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Abstract
Aim: Bone marrow stromal cells (BMSCs) are a promising candidate for cell therapy in ischemic stroke. However, 

the majority of BMSCs are readily lost after transplantation because of apoptosis due to ischemia-reperfusion (I/R) 
injury. In the present study, we aimed to evaluate the effects of hypoxia preconditioning (HP) on simulated I/R injury 
in cultured BMSCs.

Methods: Four generations of BMSCs were used as subjects. BMSCs were divided into 6 groups, including 
normal group, I/R group(I/R followed 0 h HP), 2 h-HP group(I/R followed 2 h HP ), 4 h-HP group(I/R followed 4 h HP), 
6 h-HP group (I/R followed 6 h HP) and 8 h-HP group(I/R followed 8 h HP) 2 h-HP group(I/R followed 2 h HP ), 4 h-HP 
group(I/R followed 4 h HP), 6 h-HP group (I/R followed 6 h HP) and 8 h-HP group(I/R followed 8 h HP). BMSCs were 
subjected to HP by exposing the cells to hypoxia (2%O2). After 12 h of reoxygenation, BMSCs were suffered from 3 h 
ischemia (<0.5% O2 and serum deprivation) and subsequent reperfusion (I/R). Cell viability, hypoxia-inducible factor 
(HIF) 1-α, caspase-3 and apoptosis were tested using MTT, ELISA and immunofluorescence staining respectively.

Results: There were no changes in cell viability after 2 h to 8 h HP in cultured BMSCs as compared to the 
normal group. But HP upregulated the content of HIF-1α in BMSCs and protected the BMSCs from later I/R injury, 
as evidenced by increased cell viability and decreased Caspase-3 release and apoptosis, especially in 8 h-HP group

Conclusion: HP attenuated the apoptosis induced by I/R injury via co-regulating the expression of HIF-1α and 
Caspase-3 in BMSCs, and thereby might play a beneficial effect on cell therapy.

Keywords: Hypoxic preconditioning (HP); Cell viability; Hypoxia-
inducible factor (HIF) 1-α; Apoptosis; Ischemia/reperfusion (I/R) 
injury

Abbreviations: ANOVA: analysis of variance; BMSCs: Bone
marrow stromal cells; ELISA: enzyme-linked immunosorbent assay; 
HP: hypoxia preconditioning; HIF: hypoxia-inducible factor; I/R: 
ischemia-reperfusion; PBS: phosphate buffered solution

Introduction
Ischemic stroke is one of the leading causes of death and disability 

in the world, but there are currently few effective clinical therapies for 
it. Alternatively, cell-based therapy has provided a promising hope to 
enhance tissue repair and functional recovery after stroke [1-3]. Bone 
marrow stromal cells (BMSCs) can be easily obtained from patients 
themselves without ethical or immunological problems and can 
proliferate massively in vitro. After transplantation, its can promote 
the neurogenesis and angiogenesis in ischemic brain [4]. However, the 
cell therapy is limited by the poor survival of the transplanted cells in 
brain lesion [5]. Studies confirmed that a large number of transplanted 
cells died in ischemic brain because of hypoxia, oxidative stress, 
inflammatory mediators and the deficiency of trophic factor [6,7]. 
Thus, it is imperative to identify therapies that can improve the viability 
of the stem cells in the hazardous ischemic tissue. The physiological 
oxygenated environment for BMSCs in bone marrow not exposed to 
atmospheric oxygen is thought to range from 2-8% [8]. Recent study 
showed hypoxic preconditioning(HP) could decrease apoptosis induced 
by anoxia in cultured hippocampus neurons [9]. So in this study, we 
wanted to study whether HP might attenuate the apoptosis of BMSCs 
from stimulated ischemic/reperfusion (I/R) injury. We elaborated cell 
viability, hypoxia-inducible factor (HIF) 1-α, apoptosis and Caspase-3 
appreciate in this protection mechanism. Furthermore, the proper time 
of HP involved was also studied.

Materials and Methods
Isolation and culture of BMSCs

BMSCs were isolated as previously described (Deng et al., 2004) 
[10]. Briefly, we humanely killed male Sprague-Dawley rats (3-4 weeks 
old), bone marrow was obtained from the rat femurs and tibias. Cells 
were centrifuged at 1000 rpm for 5 min and suspended in Dulbecco’s 
modified Eagle medium with low glucose (L-DMEM, Invitrogen, 
Carlsbad, CA) supplemented with 12.5%% fetal bovine serum (FBS, 
Invitrogen, Carlsbad, CA). Cell cultures were kept in humidified 95% 
air-5% CO2 at 37°C. After the cells were incubated for 3 d, the culture 
medium was changed. Once the BMSCs reached 80% confluence, the 
adherent cells were digested using 0.25% trypsin with EDTA. At passage 
4 (P4), cells were harvested for experiments. 
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Hypoxic Preconditioning (HP) and experimental protocols

Cultured BMSCs were divided into 6 groups(n=5/group): (1) 
the normal control group, BMSCs were placed in normal culture 
condition(21%O2 and normal cultured medium) during the all 
experiment; (2) I/R group: BMSCs were cultured in L-DMEM without 
FBS and exposed to hypoxia for 3 h (<0.5% O2) in an airtight chamber 
(NAPCO 7101 FC-1), followed by 24 h of reoxygenation (21%O2 and 
normal cultured medium). There was no HP treatment before I/R 
injury. (3) 2 h-HP group: 2 hours HP treatment before I/R injury. (4) 4 
h-HP group, 4 hours HP treatment before I/R injury. (5) 6 h-HP group: 
6 hours HP treatment before I/R injury. (6) 8 h-HP group: 8 hours HP 
treatment before I/R injury. BMSCs were subjected to HP by exposing 
the cells to hypoxia (2%O2), after 12 h of reoxygenation, BMSCs were 
suffered from 3 h I/R injury. The oxygen level in the chamber was 
monitored with an oxygen analyzer; some assays were carried out 
immediately after HP, others assays were administered followed the I/R 
attack. We use a graphical to depict our study in briefly (Figure 1). 

Cell viability assay 

The cells were seeded in 96-well plates at a density of 5 × 104 cells/
well at passage 4. After HP and I/R procedure, the media was replaced 
with 3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide 
(MTT)(Sigma-Aldrich, USA)-containing DMEM, and cultured for 4 
h in a CO2 incubator respectively. An equal volume of solubilization 
solution (10% SDS, 0.01 M HCl) was added, and the plate was incubated 
at 37°C overnight to solubilize formazon crystals. When dissolved in 
SDS, functional mitochondrial succinate dehydrogenase in cells can 
convert MTT to formazan that generates a blue color. After the purple 
formazan producer was dissolved, the intensity was measured at an 
absorption wave length of 570 nm and 630 nm with a microplate reader. 

ELISA for HIF-1α and Caspase-3

BMSCs in 6-well plates were covered with 2 ml of culture medium 
and experienced 2 h, 4 h, 6 h and 8 h HP respectively, culture medium 
were withdrawn after HP, HIF-1α levels were measured in these samples 
with an ELISA kit for rat HIF-1α (CUSABIO, China) according to the 
manufacturer’s instructions. The protein extract was obtained from the 
supernatant of BMSCs.

Hoechst 33342 fluorescent stain 

When cells sufficiently spread on the slides, the cells were hed with 
cold phosphate buffer sodium (PBS, pH 7.0) solution and fixed in 4% 
methanol for30 min. After washing with PBS for 5 min, the cells were 
incubated with 0.1% acetic acid for 30 s, and then washed again with 
PBS. Cells were thoroughly air-dried at room temperature, and then 
stained with Hoechst 33342 for 10 min, followed by washing with 
distilled water for 1 min and again air-drying at room temperature. 
Finally, the BMSCs were observed under fluorescence microscope and 
the apoptotic cells were photographed.

Statistical analysis 

All measurements were performed blindly. Results were presented 
as mean ± SD. Statistical analyses were performed using SPSS 17.0 
software. The statistical differences between different groups were 
evaluated with one-way analysis of variance (ANOVA) and post hoc test 
LSD (Fisher’s Least Significant Differences) for multiple comparisons. 
A value of P<0.05 was considered statistically significant.

Results
Effect of HP on BMSCs viability 

There were no statistical differences in the cell viability among the 
normal culture and HP treated BMSCs groups (Figure 2A). Increasing 
exposure to 2% O2 for 12 to 24 h resulted in duration-dependent 
apoptosis (data are not shown here). This suggested that BMSCs 
exposed to hypoxia from 2 h to 8 h remained fully viable similar to 
normoxia control BMSCs. But cell viability was decreased after 
subsequent I/R (<0.5% O2-3 h, without FBS, followed by reoxygenation) 
injury. However, HP treated BMSCs reduced the injury, especially 8 h 
HP before I/R insult presented an outstanding protection (Figure 2B). 

HP induced additional HIF-1α expression in BMSCs
To further understand the mechanism of the protection of HP on 

anoxia, we tested the HIF-1α expressions in normal and HP treated 
BMSCs. We found the contents of HIF-1α, a survival factors for some Figure 1: Experiment procedure.

Figure 2: Cell viability measured by MTT assay. (A): Cell viability measured 
after HP, there was no statistic difference among all groups. (B): Cell viability 
measured after I/R injury, Y axis value=OD value(570-630 nm)(HP groups)/OD 
value(570-630 nm)(normal group)%, *p<0.01, vs. normal group , #p<0.01, vs. 
I/R group, *p<0.01, vs. 8 h HP group.
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cell lines in response to hypoxia, in the BMSCs was significantly 
upregulated after HP(P<0.05), and 8 h-HP showed a prominent 
role(P<0.01) (Figure 3). 

HP inhibited the activation of Caspase-3

Caspase-3 is released by damaged degenerating cells and plays a 
key role in the mechanism of apoptosis. Here we tested the production 
of activated caspase-3 in BMSCs. As shown in Figure 4, the contents 
of activated caspase-3 were obviously increased in I/R group, but HP 
powerfully inhibited the harmful reaction (P<0.05). Similarly, 8 h-HP 
showed a significant antiapoptosis role (P<0.01, vs. I/R group). 

HP decreased the expression of apoptotic body

Hoechst 33342 staining was used to observe apoptotic body. Only 
a few cells in normal culture group showed positive staining in the 
nuclei(apoptotic cell), while as a large number of cells in I/R group 
exhibited strong staining in the nuclei, but the apoptotic density was 
obviously decreased in 8 h-HP I/R injury group (Figure 5). 

Discussion
Transplantation of BMSCs is a potential therapy for ischemic stroke, 

however, a constant outcome that dramatically impairs the efficacy of 
the cell therapy is the limited number of stem cells surviving after graft 
in brain lesion [11,12]. Thus the valid defensive measures have been 
sought to prevent the engrafted cells from ischemic injury for a long 
time. A large number of data have been reported that the application of 
brief, transient periods of non-lethal hypoxia (hypoxic preconditioning, 
HP) before a subsequent lethal episode of hypoxia markedly increase the 
endurance against followed severe anoxia and delay the development 
of programmed cell death [13-15]. Thus, HP might provide a new 
and hopeful strategy for cell therapy in ischemic diseases through 
the transformation of gene expression and activation of intracellular 
signaling pathways [16-20]. In vitro experiment, HP protected the 
myocytes from succedent hypoxia/reoxygenation injury by decreased 
apoptosis and LDH release and increased cell viability [21]. In vivo, HP 
was shown to be neuroprotective against ischemic brain injury through 
the upregulation of pro-survival and endogenous regeneration [22,23]. 
In the present study, we firstly simulated the physiological oxygenated 
tension (2%O2) of BMSCs as the HP condition in cultured BMSCs and 
analysed the optimal time duration and mechanism of HP in reducing 
I/R injury. We found 2 h to 8 h HP did not arouse any harmful effect 
on cell viability. In addition, the contents of HIF-1a in BMSCs were 
up-regulated followed HP, when cells subsequently suffered from I/R 
injury, the decreased caspase-3 release and increased cell viability were 
seen in HP groups as compared to I/R without HP group.

HIF-1a is a transcription factor specifically activated by hypoxia, 
in proper low oxygen pressures, the level of HIF-1 a is regulated 
to maximal involving multiple mechanisms of control at the levels 
of mRNA expression, protein stability, nuclear translocation and 
transactivation activity [24], and play a protective role in the anti-
apoptosis after ischemia [25,26]. Caspase-3, one member of the caspase 
family, is in the downstream of Bax, and particularly believes to be 
most commonly involved in the execution of apoptosis induced by 

Figure 3: The content of HIF-1a in cultured BMSCs after I/R injury. ■p<0.05, vs. 
normal group, *p<0.01, vs. normal group, ▲p<0.01, vs. 8 h HP group, ∆p<0.05, 
vs. 8 h HP group

Figure 4: The content of active Caspase-3 in cultured BMSCs after I/R injury. 
*p<0.01, vs. normal group, #p<0.01, vs. I/R group, ∆p<0.01, vs. 8 h HP group.

Figure 5: Influence of HP on BMSCs apoptosis after I/R injury. A: Hoechst 
33342 staining in the cultured BMSCs, the strong staining nucleus represent 
the apoptosis cells. B: The percent of apoptotic cells in normal group, I/R injury 
without HP group and I/R injury with 8 h-HP group. *p <0.01 vs. normal group, 
#p <0.01 vs. I/R group. scale bar indicates 200 μm.
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many stimuli, including cleaving DNA repair molecules, depredating 
the anti-apoptosis proteins, cleaving extra cellular matrix protein and 
other related molecules [27,28]. Wang et al reported that apoptosis 
suppression by HP correlated with the prevention of mitochondrial 
dysfunction and promotion of ERK and Akt phosphorylation in 
hypoxia and reoxygenation injury [29], and Akt signaling pathway was 
also found to play a critical role in the prevention of apoptotic cell death 
by inhibiting caspase release [21]. Moreover, the over expression of Bcl-
2 and maintenance of MMP in HP cells presumably involves in the 
protective effects [30,31]. In this study, the up-regulated expression of 
HIF-1a protected the BMSCs from subsequent I/R injury as evidenced 
by decreased caspase-3 release and increased cell viability in HP groups, 
8 h HP represented a prominent role in antiapoptosis after I/R injury. 

A proper HP time is also important for defending ischemia, 
prolonged HP failed to exert protective effects and even seemed 
deleterious in some cells [29]. In our system, sublethal hypoxia 2 h to 
8 h before critical insult time-dependently attenuated apoptosis and 
resulted in discrepant cell viability, 8 h-HP presented a distinguished 
activeness. The underlying mechanism needs further research.

In conclusion, HP could protect BMSCs from critical anoxia via 
up-regulating HIF-1a content and decreasing caspase-3 release and 
apoptosis in cultured BMSCs. A suitable HP time might develop a more 
considerable protection, which would produce a beneficial effect on cell 
therapy.
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