

Review Article

Open Access

$\delta\text{-Ideals}$ in $M\!S\text{-Algebras}$

Abd El-Mohsen Badawy*

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract

The concepts of δ -Ideals and principal δ -Ideals are introduced in an *MS*-algebra and many properties of these ideals are studied. It is observed that the class of all δ -Ideals forms a complete distributive lattice and the class of all principal δ -Ideals forms a de Morgan algebra. A characterization of δ -Ideals in terms of principal δ -Ideals is given. Finally, many properties of δ -Ideals are studied with respect to homomorphisms.

Keywords: De Morgan algebras; *MS*-algebras; Ideals; Filters; Homomorphisms

Introduction

An Ockham algebra is a bounded distributive lattice with a dual endomorphism. The class of all Ockham algebras contains the wellknown classes for examples Boolean algebras, de Morgan algebras, Kleene algebras and Stone algebras [1]. Blyth and Varlet [2] defined a subclass of Ockham algebras so called MS-algebras which generalizes both de Morgan algebras and Stone algebras. These algebras belong to the class of Ockham algebras introduced by Berman [3]. The class of all MS-algebras forms an equational class. Blyth and Varlet characterized the subvarieties of MS-algebras in Ref. [4]. Recently, Luo and Zeng [5] characterized the MS-algebras on which all congruences are in a one-toone correspondence with the kernel ideals. In Ref. [6], Rao, introduced the concepts of boosters and β -filters of MS-algebras. In Ref. [7], Rao introduced and characterized the concepts of D-filters and e- filters of MS-algebras. Also, in Ref. [8] Rao introduced and characterized the concept of δ -Ideals in pseudo-complemented distributive lattices. Many various properties of Ockham algebras and MS-algebras are considered in Ref. [9-14].

In this paper, we defined δ -Ideals and principal δ -Ideals in MSalgebras and some basic properties of δ -Ideals and principal δ -Ideals are studied. It is proved that the class $I^{\delta}(L)$ of all δ -Ideals of an MSalgebra L is a complete distributive lattice. It is proved that the set of all principal δ -Ideals of an *MS*-algebra can be made into a de Morgan algebra. A set of equivalent conditions is obtained to characterize δ -Ideals of *MS*-algebras by means of principal δ -Ideals. Finally, some properties of δ -Ideals are studied with respect to homomorphisms. The concept of δ -Ideals preserving homomorphism from an MS-algebra L into another MS-algebra L_1 is introduced as a homomorphism h satisfying the condition $h(\delta(F)=(h(F)))$, for any δ -Ideals $I=\delta(F)$ of L, where F is a filter of L. It is proved that the images and the inverse images, under this homomorphism, of a δ -Ideals are again δ -Ideals. If an MS-algebras L is homomorphic to an MS-algebra L_1 , then the lattice $M^{\circ}(L)$ of all principal δ -Ideals of L is homomorphic to $M^{\circ}(L)$ the lattice of all principal δ -Ideals of L_1 and the lattice $I^{\delta}(L)$ of all δ -Ideals of L is homomorphic to the lattice $I^{\delta}(L_1)$ of all δ -Ideals of L_1 .

Preliminaries

In this section, we present certain definitions and results. We refer the reader to Ref. [1,2,4,9] as a guide references.

Definition 2.1

A de Morgan algebra is an algebra $(L, \lor, \land, \neg, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary

operation of involution satisfies :

 $\overline{x} = x, (\overline{x \vee y}) = \overline{x \wedge y}, \overline{1} = 0$

Definition 2.2

An *MS*-algebra is an algebra $(L, \lor, \land, \circ, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation \circ satisfies :

 $x \leq x^{\circ\circ}, (x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ}, 1^{\circ} = 0.$

We recall some of the basic properties of *MS*-algebras which were proved in Ref. [2].

Theorem 2.3

For any two elements *a*, *b* of an *MS*-algebra *L*, we have

- $(1) \quad 0^{\circ}=1$
- (2) $a \le b \Longrightarrow b^{\circ} \le a^{\circ}$
- (3) $a^{\circ\circ\circ}=a^{\circ}$
- (4) $(a \lor b)^{\circ} = a^{\circ} \land b^{\circ}$
- (5) $(a \lor b)^{\circ\circ} = a^{\circ\circ} \lor b^{\circ\circ}$
- (6) $(a \wedge b)^{\circ\circ} = a^{\circ\circ} \wedge b^{\circ\circ}$.

For any *MS*-algebra *L*, let I(L) denote to the set of all ideals of *L*. It is known that $(I(L); \land, \lor)$ is a distributive lattice, where $I \land J = I \cap J$ and $I \lor J = \{i \lor j : i \in I, j \in J\}$. Also, $[a] = \{x \in L : x \le a\}((a] = \{x \in L : x \ge a\})$ is a principal ideal (filter) of *L* generated by *a*.

For any *MS*-algebra *L* we can define the set of closed elements $L^{\circ\circ}=\{a \in L:a=a^{\circ\circ}\}$. It is known that $(L^{\circ\circ}, \lor, \land, \circ, 0, 1)$ is a de Morgan subalgebra of *L*. An element $a \in L$ is called a dense element if $a^{\circ}=0$. Then the set D(L) of all dense elements of *L* forms a filter in *L*. An element $x \in L$ is called a fixed point of *L* if $x^{\circ}=x$.

*Corresponding author: Abd El-Mohsen Badawy, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, E-mail: abdel-mohsen.mohamed@scienc.tanta.edu.eg

Received December 30, 2015; Accepted January 25, 2016; Published January 28, 2016

Citation: Abd El-Mohsen B (2016) δ-Ideals in MS-Algebras. J Comput Sci Syst Biol 9: 028-032. doi:10.4172/jcsb.1000217

Copyright: © 2016 Abd El-Mohsen B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Properties of δ -Ideals

In this Section, the concept of δ -Ideals and principal δ -Ideals are introduced in *MS*-algebras. Many properties of δ -Ideals and principal δ -Ideals are investigated in the class of all *MS*-algebras. We observed that the class of all principal δ -Ideals of an *MS*-algebra *L* is a de Morgan algebra. It is proved that the class of all δ -Ideals of any *MS*-algebra forms a complete distributive lattice. A characterization of δ -Ideals in terms of principal δ -Ideals is obtained.

Definition 3.1

Let *L* be an *MS*-algebra. Then for any filter *F* of *L*, de ne the set $\delta(F)$ as follows:

 $\delta(F) = \{x \in L : x^{o} \in F\}$

Clearly, $\delta([1))=\{0\}$ and $\delta([0))=L$. The following two Lemmas are direct consequence of the above definition.

Lemma 3.2

Let *L* be an *MS*-algebra. Then $\delta(F)$ is an ideal of *L*.

Proof: Clearly $0 \in \delta(F)$. Let $x, y \in (F)$. Then $x^o, y^o \in F$. Hence $(x \lor y)^o = x^o \land y^o \in F$. Thus $x \lor y \in F$. Again, let $x \in \delta(F)$ and $r^o \le x$. Then $r^o \ge x^o \in F$ implies $r^o \in F$. Therefore $\delta(F)$ is an ideal of L.

Lemma 3.3

Let *L* be an *MS*-algebra. Then for any two filters *F*, *G* of *L*, we have the following:

- (1) $F \cap \delta(F) = \phi$, whenever $L \in \mathbf{S}$,
- (2) $x \in \delta(F)$ implies $x^{oo} \in \delta(F)$,
- (3) $x \in F$ implies $x^{\circ} \in \delta(F)$,
- (4) F=L if and only if $\delta(F)=L$,
- (5) $F \subseteq G$ implies $\delta(F) \subseteq \delta(G)$,
- (6) $\delta(D(L)) = \{0\},\$
- (7) $\delta(F)$ is a prime, whenever *F* is a prime filter of *L*.

Proof: (1) Suppose $x \in F \cap \delta(F)$. Then $x \in F$ and $x^o \in F$. Since F is a filter and L is a Stone algebra, we get $0=x^o \land x \in F$, which is a contradiction. Therefore $F \cap \delta(F)=\phi$.

- (2) Let $x \in \delta(F)$. Then $x^{000} = x^0 \in F$ implies $x^{00} \in \delta(F)$.
- (3) Let $x \in F$. Then $x^{oo} \ge x \in F$ implies $x^o \in \delta(F)$.

(4) Let F=L. Then $0=0^{\circ\circ} \in F$ implies $1=0^{\circ} \in \delta(F)$. Therefore $\delta(F)=L$. Conversely, let $\delta(F)=L$. Then $1^{\circ\circ}=1 \in F$. Hence $0=1^{\circ} \in \delta(F)$. Then $\delta(F)=L$.

(5) Let $F \subseteq G$. Suppose $x \in \delta(F)$. Then $x^{\circ} \in F \subseteq G$. Therefore $x \in \delta(G)$ and $(\delta(F) \subseteq \delta(G)$.

(6) Let $x \in \delta$ (*D*(*L*)). Then $x^{\circ} \in \delta$ (*D*(*L*). Hence $x \leq x^{\circ \circ} = 0$. Therefore δ (*D*(*L*))={0}.

(7) Let *F* be a prime filter of *L*. Assume $x \land y \in \delta(F)$ and $y \notin F$. Then $x^{\circ} \lor y^{\circ} = (x \land y)^{\circ} \ 2 \ F$ and $y^{\circ} \in F$. Since *F* is prime filter, then $x^{\circ} \in F$. Hence $x^{\circ} \in \delta(F)$. Therefore $\delta(F)$ is prime ideal of L.

The concept of δ -Ideals is introduced in the following.

Definition 3.4

Let *L* be an *MS*-algebra. An ideal *I* of *L* is called a δ -Ideal if $I=\delta(F)$ for some filter *F* of *L*.

Example 3.5

Let $L=(0, x, y, z, 1: 0 < x < y < z < 1\}$ be a five element chain and $x^{\circ}=x$, $y^{\circ}=z^{\circ}=0$. Clearly (L, $^{\circ}$) is an *MS*-algebra. We observe that the ideals {0}, {0, x} and *L* are δ -Ideals of *L* but the ideals {0, *x*, *y*} and {0, *x*, *y*, *z*} are not.

Lemma 3.6

A proper δ -ideal of an *MS*-algebra *L* contains no dense element.

Proof: Let *I* be a proper δ -Ideal. Then $I=\delta(F)$ for some filter *F* of *L*. Suppose $x \in \delta(F) \cap D(L)$. Then we get $0=x^{\circ} \in F$, which is a contradiction. Therefore $\delta(F) \cap D(L) = \phi$.

The following lemma produces some more examples for δ -Ideals of an *MS*-algebra from the subvariety **K**₂.

Lemma 3.7

Let *L* be an *MS*-algebra from \mathbf{K}_2 . Then we have

(1) $L \wedge \text{ is a } \delta$ -Ideal of L,

(2) Every prime ideal *P* with $P \cap L \land = \phi$ and $L \land \subseteq P$ is a δ -Ideal of *L*, whenever *L* has no fixed point.

Proof

(1) It is known that, if $L \in \mathbf{K}_2$, then $L^{\vee}=\{x \lor x^\circ : x \in L\}$ is a filter of L, $L^{\wedge}=\{x \land x^\circ : x \in L\}$ is an ideal of L and $x \in L^{\wedge} \Leftrightarrow x^\circ \in L^{\vee}$ for all $x \in L$. It is enough to deduce that $\delta(L^{\vee})=L^{\wedge}$. Let $x \in \delta(L^{\vee})$. Then $x^\circ \in L^{\vee}$, which yields $x \le x^{\circ\circ} \in L^{\wedge}$. Then $x \in L^{\wedge}$. Conversely, let $x \in L^{\wedge}$. Then $x^\circ \in L^{\vee}$. Therefore $x \in \delta(L^{\vee})$. Consequently L^{\wedge} is a δ -ideal of L.

(2) Suppose that *P* is a prime ideal of *L* such that $P \cap L^{\sim} = \phi$ and $L^{\sim} \subseteq P$. Let $x \in P$. Then $x \wedge x^{\circ} \in L^{\sim}$ and $x \vee x^{\circ} \in L^{\vee}$. Hence $x \vee x^{\circ} \notin P$. Thus we get $x^{\circ} \notin P$, which yields that $x^{\circ} \in (L-P)$. Thus $x \in \delta(L-P)$. Therefore $P \subseteq \delta(L-P)$. Conversely, let $x \in \delta(L-P)$. Then $x^{\circ} \in (L-P)$. Thus $x^{\circ} \notin P$. Now $x \wedge x^{\circ} \in P$ and *P* is prime imply $x \in P$. Hence $\delta(L-P) \subseteq P$. Therefore P is a δ -ideal of *L*.

Now, let us denote the set of all δ -Ideals of *L* by $I^{\delta}(L)$. Then, in the following Theorem, we prove that $I^{\delta}(L)$ forms a complete distributive lattice.

Theorem 3.8

Let L be an MS-algebra. Then $I^{\delta}(L)$ forms a complete distributive lattice.

Proof: It is obviously that $\{0\}$ and *L* are the smallest and the greatest δ -Ideals of *L*. Now, for every two δ -Ideals *I* and *J* we prove that $I \cap J$ and $I \vee J$ are again δ -Ideals. Since *I* and *J* are δ -Ideals, then there exist filters *F* and *G* of *L* such that $I=\delta(F)$ and $J=\delta(G)$. So we have to show the following:

$$\delta(F \cap G) = \delta(F) \cap \delta(G)$$
 and $\delta(F \vee G) = \delta(F) \vee \delta(G)$.

Since $F \cap G \subseteq F$ and $F \cap G \subseteq G$, then by Lemma 3.2(5), we get $\delta(F \cap G) \subseteq \delta(F) \cap \delta(G)$. Conversely, let $x \in \delta(F) \cap \delta(G)$. Then $x^o \in F \cap G$. Hence $x \in \delta(F \cap G)$. Therefore $\delta(F) \cap \delta(G) \subseteq \delta(F \cap G)$. Now, $\delta(F \vee G)$ is a δ -Ideal of *L*. Since $\delta(F)$, $\delta(G) \subseteq \delta(F \vee G)$, then $\delta(F \vee G)$ is an upper bound of $\delta(F)$ and $\delta(G)$ in $I^{\delta}(L)$. Let $\delta(H)$ be a δ -Ideal of *L* such that $\delta(F) \subseteq \delta(H)$ and $\delta(G) \subseteq \delta(H)$ where *H* is a filter of *L*. We claim that $\delta(F \vee G) \subseteq \delta(H)$. Let $x \in \delta(F \vee G)$, then $x^o \in F \vee G$. Hence $x^o = f \wedge g$ for some $f \in F$ and $g \in G$. Since $f^o \in \delta(F)$ and $g^o \in \delta(G)$ (see Lemma 3.3(3)), then $f^o \in \delta(H)$ and $g^o \in \delta(H)$. Now we have

$$\begin{aligned} f^{\circ} \in \delta(H) \text{ and } g^{\circ} \in \delta(H) & \Rightarrow f^{\circ} \lor g^{\circ} \in \delta(H) \\ & \Rightarrow x^{\circ \circ} = (f \land g)^{\circ} \in \delta(H) \\ & \Rightarrow x \in \delta(H) \text{ by Lemma 3.3(2).} \end{aligned}$$

Hence $\delta(F \vee G)$ is the supreumum of both $\delta(F)$ and $\delta(G)$ in $I^{\delta}(L)$. Therefore $(I^{\delta}(L), \cap, \vee, \{0\}, L)$ is a bounded sublattice of the lattice I(L) of all ideals of L. Hence $I^{\delta}(L)$ is a bounded distributive lattice. It is clear that $I^{\delta}(L)$ is a partially ordered set with respect to set-inclusion. Then by the extension of the properties $\delta(F \cap G) = \delta(F) \cap \delta(G)$ and $\delta(F \vee G) = \delta(F) \vee \delta(G)$, we can obtain that $I^{\delta}(L)$ is a complete lattice. Therefore $I^{\delta}(L)$ is a complete distributive lattice.

Definition 3.9

A δ -Ideal *I* of an *MS*-algebra *L* is called principal δ -Ideal if there exists $x \in L$ such that $I=\delta([x))$.

It is observed in the following Theorem that any principal ideal generated by a closed element of an *MS*-algebra is a δ - Ideal.

Theorem 3.10

Let *L* be an *MS*-algebra. Then for any $x \in L$, $\delta([x))$ is a principal δ -Ideal of *L*.

Proof: It is enough to show that $(x^{\circ}] = \delta([x))$. Let $a \in (x^{\circ}]$. Then $a \le x^{\circ}$. Hence $a^{\circ} \ge x^{\circ \circ} \ge x$ implies $a^{\circ} \in (x^{\circ}]$. Thus $a \in \delta([x))$. Conversely, suppose that $a \in \delta([x))$. Then $a \in \delta([x)$ implies $a^{\circ} \ge x$. Hence $a \le a^{\circ \circ} \le x$. This yields that $a \in (x^{\circ}]$. Therefore $(x^{\circ}]$ is a δ -Ideal of *L*.

Some properties of principal δ -Ideal are given in the following:

Lemma 3.11

Let *L* be an *MS*-algebra. Then we have the following statements:

- (1) for all $a \in L$, $\delta([a))=(a^{\circ}]$,
- (2) for all $a \in L$, $\delta([a)) = \delta([a^{oo}))$,
- (3) for all $d \in D(L)$, $\delta([d)) = \{0\}$,
- (4) for all $x \in F$, $\delta([x)) = \delta(F)$ for any filter *F* of *L*.

Proof: (1) It is clear from the above Theorem 3.10.

(2) Using (1) and the fact, $a^{00}=a^{0}$, we get,

- $(3)\delta([a^{00}))=(a^{000}]=(a^{0}]=\delta([a)).$
- (5) For every $d \in D(L)$, we have $\delta([d))=d^{\circ}=(0]$.
- (6) Let $x \in F$. Suppose $y \in \delta([x))$. Then we get,

$$y \in \delta([x)) \Longrightarrow y^{\circ} \in [x)$$
$$\Longrightarrow y^{\circ} \ge x \in F$$
$$\Longrightarrow y^{\circ} \in F$$
$$\Longrightarrow y^{\circ} \in \delta(F)$$

Therefore $\delta([x)) \subset \delta(F)$.

Let us denote that $M^{\circ}(L) = \{\delta([x)): x \in L\} = \{(x^{\circ}] : x \in L\}$. Then, in the following Theorem, it is observed that $M^{\circ}(L)$ is a de Morgan algebra.

Theorem 3.12: For any *MS*-algebra *L*, $M^{\circ}(L)$ is a sublattice of the lattice $I^{\delta}(L)$ of all δ -Ideals of *L* and $M^{\circ}(L)$ can be made into a de Morgan algebra. Moreover, the mapping $x \mapsto (x^{\circ}]$ is a dual homomorphism of *L* into $M^{\delta}(L)$.

Proof: Let $\delta([x))$, $\delta([y)) \in M^{\circ}(L)$ for some $x, y \in L$. Then we get

 $\delta([x)) \cap \delta([y)) = \delta([x \lor y)) \in M^{\circ}(L) \text{ and } \delta([x)) \lor \delta([y)) = \delta([x \lor y)) \in M^{\circ}(L). \text{ Also, } \{0\} = \delta([1)) \in M^{\circ}(L) \text{ and } L = \delta([0)) \in M^{\circ}(L). \text{ Hence } M^{\circ}(L) \text{ is a bounded sublattice of } I^{\delta}(L) \text{ and hence a distributive lattice. Now, define a unary operation on } M^{\circ}(L) \text{ by } \overline{\delta([x))} = \delta([x^{\circ})). \text{ Then we have } \delta([x^{\circ})) = \delta([x^{\circ})) = \delta([x^{\circ})) + \delta([x^$

$$\delta([x)) = \delta([x^{\circ \circ}))$$
$$= (x^{\circ \circ \circ}]$$
$$= (x^{\circ}]$$
$$= \delta([x)),$$

and

$$\overline{\delta([x)) \lor \delta([y))} = \overline{\delta([x \land y))}$$
$$= \delta([x \land y)^{\circ}))$$
$$= \delta([x^{\circ} \lor y^{\circ}))$$
$$= \delta([x^{\circ}) \cap [y^{\circ}))$$
$$= \delta([x^{\circ}) \cap \delta([y^{\circ}))$$
$$= \overline{\delta([x)} \cap \delta([y^{\circ})),$$
$$\overline{\delta([1))} = \delta([0)).$$

Therefore $M^{\circ}(L)$ is a de Morgan algebra. The remaining part can be easily observed. A characterization of δ -Ideals in terms of principal δ -Ideals is investigated in the following.

Theorem 3.13: For any ideal *I* in an *MS*-algebra L, then the following conditions are equivalent:

- (1) I is a δ -Ideals
- (2) $I=\bigcup_{a\in I} \delta([a^{\circ}))$
- (3) For any x, y in L, $\delta([x^o)) = \delta([y^o))$ and $x \in I$ imply $y \in I$.

Proof: (1) \Rightarrow (2): Let *I* be a δ -Ideal. Then $I = \delta(F)$ for some filter *F* of *L*. Let $x \in I$. So we get

$$\begin{aligned} x \in I \,\delta(F) \Rightarrow x^{\circ} \in F \\ \Rightarrow x^{\circ \circ} \in \delta([x^{\circ})) \subseteq \delta(F) \\ \Rightarrow x \in \delta([x^{\circ})) \subseteq \bigcup \,\delta([a^{\circ})). \end{aligned}$$

Then $I \subseteq \bigcup_{a \in I} \delta([a^{\circ}))$ Conversely, let $x \in \bigcup_{a \in I} \delta([a^{\circ}))$. Then we have,

$$x \in \bigcup_{a \in I} \delta([a^o]) \implies x \in \delta([y^o]) \text{ for some } y \in I$$

$$\Rightarrow x \in (y^{oo}] \subseteq I \text{ as } y^{oo} \in I$$

$$\Rightarrow \bigcup_{a \in I} ([a^{\circ})) \subseteq I.$$

Then
$$I = \bigcup_{i \in \mathcal{S}} \delta([a^{\circ}))$$
.

(2) \Rightarrow (3): Let $I = \bigcup_{i \in I} \delta([a^o))$. Suppose $\delta([x^o)) = \delta([y^o))$ and $x \in I$. Then we get,

$$\delta([x^{\circ})) = \delta([y^{\circ})) \text{ and } x \in I \implies \delta([y^{\circ})) = \delta([x^{\circ})) \subseteq \bigcup_{a \in I} \delta([a^{\circ})) = I$$
$$\implies y^{\circ \circ} \subseteq I$$
$$\implies y^{\circ \circ} \in I \implies y \in I.$$

(3) \Rightarrow (1): Assume the condition (3). Consider $F=\{x \in L: x^o \in I\}$. Let $x, y \in F$. Then $x^o, y^o \in I$. Hence $(x \land y)^o = x^o \lor y^o \in I$. Thus $x \land y \in F$. Now let $x \in F$ and $z \in L$ such that $z \ge x$. Then $z^o \le x^o \in I$ implies $z^o \in I$. Thus $z \in F$ and F is a filter of L. We claim that $I=\delta(F)$. Let $x \in \delta(F)$. Then we get,

$$x \in \delta(F) \Longrightarrow x^{o} \in F$$

$\Rightarrow x^{oo} \in I$

 $\Rightarrow x \in I \Rightarrow \delta(F) \subseteq I.$

For the converse, let $y \in I$. We have,

$$y \in I \text{ and } \delta([y^{\circ})) = \delta([y^{\circ\circ\circ})) \Longrightarrow y^{\circ\circ} \in I \text{ by } (3)$$

$$\Rightarrow y^{\circ} \in F$$
$$\Rightarrow y \in \delta(F)$$
$$\Rightarrow I \subset \delta(F).$$

Therefore *I* is a δ -ideal.

δ -Ideals and Homomorphisms of MS-algebras

In this section, some properties of the homomorphic images and the inverse images of δ -Ideals are studied. By a homomorphism on an *MS*-algebra *L*, we mean a lattice homomorphism *h* satisfying (h(x)) $\circ=h(x^{\circ})$ for all $x \in L$.

Theorem 4.1

Let $h: L \rightarrow M$ be a homomorphism of an *MS*-algebra *L* onto an *MS*-algebra *M*. Then we have,

- (1) for any $a \in L$, $h(\delta([a))) = \delta(h([a))$,
- (2) for any δ -Ideal *I* of *L*, h(I) is a δ -Ideal of *M*,

for any δ -Ideal *I* of *L*, $h(I) = \bigcup_{i \in I} \delta([((h(i))^\circ)))$.

for any filter *F* of *L*, $h(\delta(F)) = \delta(h(F))$

Proof: (1) For all $a \in L$, we get,

 $h(\delta([a)))=h((a^{\circ}])=((h(a))^{\circ}]=\delta([h(a))=\delta(h([a))).$

(2) Let *I* be a δ -ideal of *L*. Then $I = \delta(F)$ for some filter *F* of *L*. Now

 $h(I)=h(\delta(F))=h\{x\in L: x^{o}\in F\}$

$$= \{h(x) \in M: h(x^{\circ}) \in h(F)\}$$
$$= \{h(x) \in M: (h(x))^{\circ} \in h(F)\}$$
$$= \delta(h(F)):$$

Then h(I) is a δ -ideal of M as h(F) is a filter of M.

(3) For any δ -ideal I of $L, I = \bigcup_{i \in I} \delta([i^\circ))$. Let $x \in h(I)$ then x = h(i) for some $i \in I$. Then $(\delta([x^\circ)) = \delta([(h(i))^\circ)) \subseteq \bigcup_{i \in I} \delta([(h(i))^\circ))$. Conversely, let, $y \in \bigcup_{i \in I} \delta([(h(i))^\circ))$. Now,

$$y \in \bigcup_{i \in I} \delta([(h(i))^{\circ})) \Longrightarrow y \in \delta([(h(a))^{\circ})), a \in I$$
$$\Longrightarrow y \in (((h(a))^{\circ \circ}]$$
$$\Longrightarrow y \in \leq h(a)^{\circ \circ} \in h(I) \text{ as } a^{\circ \circ} \in I$$
$$\Longrightarrow y \in h(I)$$
$$\Longrightarrow \bigcup_{i \in I} \delta([(h(i))^{\circ})) \subseteq h(I)$$

(4) Let $x \in \delta(h(F))$. Then we get,

 $x \in \delta(h(F)) \qquad \Rightarrow x^{\circ} \in h(F)$ $\Rightarrow x^{\circ} \in h(f), f \in F$ $\Rightarrow x = x^{\circ \circ} = h(f^{\circ})$

$$\Rightarrow x \in \delta(h(F))$$
 as $f^{\circ} \in \delta(F)$ by lemma 3.3(3).

Then $\delta(h(F)) \subseteq h(\delta(F))$. For the converse we have,

$$x \in \delta(h(F)) \qquad \Rightarrow x = h(y), y \in \delta(F)$$
$$\Rightarrow x^{\circ} = h(y^{\circ}), y^{\circ} \in F$$
$$\Rightarrow x^{\circ} = h(y^{\circ}), y^{\circ} \in (h(F) \text{ as } y^{\circ} \in F$$
$$\Rightarrow x \in h(\delta(F)).$$

Theorem 4.2

Let $f: L \to M$ be a homomorphism of an *MS*-algebra *L* into an *MS*-algebra *M*. Then we have,

- (1) for any δ -ideal *H* of *M*, $f^{-1}(H)$ is a δ -ideal of *L*,
- (2) Ker f is a δ -ideal of L.

Proof: (1) Since *H* is a δ -ideal of *M*, then $H=\delta(F)$ for some filter *F* of *M*. We claim $f^{-1}(H) = \delta(f^{-1}(F))$, where $f^{-1}(H)$ is an ideal of *L*. Now,

$$\begin{aligned} x \in f^{-1}(H) & \implies f(x) = y, y \in H = \delta(F) \\ & \implies (f(x))^{\circ} = f(x^{\circ}) = y, y^{\circ} \in F \\ & \implies x^{\circ} \in \{f^{-1}(y^{\circ})\} \subseteq f^{-1}(F) \\ & \implies x \in \delta(f^{-1}(F)). \end{aligned}$$

Conversely, $x \in \delta(f^{-1}(F))$. Then we have,

$$x \in \delta(f^{-1}(F)) \implies x^{\circ} \in f^{-1}(F)$$
$$\implies (f(x))^{\circ} = f(x^{\circ}) \in F$$
$$\implies f(x) \in \delta(F) = H$$
$$\implies x^{\circ} \in f^{-1}(H)$$
$$\implies \delta(f^{-1}(F)) \subseteq f^{-1}(H)$$

Therefore $f^{-1}(H)$ is a δ -ideal of *L*.

(2) Since *f* is a homomorphism, then Ker $f = \{x \in L: f(x)=0\}$ and Coker $f = \{x \in L: f(x)=1 \text{ are ideal and filter of } L \text{ respectively. We claim Ker } f = (Coker f). Now$

$$x \in Ker f \Rightarrow f(x)=0$$
$$\Rightarrow f(x^{\circ})=f(x))^{\circ}=1$$
$$\Rightarrow x^{\circ} \in Coker f$$
$$\Rightarrow x \in \delta(Coker f).$$

Then $Ker f \subseteq \delta(Coker f)$. Conversely,

$$x \in \delta(Coker f) \Rightarrow x^{\circ} \in Coker f$$
$$\Rightarrow f(x))^{\circ} = f(x^{\circ}) = 1$$
$$\Rightarrow f(x))^{\circ \circ} = f(x^{\circ \circ}) = 0$$
$$\Rightarrow x \in ker f$$

Then $\delta(Coker f) \subseteq ker f$. Therefore ker f is a δ -ideal of *L*.

Theorem 4.3

Let $h: L \to L_1$ be an onto homomorphism between *MS*-algebras $L=(L, \lor, \land, \circ, 0_L, 1_L)$ and $L_1=(L_1, \lor, \land, \circ, 0_{L_1}, 1_{L_1})$. Then we have,

- (1) $M^{\circ}(L)$ is homomorphic of $M^{\circ}(L_1)$,
- (2) $I^{\delta}(L)$ is homomorphic of $I^{\delta}(L_1)$.

Proof: (1) Define $g:M^{\circ}(L) \rightarrow M^{\circ}(L_1)$ by $g(\delta([a)))=\delta([h(a)))$. Clearly, $g(\{0_L\})=L_1$ and $g(L)=L_1$. For every $\delta([a))$, $\delta([b))) \in \in M^{\circ}(L)$ we get,

 $g(\delta([a)) \cap \delta([(b))) = g(\delta([a \land b)))$ $= \delta([h(a \land b))$

 $=\delta([h(a)\wedge h\,(b)))$

- $= \delta([h(a)) \cap \delta([h(b))$
- $= g(\delta([a))) \cap g(\delta([b))),$

and

 $g(\delta([a)) \lor \delta([(b))) = g(\delta([a \lor b)))$

$$= \delta([h(a \vee b))$$

$$= \delta([h(a) \lor h(b)))$$

 $= \delta([h(a)) \vee \delta([h(b)))$

$$= g(\delta([a))) \vee g(\delta([b))),$$

also,

$$g(\delta([a)) = g(\delta([a^{\circ})))$$
$$= \delta([h[a^{\circ})))$$
$$= \overline{\delta[h[a))}$$

$$=g(\delta([a)))$$

Therefore g is a homomorphism of de Morgan algebras $M^{\circ}(L)$ and $M^{\circ}(L_1)$.

(2) Define the map $\pi: I^{\delta}(L) \to I^{\delta}(L_1)$ by $\pi(I) = \delta(h(F))$ where $I = \delta(F)$. It is clear that $\pi\{0_1\} = \{0_{L_1}\}$ and $\pi(L) = L_1$. Let $I, J \in I^{\delta}(L)$. Then $I = \delta(F)$ and $J = \delta(G)$, where F and G are filters of L. Then we get,

$$\pi(I \lor J) = \delta(h(F \lor G))$$

 $= \delta(h(F) \vee h(G))$

 $= \delta(h(F)) \vee \delta(h(G))$

$$=\pi(I)\vee\pi(J),$$

and

 $\pi(I \cap J) = \delta(h(F \cap G))$

 $= \delta(h(F) \cap h(G))$

 $= \delta(h(F)) \cap \delta(h(G))$

 $=\pi(I)\cap\pi(J)$

Therefore π is a (0, 1)-lattice homomorphism and the proof is completed.

References

- 1. Blyth TS, Varlet JC (1994) Ockham Algebras. Oxford University Press, London, UK.
- Blyth TS, Varlet JC (1983) On a common abstraction of de Morgan algebras and Stone algebras. Proc Roy Soc Edinburgh 94: 301-308.
- 3. Berman J (1977) Distributive lattices with an additional unary operation. Aequationes Math 16: 165-171.
- Blyth TS, Varlet JC (1983) Subvarieties of the class of MS-algebras. Proc Roy Soc Edinburgh 95: 157-169.
- Luo C, Zeng Y (2006) Kernel ideals and congruences on MS-algebras. Act Math Sci B 26: 344-348.
- Sambasiva Rao M (2012) β-Filters of Ms-Algebras. Asian-european Journal of Mathematics 5: 1-8.
- Sambasiva Rao M (2013) e- filters of MS-algebras. Acta Mathematica Sci-entia 33: 738-746.
- Sambasiva Rao M (2012) δ-ideals in pseudo-complemented distributive lattices. Archivum Mathematcum 48: 97-105.
- Balbes B, Dwinger P (1974) Distributive lattices. University of Missouri Press, Columbia, Missouri, USA.
- 10. Fang J (1997) Congruences lattices on Ockhram algebras. Southeast Asian Bull Math 21: 395-400.
- 11. Fang J (1998) A note on totally ordered subdirectly irreducible Ockham algebras. Southeast Asian Bull Math 22: 23-27.
- 12. Fang J (2013) Boolean Coherent Ockham Algebras. Southeast Asian Bull Math 37: 17-22.
- 13. Fang J, Huang CH (2011) On a dual space of balanced pseudocomple-mented Ockhram algebras. Southeast Asian Bull Math 35: 211-228.
- Fang J, Shi CJ (2013) MS-algebras with double demi-pseudocomplmentation. Seoutheast Asian Bull Math 37: 823-835.