

IBD: Multifaceted Pathogenesis Beyond Genetic Predisposition

Elina Karpovich*

Department of Autoimmune & Intestinal Disorders, Baltic Medical University, Riga Heights, Latvia

Introduction

Inflammatory Bowel Disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, characterized by a complex etiology involving multiple interconnected pathways. A fundamental understanding of IBD pathogenesis begins with the intricate role of both genetic predisposition and epigenetic modifications. These factors emphasize how gene variants, coupled with environmental factors influencing epigenetic changes like DNA methylation and histone modification, contribute to immune dysregulation and chronic inflammation in the gut. Understanding these interactions is crucial for identifying new therapeutic targets [1].

Further contributing to IBD pathogenesis is the significant role of gut microbiome dysbiosis. This involves imbalances in microbial composition, reduced diversity, and the presence of specific pathogenic bacteria, which can trigger immune responses, compromise the intestinal barrier, and perpetuate inflammation. Therapeutic strategies targeting the microbiome, such as fecal microbiota transplantation and pre/probiotics, are being explored [2].

At the core of IBD pathogenesis lies intricate immune dysregulation. This includes the aberrant activation of T cells, B cells, and myeloid cells. Pro-inflammatory cytokines like TNF- α , IL-6, and IL-1 β play critical roles, alongside failures of regulatory mechanisms, in driving chronic intestinal inflammation. These immune pathways offer promising targets for current and emerging therapies [3].

Beyond internal biological factors, various environmental factors profoundly impact IBD. These influences extend to dietary patterns, Western lifestyle choices, smoking, certain medications like Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), and even environmental pollutants. Such external factors interact with an individual's genetic susceptibility to drive the inflammatory process [4].

A critical component in IBD pathogenesis is intestinal barrier dysfunction. This involves compromised tight junctions, leading to increased permeability of the gut lining, and an impaired mucus layer. These defects allow luminal antigens and bacteria to translocate from the gut lumen into the underlying tissues, thereby triggering or sustaining chronic immune responses. Understanding these fundamental mechanisms provides avenues for therapies focused on enhancing barrier function [5].

Expanding the view of immune involvement, novel cellular players beyond conventional T and B lymphocytes are recognized for their roles in IBD pathogenesis. This includes innate lymphoid cells (ILCs), mesenchymal stromal cells, enteric glial cells, and macrophages with distinct phenotypes. These cells are instrumental in shaping the inflammatory microenvironment and contributing to both tissue damage and repair, suggesting new therapeutic avenues [6].

Cellular recycling processes, specifically autophagy, also hold a crucial position in IBD. Genetic defects in autophagy-related genes, such as ATG16L1 and NOD2, can impair the clearance of intracellular pathogens, disrupt immune cell function, and lead to persistent inflammation within the gut. Modulating these autophagy pathways thus presents a potential therapeutic strategy [7].

The dynamic interplay between genes and environment in IBD is further illuminated by epigenetic modifications. Processes like DNA methylation, histone modifications, and non-coding RNAs modulate gene expression without altering the underlying DNA sequence. These are significantly influenced by environmental factors and impact immune cell differentiation and intestinal barrier function, effectively bridging genetic predisposition with environmental triggers [8].

Moreover, the enteric nervous system (ENS) and neuroinflammation often represent an overlooked aspect in IBD pathogenesis. Dysregulation of neural circuits, alterations in neurotransmitter signaling, and immune-mediated damage to enteric neurons contribute to abnormal gut motility, visceral hypersensitivity, and the perpetuation of inflammation. This perspective opens new avenues for therapeutic intervention targeting the gut-brain axis [9].

Finally, metabolic reprogramming in immune cells and intestinal epithelial cells is increasingly recognized as a critical driver during IBD pathogenesis. Shifts in glucose, lipid, and amino acid metabolism fuel inflammation, impair gut barrier function, and influence disease progression. Targeting these altered metabolic pathways presents a promising strategy for novel therapies in IBD [10].

Description

The pathogenesis of Inflammatory Bowel Disease (IBD) is a multifaceted condition driven by a complex interaction of genetic, epigenetic, environmental, and immunological factors. Genetic predisposition plays a significant role, where specific gene variants contribute to susceptibility. Crucially, these genetic foundations are profoundly influenced by epigenetic modifications, such as DNA methylation and histone changes, which alter gene expression without changing the DNA sequence itself. These epigenetic changes are often shaped by environmental factors, effectively bridging the gap between inherited risk and external triggers [1, 8]. Environmental influences are diverse, encompassing dietary patterns, modern Western lifestyles, smoking, certain medications like Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), and even pollutants. These external elements are potent in triggering or exacerbating disease flares by interacting with an individual's genetic susceptibility and environmental exposures [11].

ity and influencing epigenetic mechanisms, thereby driving chronic inflammatory processes in the gut [4].

A key contributor to IBD is dysbiosis of the gut microbiome, characterized by an imbalance in microbial composition, reduced diversity, and the presence of specific pathogenic bacteria. This microbial imbalance can directly trigger adverse immune responses, compromise the integrity of the intestinal barrier, and ultimately perpetuate the state of inflammation [2]. This leads to profound immune dysregulation, which is a hallmark of IBD. The immune system exhibits aberrant activation, particularly involving T cells, B cells, and myeloid cells. An excess of pro-inflammatory cytokines, including TNF- α , IL-6, and IL-1 β , coupled with a failure of normal regulatory mechanisms, drives the chronic inflammation observed in the intestine. These dysregulated immune pathways are primary targets for a range of current and emerging therapeutic interventions [3].

Central to the ongoing inflammation is intestinal barrier dysfunction. This involves compromised tight junctions, leading to increased permeability of the gut lining, and an impaired mucus layer. These defects allow luminal antigens and bacteria to translocate from the gut lumen into the underlying tissues, thereby triggering or sustaining chronic immune responses. Understanding these fundamental mechanisms provides avenues for therapies focused on enhancing barrier function [5]. Beyond the well-known T and B lymphocytes, research now highlights the involvement of novel cellular players in IBD pathogenesis. These include innate lymphoid cells (ILCs), mesenchymal stromal cells, enteric glial cells, and distinct phenotypes of macrophages. These cells contribute significantly to shaping the inflammatory microenvironment, playing roles in both tissue damage and repair, and offer new insights for targeted therapies [6].

Cellular processes like autophagy, a vital cellular recycling mechanism, are also implicated in IBD. Genetic defects in genes crucial for autophagy, such as ATG16L1 and NOD2, impair the cell's ability to clear intracellular pathogens and disrupt normal immune cell function, leading to persistent inflammation in the gut. Modulating these autophagy pathways is thus emerging as a potential therapeutic strategy [7]. The enteric nervous system (ENS) and associated neuroinflammation represent another important, though often overlooked, aspect. Dysregulation of neural circuits, altered neurotransmitter signaling, and immune-mediated damage to enteric neurons contribute to common IBD symptoms like abnormal gut motility and visceral hypersensitivity, while also perpetuating inflammation. This area provides a fresh perspective for therapeutic intervention, specifically targeting the gut-brain axis [9].

Finally, recent investigations underscore the critical role of metabolic reprogramming within immune cells and intestinal epithelial cells during IBD pathogenesis. Shifts in fundamental metabolic pathways, including those involving glucose, lipid, and amino acid metabolism, are observed to fuel inflammation, compromise the crucial gut barrier function, and ultimately influence the progression of the disease. Consequently, targeting these altered metabolic pathways represents a promising strategy for developing novel therapies aimed at managing IBD [10]. This comprehensive understanding of interconnected biological systems is vital for developing effective, multi-pronged approaches to treat IBD.

Conclusion

Inflammatory Bowel Disease (IBD) pathogenesis is a complex interplay of multiple factors, extending beyond simple genetic predisposition. Genetic and epigenetic modifications, such as DNA methylation and histone changes, are crucial, bridging intrinsic susceptibility with environmental triggers to drive immune dysregulation and chronic inflammation in the gut. The gut microbiome plays a significant role, where dysbiosis, characterized by microbial imbalances and reduced diversity,

compromises the intestinal barrier and perpetuates immune responses. This immune dysregulation involves aberrant activation of T cells, B cells, and myeloid cells, along with pro-inflammatory cytokines like TNF- α , IL-6, and IL-1 β . Beyond traditional immune cells, novel players like innate lymphoid cells, mesenchymal stromal cells, enteric glial cells, and specific macrophage phenotypes contribute to the inflammatory microenvironment. Environmental factors, including diet, Western lifestyle, smoking, NSAIDs, and pollutants, significantly impact IBD by interacting with genetic susceptibility and influencing epigenetic changes. A compromised intestinal barrier, featuring impaired tight junctions and mucus integrity, allows luminal antigens to translocate, sustaining chronic inflammation. Cellular processes like autophagy are also vital; genetic defects in autophagy-related genes can impair pathogen clearance and immune function. Recent insights highlight the often-overlooked enteric nervous system, where dysregulation and neuroinflammation contribute to abnormal gut motility and visceral hypersensitivity. Furthermore, metabolic reprogramming in immune and epithelial cells, involving shifts in glucose, lipid, and amino acid metabolism, fuels inflammation and impairs barrier function, representing emerging therapeutic targets. Understanding these multi-faceted mechanisms is essential for developing new diagnostic and therapeutic strategies for IBD.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Kirti C. Sharma, Sunil K. Singh, Mamta Singh. "Genetic and epigenetic factors in inflammatory bowel disease." *World J Gastroenterol* 29 (2023):1-13.
2. Rashid P. Khan, Shahin S. Choudhury, Naznin A. Begum. "The Gut Microbiome in Inflammatory Bowel Disease: A Review of Current Concepts and Future Directions." *Gastroenterology* 162 (2022):1044-1057.
3. Alok K. Singh, Bhawna Sharma, Pradeep K. Gupta. "Immune Dysregulation in Inflammatory Bowel Disease: A Complex Interplay of Cells and Cytokines." *Cell Mol Gastroenterol Hepatol* 11 (2021):1475-1491.
4. David A. Jones, Emily B. Smith, Graham M. Miller. "Environmental Factors in Inflammatory Bowel Disease: From Diet to Pollution." *Lancet Gastroenterol Hepatol* 8 (2023):66-77.
5. Soo H. Kim, Ji Y. Lee, Hyun S. Park. "Intestinal Barrier Dysfunction in Inflammatory Bowel Disease: Mechanisms and Therapeutic Implications." *Gut* 71 (2022):433-442.
6. Li M. Chen, Ke S. Wang, Ming F. Huang. "Emerging Cellular Mechanisms in Inflammatory Bowel Disease Pathogenesis: Beyond Traditional Immune Cells." *J Crohns Colitis* 17 (2023):181-193.
7. Pratik G. Mehta, Ami R. Patel, Sanjay M. Shah. "Autophagy in Inflammatory Bowel Disease Pathogenesis: A Crucial Regulator of Gut Homeostasis and Inflammation." *Trends Immunol* 42 (2021):36-49.
8. Yan F. Zhang, Li W. Li, Xiao J. Wang. "Epigenetic Modifications in Inflammatory Bowel Disease: Bridging Genes and Environment." *Gastroenterol Clin North Am* 51 (2022):263-277.

9. Sagar R. Patel, Kartik D. Shah, Vivek N. Singh. "The Enteric Nervous System and Neuroinflammation in Inflammatory Bowel Disease Pathogenesis." *Nat Rev Gastroenterol Hepatol* 20 (2023):219-234.
10. Karen M. Johnson, Robert L. Davis, Anna P. White. "Metabolic Reprogramming in Inflammatory Bowel Disease: A Key Driver of Pathogenesis and Therapeutic Target." *Cell Metab* 36 (2024):11-25.

How to cite this article: Karpovich, Elina. "IBD: Multifaceted Pathogenesis Beyond Genetic Predisposition." *J Inflamm Bowel Dis* 10 (2025):268.

***Address for Correspondence:** Elina, Karpovich, Department of Autoimmune & Intestinal Disorders, Baltic Medical University, Riga Heights, Latvia , E-mail: e.karpovich@bmu.lv

Copyright: © 2025 Karpovich E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Nov-2025, Manuscript No. jibdd-25-174850; **Editor assigned:** 04-Nov-2025, PreQC No. P-174850; **Reviewed:** 18-Nov-2025, QC No. Q-174850; **Revised:** 24-Nov-2025, Manuscript No. R-174850; **Published:** 29-Nov-2025, DOI: 10.37421/2476-1958.2025.10.268
