
Ker f=(Coker f). Now

x ∈ Ker f ⇒ f(x)=0

       ⇒ f(xº)=f(x))º=1

       ⇒ xº ∈ Coker f

       ⇒ x ∈ δ(Coker f).

Then Ker f ⊆ δ(Coker f). Conversely,

x ∈ δ(Coker f) ⇒ xº ∈ Coker f

                ⇒ f(x))º=f(xº)=1

                ⇒ f(x))ºº=f(xºº)=0

                ⇒ x ∈ ker f

Then δ(Coker f) ⊆ ker f. Therefore ker f is a δ-ideal of L.

Theorem 4.3

Let h: L → L1 be an onto homomorphism between MS-algebras 
L=(L, ∨, ∧, º, 0L, 1L) and L1=(L1, ∨, ∧, º, 0L1, 1L1). Then we have,

(1) Mº(L) is homomorphic of Mº(L1), 

(2) Iδ(L) is homomorphic of Iδ(L1). 

Proof: (1) Define g:Mº(L) → Mº(L1) by g(δ([a)))=δ([h(a))). Clearly, 
g({0L})=L1 and g(L)=L1. For every δ([a))), δ([b))) ∈ ∈ Mº(L) we get,

⇒ xºº ∈ I

⇒ x ∈ I ⇒ δ(F) ⊆ I.

For the converse, let y ∈ I. We have,

y ∈ I and δ([yº))=δ([yººº)) ⇒ yºº ∈ I by (3)

   ⇒ yº ∈ F

   ⇒ y ∈ δ(F)

   ⇒ I ⊆ δ(F).

Therefore I is a δ-ideal.

δ-Ideals and Homomorphisms of MS-algebras 
In this section, some properties of the homomorphic images and 

the inverse images of δ-Ideals are studied. By a homomorphism on an 
MS-algebra L, we mean a lattice homomorphism h satisfying (h(x))
º=h(xº) for all x ∈ L.

Theorem 4.1

Let h: L→M be a homomorphism of an MS-algebra L onto an MS-
algebra M. Then we have,

(1) for any a ∈ L, h(δ([a)))=δ(h([a)), 

(2) for any δ-Ideal I of L, h(I) is a δ-Ideal of M, 

for any δ-Ideal I of L, h(I)= i I∈ δ([((h(i))º))). 

for any filter F of L, h(δ(F))=δ(h(F)) 

Proof: (1) For all a ∈ L, we get,

h(δ([a)))=h((aº])=((h(a))º]= δ([h(a))= δ(h([a))).

(2) Let I be a δ-ideal of L. Then I=δ(F) for some filter F of L. Now

h(I)= h(δ(F))=h{ x ∈ L: xº ∈ F}

              = {h(x) ∈ M: h(xº) ∈ h(F)}

              = {h(x) ∈ M: (h(x))º ∈ h(F)}

              = δ(h(F)): 

Then h(I) is a δ-ideal of M as h(F) is a filter of M.

(3) For any δ-ideal I of L, I= i I∈ δ([iº)). Let x ∈ h (I) then x=h(i) for  
some i ∈ I. Then (δ([xº))=δ([(h(i))º)) ⊆ i I∈ δ([(h(i))º)). Conversely, 
let, y ∈ i I∈ δ([(h(i))º)). Now, 

y ∈
i I∈
 δ([(h(i))º)) ⇒ y ∈ δ([(h(a))º)), a ∈ I

     ⇒ y ∈ (((h(a))ºº]

     ⇒ y ∈ ≤ h(a)ºº ∈ h(I) as aºº ∈ I

     ⇒ y ∈ h (I) 

     ⇒
i I∈
 δ([(h(i))º)) ⊆ h (I)

(4) Let x ∈ δ(h(F)). Then we get,

x ∈ δ(h(F))  ⇒ xº ∈ h(F)

   ⇒ xº ∈ h(f), f ∈ F

  ⇒ x=xºº= h(fº)

  ⇒ x ∈ δ(h(F)) as fº ∈ δ(F) by lemma 3.3(3).

Then δ(h(F)) ⊆ h(δ(F)). For the converse we have,
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    = δ(h(F) ∩ h(G))

    = δ(h(F)) ∩ δ(h(G))

    = π(I) ∩ π(J)

Therefore π is a (0, 1)-lattice homomorphism and the proof is 
completed.
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g(δ([a)) ∩ δ([(b)))=g(δ([a ∧ b)))

    = δ([h(a ∧ b))

    = δ([h(a) ∧ h (b)))

    = δ([h(a)) ∩ δ([h(b))

    = g(δ([a))) ∩ g(δ([b))),

and

g(δ([a)) ∨ δ([(b))) =g(δ([a ∨ b)))

    = δ([h(a ∨ b))

    = δ([h(a) ∨ h (b)))

    = δ([h(a)) ∨ δ([h(b))

    = g(δ([a))) ∨ g(δ([b))),

also,
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g a a

h a

h a

g a

δ
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δ

= δ

=
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= δ

Therefore g is a homomorphism of de Morgan algebras Mº(L) and 
Mº(L1). 

(2) Define the map π: Iδ(L) → Iδ(L1) by π(I)= δ(h(F)) where I= δ(F).
It is clear that π{01}={0L1} and π(L)=L1. Let I, J ∈ Iδ(L). Then I= δ(F) and 
J= δ(G), where F and G are filters of L. Then we get,

π(I ∨ J) = δ(h(F ∨ G))

= δ(h(F) ∨ h(G))

 = δ(h(F)) ∨ δ(h(G))

 = π(I) ∨ π(J),

and

π(I ∩ J) = δ(h(F ∩ G))
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