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Abstract

Obesity is a major public health problem. Excess adiposity reflects an imbalance between food intake and energy
expenditure, resulting from complex interactions between genetic and environmental factors. In animals and
humans, the control of energy homeostasis is performed by the Central Nervous System (CNS) through
neuroendocrine connections, in which circulating peripheral hormones such as leptin and insulin provide a signal to
specialized neurons of the hypothalamus reflecting body fat stores, and inducing appropriate responses to maintain
the stability of these stores. Obesity is commonly associated with central resistance to both leptin and insulin
actions. In experimental animals, high-fat diets can induce an inflammatory process in the hypothalamus, which
impairs leptin and insulin intracellular signaling pathways and results in hyperphagia, decreased energy expenditure
and ultimately obesity. Recent evidence, obtained from neuroimaging studies and analysis of inflammatory markers
in the cerebrospinal fluid of obese subjects, suggest that similar alterations may be also found in humans. In this
review, we briefly present the mechanisms involved with deterioration of homeostatic control of energy balance in
animal models of obesity and the current evidence of hypothalamic dysfunction in obese humans.
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Introduction
Obesity is currently one of the major public health problems in the

world. According to the World Health Organization, over 1.4 billion
adults were overweight in 2008 and of these, nearly 200 million men
and 300 million women were obese [1]. Compared to data from 1980,
obesity prevalence almost doubled [1], and if trends continue, up to
3.3 billion people could be either overweight or obese by 2030 [2]. In
addition to imposing a social stigma on individuals, obesity is a risk
factor for several disorders, such as type 2 diabetes mellitus,
hypertension, dyslipidemia, respiratory diseases, osteoarthritis,

cardiovascular events and cancer, impacting on life quality and
mortality [3,4].

Family studies, comprising analysis of twins and adopted children,
have demonstrated a significant contribution of hereditary traits on
body mass [5]. However, only a small fraction of severe obesity cases
involve mutations in a single gene. For the vast majority of the
population, variation in adiposity results from complex interactions
between a large number of genetic variants and environmental factors
[5]. Contemporary lifestyle is pointed as the main responsible for the
rapid rise in obesity prevalence [3]. If energy efficiency has favored
survival in periods of scarcity, nowadays we face the opposite
situation. Since the industrial revolution, the lifestyle of much of the
world's population has undergone profound shifts. Advances in
hygiene, science and public health, in addition to increased job offers
and food availability allowed a significant rise in life expectancy [6].
On the other hand, the lower cost of highly palatable, calorie dense
foods, coupled with the lesser requirement of physical activity in daily
life, led to an alarming increase in the prevalence of obesity,
threatening to counteract the gains achieved [7].

Body fat accumulation is invariably caused by an imbalance
between food intake and energy expenditure, a problem that has a
seemingly simple solution. Nevertheless, to date no action has been
effective in reversing or even containing the progress of this problem.
Despite the common thought that eating is a voluntary act, recent
evidence indicates that the balance between energy intake and
expenditure is actually controlled by a complex and powerful
biological system, driven by the CNS [8]. Flaws in this system may lead
to the emergence and aggravation of obesity.

van de Sande-Lee S and Velloso LA, J Mol Genet 
Med 2014, S1:026

DOI: 10.4172/1747-0862.S1-026

Review Article Open Access

J Mol Genet Med Molecular and Cellular Aspects in Obesity and
Diabetes

ISSN:1747-0862 JMGM, an open access
journal

Journal of Molecular and Genetic
MedicineJo

ur
na

l o
f M

ole
cular and Genetic M

edicine

ISSN: 1747-0862



The Role of the Hypothalamus in Energy Homeostasis–
Historical Background

Body energy balance is controlled by specific populations of
neurons located, mostly, in the hypothalamus [8]. Early indications
emerged in 1840, from the description of a woman who had become
extremely obese within the year preceding her death, and whose
autopsy revealed a large pituitary tumor compressing the base of the
brain [9]. Similar cases were reported until the early twentieth century,
when Fröhlich hypothesized that the pituitary lesion would be the
cause of obesity. This hypothesis was challenged a few years later by
Erdheim, who noticed that in some cases no significant damage was
found in the pituitary gland, while compression of the base of the
brain was invariably present [9]. The matter remained controversial
until the late 30s and early 40s, when Hetherington and Ranson first
demonstrated the development of marked hyperphagia and obesity in
rats submitted to lesions of the Ventromedial Hypothalamus (VMH)
by an electrode introduced from above, leaving the pituitary intact
[10]. Later, Anand and Brobeck described the development of aphagia
in rats and cats after bilateral lesion of a small area located in the
lateral hypothalamus [11]. Based on these studies, the lateral
hypothalamus was designated as the “feeding center” and the
ventromedial hypothalamus, as the “satiety center” [12].

Under normal conditions, an adult animal’s fat mass remains stable
over long periods, despite fluctuations in food intake and physical
activity. Food-restricted animals return to their initial weight as soon
as the supply is reestablished [13], and manipulation of food energy
density through its dilution in inert material results in suitability of the
ingestion to the amount of calories, not to the volume [14]. In order to
couple calorie consumption with expenditure and keep energy stores
constant, the brain should be able to obtain information about the
amount of these stores. In 1953, Kennedy proposed that the
hypothalamus could detect the concentration of circulating
metabolites [15]. This hypothesis was strengthened by data obtained
from parabiosis experiments, in which the blood vessels of two
animals are surgically joined to allow the exchange of humoral factors
[16]. When a lean rat was parabiosed to a rat with obesity caused by a
VMH lesion, the first presented hypophagia and weight loss,
suggesting that an obesity-related signal is able to inhibit food intake,
and hypothalamic integrity is required to its action [16]. One more
step has been taken after the description of two mouse models of
obesity, originated from spontaneous monogenic mutation with an
autosomal recessive inheritance pattern, the ob/ob [17] and db/db
mice [18]. Both present extreme obesity as a consequence of
hyperphagia and decreased energy expenditure. The parabiosis of
ob/ob to lean mice resulted in weight loss only in obese animals,
whereas when the same experiment was repeated with db/db mice,
weight loss was observe only in lean controls [19]. The conclusion was
that ob/ob animals lack a circulating factor that inhibits food intake,
while db/db mice produce this factor in excess, but are not able to
respond to it. After these results, it became clear that fat mass is
controlled by neuroendocrine connections. However, some more years
were required until the development of positional cloning technique
allowed identification of leptin by cloning the ob gene [20] and leptin
receptor by cloning the db gene [21].

Leptin, the Main Adiposity Signal
Leptin (from the Greek word for thin, leptos) is a polypeptide

produced by white adipose tissue and secreted into the circulation in
direct proportion to its mass [20,22,23]. Leptin crosses the blood-brain

barrier and binds to its receptor (ObR or LEPR), which belongs to a
cytokine family receptor [21]. Although it is found broadly, the long
isoform (ObRb or LEPR-1), the one that has all the protein domains
required for signaling, is expressed mainly in the hypothalamus [23]. It
is noteworthy that only this isoform is mutant in C57BL/Ks db/db
mice, whose phenotype is identical to that of animals with complete
deletions of ob or ObRb gene [24]. ObRb is constitutively bound to a
cytosolic protein with tyrosine kinase activity, called JAK2 (Janus
kinase-2) [25]. Leptin binding promotes receptor dimerization with
tyrosine phosphorylation of JAK2, which in turn catalyzes the
phosphorylation of tyrosine residues in the intracellular portion of the
receptor. A number of proteins involved in signal transduction are
activated, including STAT3 (signal transducer and activator of
transcription 3), which is translocated to the nucleus and regulates
gene expression of neurotransmitters and other proteins (Figure 1)
[26]. Simultaneously, the activation of JAK and STAT induces the
expression of signaling inhibitors such as SOCS-3 (suppressor of
cytokine signaling 3) and PTP1B (protein tyrosine phosphatase-1B)
negatively modulating the biological response to leptin [27,28].

Figure 1: Leptin and insulin signaling pathways.

Peripheral administration of leptin decreases food intake and leads
to weight loss in ob/ob mice and, to a lesser extent, in lean controls,
but has no effect in db/db mice [29-31]. Similar results are observed
after intracerebroventricular (icv) administration of small doses,
insufficient to modify leptin peripheral concentration, indicating that
these effects arise from central actions [31]. These data confirmed the
existence of a homeostatic system, in which leptin, through a negative
feedback loop, modulates the activity of neuronal circuits that control
adipose tissue mass.

After leptin identification, the knowledge about physiologic
processes that regulate energy balance rapidly increased. Several other
circulating factors, mainly produced by adipose tissue, gastrointestinal
tract and pancreas, in addition to the nutrients themselves, may
influence feeding behavior by acting on the hypothalamus and other
areas of the CNS [32]. For example, cholecystokinin, glucagon-like
peptide-1 (GLP-1) and peptide YY are hormones produced by
specialized enteroendocrine cells in the gastrointestinal tract,
phasically secreted in response to feeding [33]. Although these
peptides may influence meal size, acting as satiety signals, their action
on adipose tissue mass is not as relevant. For this to happen, the factor
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must be tonically active and proportional to the amount of fat stored,
such as leptin, considered the main adiposity signal in the body.
Besides leptin, another hormone is able to play this role: insulin [34].

Insulin and Energy Homeostasis
Although recent data indicate that insulin plays a secondary role as

an adiposity negative-feedback signal, it was the first hormone to be
studied in this regard. Several experiments with different species have
been conducted over the last four decades, demonstrating that icv
administration of insulin decreases food intake and increases energy
expenditure [34]. Insulin is produced by pancreatic beta cells and is
tonically secreted with increases during meals. Both basal and
stimulated components of the secretion are directly proportional to
adiposity [35]. As leptin, insulin crosses the blood-brain barrier and
acts on receptors predominantly expressed in hypothalamic neurons.
After insulin binding to the extracellular α subunit of its receptor (IR),
the intracellular β subunit autophosphorylates, promoting the
recruitment and tyrosine phosphorylation of insulin receptor substrate
(IRS) [36]. Among members of IRS protein family, IRS-2 is the one
with highest expression in the hypothalamus and is the main
responsible for mediating the central effects of insulin. Phosphorylated
IRS-2 binds to the regulatory subunit (p85) of the
phosphatidylinositol-3-kinase enzyme (PI3K), activating its catalytic
subunit (p110), which in turn phosphorylates phosphatidylinositol
bisphosphate (PIP2) to produce phosphatidylinositol triphosphate
(PIP3). PIP3 is a key signaling molecule that recruits and activates
other intermediate proteins of insulin-signaling pathway, such as PDK
and Akt. Phosphorylated Akt, among other downstream signaling
events, inactivates FOXO-1 mediated transcription by promoting its
nuclear exclusion (Figure 1) [37,38]. Insulin central actions on energy
balance are similar to those of leptin, that is, in contrast to the anabolic
effects on peripheral tissues, insulin hypothalamic actions produce
catabolic effects [39]. There is apparently a cross-talking between the
signaling pathways of leptin and insulin in the CNS, by which leptin
actions are positively modulated by insulin and vice versa [40].

Hypothalamic Resistance to Leptin and Insulin
Soon after the identification of leptin, researchers realized that the

vast majority of obese subjects did not lack leptin or insulin.
Circulating levels of these hormones were rather increased [22], and
yet there was no reduction in food intake. Thus, they postulated that
common forms of obesity were associated with resistance to the
central actions of adiposity signals [41]. Indeed, leptin treatment was
relatively ineffective in most of those cases [42,43], and the response to
central administration of leptin and insulin is attenuated in animal
models of diet-induced obesity [44,45]. In recent years, several
experimental studies have contributed to advances in knowledge about
the mechanisms involved in hypothalamic resistance to these
hormones. The main findings revealed the induction of an
inflammatory process specifically in the hypothalamus, which activates
intracellular signaling pathways that attenuate leptin and insulin
biological effects [40,44-47].

 The most important mechanisms leading to leptin and insulin
resistance are apparently associated to postreceptor defects [40,44-47].
Peripheral insulin resistance induced by obesity-associated low-grade
chronic inflammation had been known for some time [48–50].
Hotamisligil et al. demonstrated that the induction of tumor necrosis
factor-α (TNF-α) mRNA expression in adipose tissue of animal
models of obesity and diabetes [48]. Furthermore, there was a rise in

local and systemic levels of the protein, and its neutralization
significantly increased peripheral glucose uptake in response to insulin
[48]. However, only in 2005 such a phenomenon was described in the
hypothalamus [46]. De Souza et al. studied the effect of diet on gene
expression patterns in the hypothalamus of rats, and reported a
significant rise in inflammatory proteins expression, such as TNF-α,
pro-interleukin-1β (IL-1β) and interleukin-6 (IL-6) after 16 weeks of
high-fat diet [46], accompanied by activation of protein kinases such
as c-Jun N-teminal kinase (JNK) and IκB kinase (IKK) [46,51,52].
Activated JNK catalyzes the serine phosphorylation of IRS, which
reduces the activation of PI3K/Akt [46]. Genetic or pharmacological
inhibition of JNK in the hypothalamus of rodents restores insulin
signaling [46,51]. IKK is expressed in neurons of the mediobasal
hypothalamus, but normally remains inactive. When activated, it
phosphorylates IκB, a protein that sequesters NF-κB (nuclear factor-
κB) in the cytoplasm. The phosphorylated IκB is degraded, releasing
NF-κB to translocate to the nucleus and mediate transcription of
inflammatory genes [52]. The activation of this pathway in mice leads
to insulin and leptin resistance in the hypothalamus, hyperphagia and
weight gain, while its deletion protects against the development of
obesity [52]. Hypothalamic inflammation may also impair leptin and
insulin signaling by inducing physiological inhibitors of these
pathways, such as SOCS3 [27,53–55] and PTP1B [28,56,57]. Besides
stimulation by leptin itself, SOCS expression may also be induced by
several cytokines and lipopolysaccharides [54]. SOCS3 can directly
inhibit or facilitate degradation of receptors and signaling proteins
[54], and its expression is increased in the hypothalamus of high-fat
fed mice [58]. While neuron-specific deletion of SOCS3 protects
against diet-induced obesity [53], overexpression of SOCS3 in POMC
neurons induces leptin resistance, obesity and impaired glucose
tolerance [55]. The proinflammatory cytokine TNF-α may induce
expression of PTP1B, via NF-κB activation [59]. PTP1B inhibits
insulin and leptin signaling by dephosphorylating the insulin receptor,
JAK2 and other signaling molecules [28]. Hypothalamic PTP1B
expression increases in response to high-fat diet and to TNF-α
systemic administration [59], and inhibition of PTP1B in CNS of
rodents leads to reduced adiposity and enhanced leptin and insulin
sensitivity [56,57]. In addition, PKC-θ (protein kinase C-θ) can
mediate the deleterious effects of high-fat diet on central adipostatic
signaling [60]. Central exposure to palmitic acid induces activation of
PKC-θ, which reduces insulin signaling. PKC-θ knockdown in the
hypothalamus improves local insulin signaling and peripheral glucose
homeostasis, besides reducing diet-induced weight gain [60].

The data presented above show that manipulating the various
mechanisms involved in hypothalamic leptin and insulin resistance
may modify adiposity, which suggests that these alterations are not
just an extension of the inflammation found in the periphery, but are
engaged in obesity pathogenesis, at least in animal models [8]. In
support of this hypothesis, diet-induced hypothalamic inflammation
precedes weight gain and adipose tissue inflammation in rodents
[45,61].

 Among the potential mechanisms involved in the connection
between fatty acids and hypothalamic inflammation are the activation
of Toll-like receptor 4 (TLR4) and the endoplasmic reticulum stress
(ERS) [62–65]. TLR4 is a cell surface receptor of the innate immune
system that recognizes lipopolysaccharides of the Gram-negative
bacteria cell wall. Within the CNS, it is expressed predominantly in
microglia cells [66]. Central injection of long chain saturated fatty
acids, but not monounsaturated fatty acids, induces a local
inflammatory response by activating TLR4 [62]. The deletion of either
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TLR4 or MyD88–an essential adapter protein in the induction of
proinflammatory cytokines by TLR4–protects against the development
of leptin and insulin resistance and diet-induced obesity [62,63].
Nutrient excess, particularly saturated fatty acids, can also trigger ERS,
which in turn activates inflammatory pathways [62,64]. The
endoplasmic reticulum is responsible for the synthesis and maturation
of a number of proteins. Improper folding of newly formed proteins
may have deleterious consequences for the cell and leads to the
initiation of an adaptive response called UPR (unfolded protein
response) during which global translation is reduced, as part of a
biological strategy that aims solving the process [64]. ERS seems to
play a key role in the induction of hypothalamic leptin resistance. Its
inhibition restores leptin sensitivity and reduces weight in mice fed a
high-fat diet, while its induction in neurons leads to leptin resistance
and obesity [65]. The mechanisms by which ERS is induced in the
presence of high-fat diet are not well understood. It has been suggested
that lipids could directly affect the homeostasis of the endoplasmic
reticulum, by changing membrane composition and depleting calcium
stores [67,68]. However, a study from our group demonstrated that
TLR4 inhibition is sufficient to improve ERS upon high-fat feeding or
icv injection of saturated fatty acids, suggesting that it is secondary to
TLR4 activation [62].

It has recently been shown that a hyperlipidic diet may also be
associated with apoptosis of hypothalamic neurons in rodents [69].
Interestingly, the activation of apoptotic proteins is more closely
related to the diet composition than to the amount of calories
consumed or body mass [69]. Another level of regulation that may be
important in energy homeostasis control is synaptic plasticity. Diet
and peripheral metabolic hormones can influence the organization of
synaptic connections between hypothalamic neurons [70-72]. Changes
in these connections together with neuronal apoptosis might be
related to the difficulty in completely reversing excessive adiposity,
even with cessation of the stimulus that initiated the hypothalamic
inflammation [8]. On the other hand, neurogenesis has also been
described in the adult rodent hypothalamus, and modulation of this
process may potentially re-establish energy balance [73].

Hypothalamic Alterations in Obese Humans
Despite recent advances in characterizing hypothalamic alterations

in animal models of obesity, there is no evidence to date that the same
molecular mechanisms may contribute to the development of obesity
in humans [8]. It is well known that the presence of leptin and the
integrity of its signaling pathways are crucial to energy homeostasis
also in humans, since null mutations in genes encoding leptin, leptin
receptor, or downstream neurotransmitters or receptors cause
hyperphagia and severe obesity that, in the case of leptin deficiency,
are reversed following treatment with human recombinant leptin
[74,75]. Most obese individuals show hyperleptinemia, and leptin
treatment in these cases is relatively ineffective, indicating leptin
resistance [22,42,43]. However, due to technical difficulties in studying
human CNS, the underlying mechanisms remain obscure.

Since it is not possible to directly evaluate human brain tissue in
vivo, one way of investigating CNS biomarkers is through the analysis
of cerebrospinal fluid (CSF), which is in direct contact with neuronal
tissue. Stenlöf et al. [76] demonstrated that the levels of IL-6 in CSF of
overweight or obese subjects is negatively correlated with body fat.
More recently, a study by our group showed that IL-6 levels in the CSF
of severely obese subjects are significantly lower compared to lean
ones, and increase after bariatric surgery-induced weight loss [77].

Conversely, peripheral levels of IL-6 are increased in obesity [77,78].
IL-6 is a pleiotropic cytokine that may exert either pro- or anti-
inflammatory actions, depending on concentration, target tissue and
probably species [78]. In adipocytes, IL-6 induces insulin resistance
and its expression is increased in cells of insulin resistant subjects [79].
In mice, both acute and chronic peripheral administration of IL-6
impaired insulin sensitivity in the liver, and IL-6 neutralization
improved hepatic insulin resistance [80–82]. On the other hand,
whole-body IL-6 gene deletion in mice led to obesity and impaired
glucose tolerance in adulthood, which was partially reversed by
replacement of IL-6 at low doses [83]. Mice overexpressing human
IL-6 in the brain and lungs exhibited enhanced insulin and leptin
sensitivity [84]. In addition, acute icv–but not peripheral–injection of
IL-6 in rats increased energy expenditure, suggesting that the anti-
obesity effects of IL-6 are exerted mainly through its actions on the
CNS [83]. A recent study has shown that central injection of a GLP1
receptor agonist with well-known weight-lowering effects potently
increased hypothalamic expression of IL-6 [85]. IL-6 can also be
produced and released by skeletal muscle, and mediate the effects of
exercise on metabolism [86]. Physical activity-induced improvement
in leptin and insulin sensitivity in the hypothalamus of rats seems to
be dependent on IL-6 central actions [87], a mechanism that also
involves induction of IL-10 [88]. IL-10 is a classical anti-inflammatory
cytokine which curbs neuronal degeneration through inhibition of
apoptosis [89]. We have observed, in obese patients undergoing
bariatric surgery, a significant increase in CSF levels of IL-10 after
weight loss [77], pointing towards an anti-inflammatory effect.
Regarding IL-6, evidence is still limited, and the effects of this cytokine
on systemic metabolism seem to be considerably complex. Although
some data suggest that IL-6 actions in CNS can positively affect insulin
and leptin sensitivity, we have previously shown that its expression is
increased in the rat hypothalamus after a high-fat diet [46]. Thus,
additional work is necessary to further understand the role of IL-6 as a
biomarker of hypothalamic inflammation.

Another way of evaluating human CNS is by neuroimaging studies.
Techniques such as functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET) allow noninvasive detection
of dynamic functional changes of CNS regions associated with
cognitive and behavioral processes [90-92]. Neuroimaging studies
have demonstrated significant differences in hypothalamic activity in
response to food intake between obese and lean subjects [93-95]. We
have recently evaluated reversibility of these changes after bariatric
surgery-induced weight loss. Obese subjects, when compared to lean
controls, showed distinct patterns of brain activity in response to
glucose ingestion, which are partially reversed following body mass
reduction [77]. We don’t know whether a greater weight loss or a
longer period of time elapsed from the surgery would completely
restore the dysfunction. Should the neuronal apoptosis phenomenon
as described in obese rodents also occur in humans, complete reversal
might not be achieved. Accordingly Thaler et al. found evidence of
increased gliosis in the mediobasal hypothalamus of obese humans
using structural magnetic resonance imaging. These findings suggest
that, as observed in experimental animals, obesity in humans is
associated with neuronal injury in the hypothalamus [61].

Conclusion
The understanding of the mechanisms contributing to the

deterioration of the homeostatic control of energy balance in animal
models of obesity has grown considerably in recent years. These
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mechanisms involve the development of an inflammatory process in
the hypothalamus and eventually neuronal damage, resulting in local
resistance to leptin and insulin. In humans there is also evidence, albeit
indirect, that similar alterations are present in obesity. Interventions to
halt or limit this process might become important strategies for the
prevention and treatment of obesity and related diseases.
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