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Introduction
Hydrogen peroxide (H2O2) plays a pivotal role in various industrial 

applications [1]. It is an essential mediator in pharmaceutical, clinical, 
and environmental research. In addition, it is a byproduct of highly 
selective oxidases and an important contaminant in several industrial 
products and wastes [2]. Therefore, a reliable and economical method 
for the determination of H2O2 is of great significance.

Several methods, such as titrimetry [3], spectrometry [4], 
chemiluminescence [5], fluorimetry [6], chromatography [7], and 
electrochemical techniques [8,9], have been reported for this purpose. 
Among these techniques, the electrochemical techniques are preferable 
because of their simplicity, low cost, high sensitivity, and selectivity 
[10-16]. In particular, an amperometric biosensor is an attractive tool 
for the detection of H2O2. Other electrochemical methods such as 
cyclic voltammetry, linear sweep voltammetry and differential pulse 
voltammetry are also used for the development of H2O2 biosensor. 

In the electrochemical methods, different types of modified 
electrodes have been used. Horseradish Peroxidase (HRP) enzyme is one 
of the mostly used materials for the modification of electrode. Different 
mediator such as ferrocene, hydroquinone, catechol, methylene blue, 
methylene green, nile blue, potassium hexacyanoferrate, thionine, 
toluidine blue etc. have been used with the enzyme modified electrodes. 
However, mediator-free HRP based biosensor was also reported. 
In this case, the direct electrochemistry of HRP enzyme plays vital 
role. Hemoglobin (Hb) protein is also used for the modification of 
electrodes. In most case, mediator is not necessary for protein modified 
electrodes. Enzyme free or protein free modified electrodes were also 
reported for the electrochemical method based H2O2 biosensor. Some 
other materials such as nanomaterials, conducting polymers, metal 
oxides, quantum dots, dendrimer, bilayer lipid membrane, kieselguhr 
membrane, ionic liquid, liquid crystal, etc. have been used with enzyme 
and protein modified electrodes. The sensitivity and selectivity of 
the H2O2 biosensor depends on how the electrodes are modified by 
different materials.

In this review, we have focused on the strategy of the surface 
modification with HRP and Hb, for the determination of H2O2 based 
on electrochemical methods.

Detection Mechanism of H2O2 Biosensor
The detection mechanism of H2O2 biosensor depends on how the 

electrode is modified and whether the mediator is used or not. Direct 
electron transfer between enzymes and electrodes is not easy and 
therefore, need to use mediator. The role of the mediator is to shuttle 
electrons efficiently between electrode and enzyme. In the presence of 
Mediator (M), the reaction mechanism of the H2O2 biosensor based on 
the HRP enzyme modified electrodes can be summarized as follows 
[17]: 

H2O2+HRPred → H2O+HRPox

HRPox+Mred→HRPred+Mox

Mox+2H++2e→Mred 

Net reaction: H2O2+2e+2H+→2H2O

First, H2O2 in the solution is reduced by the immobilized HRP. 
Then the reduced HRP is regenerated with the aid of the mediator, 
while the mediator itself is oxidized in the enzymatic reaction. Finally, 
the oxidized mediator is electrochemically reduced on the electrode, 
leading to an increase in the reduction current, as shown in figure 1.

Enzyme (HRP) or protein (Hb), in some modified electrodes, shows 
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Figure 1: Schematic diagram of the reaction sequence within the enzyme 
electrode.
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direct electrochemistry. In this case, the mediator is not necessary. In 
the presence of H2O2, the reduction current of voltammogram for the 
direct electron transfer of enzyme or protein generally increases due to 
the electrocatalytic behavior of immobilized enzyme or protein to the 
reduction of H2O2. Furthermore, the reduction peak current increases 
with increasing H2O2 concentration. The electro catalytic mechanism 
could be expressed as follows [18,19].

Enzyme/protein (reduced form) +H2O2→Enzyme/protein (oxidized 
form) +H2O

Enzyme/protein (oxidized form)+2e+2H+→ Enzyme/protein 
(reduced form) +H2O

Net reaction: H2O2+2e +2H+→2H2O 

Enzyme (or protein) is efficiently converted to its oxidized form, 
which is then reduced at the electrode surface by the direct electron 
transfer. Therefore, the reductive current increased in the presence of 
H2O2.

Mediated HRP based biosensor

HRP is one of the most extensively studied and commonly used 
enzymes for the construction of H2O2 biosensors. It contains heme as a 
prosthetic group, which is the protein active site, along with the heme-
iron Fe (III). It can catalyze the oxidation of a wide variety of substrates 
by H2O2. Moreover, the reduced form of HRP can be chemically 
reoxidized by H2O2. Generally, direct electron transfer between 
HRP and an electrode is difficult because the active sites of HRP are 
deeply buried in a thick protein shell, and because the large distance 
between the active sites and the electrode surface will slow down the 
electron transfer. Electron transfer via a mediator, however, is more 
effective for establishing an electrical connection between the redox 
centers and the electrode. Lin et al. [20] fabricated a H2O2 biosensor by 
immobilizing HRP on the methylene blue modified graphite electrode. 
Here, methylene molecule act as a mediator, which could shuttle 
electrons between immobilized HRP and graphite substrate. Both 
ferrocene [21] and carboxylic acid functionalized ferrocene [22], have 
been used as a mediator with the HRP for the construction of H2O2 
biosensor. Wang et al. [23] used potassium hexacyanoferrate with the 
peroxidase for the fabrication of biosensor, and found a detection limit 
of 0.5 µM for H2O2. A lower detection limit was obtained when they 
used tetra thiafulvalene [24], and methylene green [25], as a mediator. 
Wang et al. [26] utilized catechol mediator with the HRP enzyme for 
the construction of biosensor. They have used sol-gel/organic hybrid 
composite material for the immobilization of HRP. For the covalent 
immobilization of HRP, Gao et al. [27] used thionine modified surface, 
where thionine itself act as a mediator. A successful entrapment of HRP 
in a gelatin matrix was proposed by Yao et al. [28], for the development 
of H2O2 biosensor. The same group also used nano composite of 
methylene blue and silicon oxide as mediator to construct a biosensor 
with HRP, co-immobilized in the gelatin matrix and cross-linked with 
formaldehyde [29].

Nano materials along with mediator have been widely used for 
the development of HRP based H2O2 biosensor. Among the different 
nano materials, gold nano particles are the mostly used materials for 
the immobilization of HRP. Lei et al. [30] used nano gold film modified 
surface for the efficient and stable immobilization of HRP. The modified 
electrode exhibited electro catalytical response to the reduction of H2O2. 
A linear range from 6.1 µM to 1.8 mM, with a detection limit of 6.1 µM 

was obtained. Lei et al. [31] immobilized HRP labeled nano-gold on 
a silica sol-gel/alginate hybrid film and found a better performance, 
compared with the nano gold film modified surface. A more better 
result was obtained when the immobilizing matrix was replaced with 
the poly (2,6-pyridinedicarboxylic acid) [32,33], as reported a nano-Au 
monolayer for the immobilization of HRP. They used thiol functional 
group-derived Carbon Ceramic Electrode (CCE) and obtained 
monolayer through covalent linkage between nano-Au and thiol group 
on the surface of CCE. The fabricated biosensor by immobilizing HRP 
showed a linear range of 12.2 µM to 1.1 Mm, with a detection limit 
of 6.1 µM. A lower detection limit was obtained by using PAMAM 
dendrimer/cyst amine to support the nano-Au monolayer [34]. A 
Layer-by-layer (LBL) assembly of nano-Au and Toluidine Blue (TB) 
was also reported for the fabrication of a mediated H2O2 biosensor [35]. 
Zhu et al. [36] used gold nanoparticles, nafion, Polythionine (PTH), and 
gelatin as matrixes for the immobilization of HRP and construction of 
H2O2 biosensor, as well. The biosensor showed the catalytic reduction 
of H2O2 and the obtained detection limit was 20 µM. Ahammad et al. 
[16] lowered the detection limit to 1.5 µM by using gold nanoparticle-
adsorbed conducting PTH modified GCE [37]. The fabrication process 
of the biosensor is shown in figure 2. PTH nanowires have also been 
synthesized by electro deposition in porous Anodic Aluminum 
Oxide (AAO) template, and used to encapsulate HRP and nano-
Au by in situ electrochemical copolymerization [38]. The resulting 
PTHNWs–HRP–nano-Au film modified electrode showed to be 
excellent amperometric sensors for H2O2. For the fabrication of a H2O2 
biosensor, Jia [39] immobilized HRP-Au nanoparticles on a viologen-
modified Glassy Carbon Electrode (GCE) by amino cation radical 
oxidation in basic solution. Viologen acts as a mediator and a covalent 
linker between GCE and the Au nanoparticles. A nanocomposite of 
gold nanoparticles–bacterial cellulose nano fibers was also described 
for the immobilization of HRP [40]. The constructed biosensor showed 
electro catalytic activities to the reduction of H2O2, in the presence of 
the mediator hydroquinone (Figure 2).

Carbon nanotubes are also used for the development of H2O2 
biosensor. Tripathi et al. [41] developed an amperometric H2O2 
biosensor by entrapping HRP in an ormosil composite, doped with 
ferrocene monocarboxylic acid–bovine serum albumin conjugate 
and Multiwall Carbon Nanotubes (MWCNTs). The proposed H2O2 
biosensor exhibited a linear range of 0.02–4.0 Mm, with a detection 
limit of 5.0 µM. The detection limit is lowered to 0.5 µM, when the 
fabrication of the biosensor was based on the co-immobilization of 
HRP, Methylene Green (MG), and MWCNTs, within ormosils [42]. 
It is still better compared with the Layer-by-layer (LBL) assembly of 
the nanocomposite of Methylene Blue-Multiwalled Carbon Nanotubes 
(MB-MWNTs) and HRP [43]. However, a higher sensitive H2O2 
biosensor can be constructed by using the nanocomposite of brilliant 
cresyl blue-MWCNTs [44], nile blue-MWCNTs [45] and toluidine 
blue-MWCNTs [46], methylene blue-MWCNTs [47]. Moreover, a 
very high sensitive H2O2 biosensor can be constructed by wrapping 
the nanocomposite of MB-Sodium Dodecylsulfate (SDS) with the 
MWCNTs [48]. 

Chitosan (CHIT) is extensively used for the development of 

PTH GNP HRP GC/PTH/GNP/HRPGC/PTH/GNPGC/PTHGC

Figure 2: Schematic diagram of the fabrication of the GCE/PTH/GNP/HRP 
biosensor electrode [37].

HRP based H2O2 Biosensors 
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mediated HRP based H2O2 biosensor. Wang et al. [49] described 
the fabrication of a H2O2 biosensor via an easy and effective enzyme 
immobilization method with the “sandwich” configuration: ferrocene-
CHIT: HRP: CHIT-glyoxal. The biosensor surface was cross-linked with 
glyoxal, in order to prevent the loss of immobilized HRP. Ferrocene 
was selected and immobilized on the GCE surface as a mediator. Wang 
and Zhang [50] prepared a sol-gel organic-inorganic hybrid material 
from natural CHIT and tetrakis(2-hydroxyethyl) orthosilicates. An 
amperometric H2O2 biosensor was developed by immobilizing HRP 
onto the hybrid gel matrix. The linear range for the determination 
of H2O2 was found to be from 1.0 µM to 0.3 Mm, with a detection 
limit of 0.4 µM. Another organic–inorganic hybrid was prepared by 
Chen et al. [51] by dispersing colloidal carbon microspheres in CHIT 
solution. Then, they constructed a H2O2 biosensor by entrapping HRP 
in hybrid material. Also, organic-inorganic hybrid material composed 
of zirconia-CHIT sol–gel and Au nanoparticles have been used for 
entrapping HRP and fabricating H2O2 biosensor, as shown in figure 
3 [52]. A little lower detection limit was obtained than the previous 
one. Fe3O4/CHIT modified GCE can be used for the immobilization 
of HRP and fabrication of H2O2 biosensor, as well [53]. However, 
the sensitivity of the biosensor is not as good as previous one. The 
sensitivity of the biosensor increased when magnetic carbon-coated 
iron nanoparticles were used to immobilize HRP on the surface of a 
PTH modified GCE, in combination with CHIT and cross-linking of 
glutaraldehyde. A very high sensitive biosensor was reported by Liu 
et al. [54], based on HRP and γ-Al2O3/CHIT composite film at a GCE. 
The sensitivity of the biosensor again decreased when HRP and CHIT-
wrapped NiFe2O4 nanoparticles [55], or MgO nanoparticles-CHIT 
composite matrix [56], were used. Kafi et al. [57] developed a H2O2 
biosensor based on the co-immobilization of HRP and CHIT, onto Au-
modified TiO2 nanotube arrays. Electrochemical measurements show 
that the Au-modified TiO2 nanotube arrays provide excellent matrices 
for the immobilization of HRP, and that the optimized electrochemical 
biosensor exhibits long linearity, a low detection limit, high stability, 
and very good reproducibility for the detection of H2O2 (Figure 3).

Various polymer films have been reported for the development of 
mediated HRP based H2O2 biosensor. Qu et al. [58] proposed a H2O2 
biosensor by encapsulating HRP in situ, in poly (neutral red) nanowires 
(PNRNWs) by electrochemical copolymerization. The PNRNWs 
showed excellent efficiency of electron transfer between the HRP and 
the GCE for the reduction of H2O2, and the PNRNWs–HRP modified 
GC electrode showed to be excellent amperometric sensors for H2O2 
at -0.1V, with a linear response range of 1 µM to 8 mM. For high 
enzyme loading density and long-term retention of bioactivity, Zeng 
et al. [59] synthesized a looped HRP-poly amidoamine nanohybrid 

for the construction of a H2O2 biosensor. Polythiolated-β-cyclodextrin 
polymer also synthesized for immobilizing adamantane-modified HRP 
via supramolecular associations [60]. Then the enzyme-containing 
electrode was used as an amperometric H2O2 biosensor. Another 
amperometric H2O2 biosensor was fabricated by immobilizing HRP on 
a GCE by poly (glycidyl methacrylate-co-vinylferrocene) (poly(GMA-
co-VFc)) film [61]. 

A polymeric electron transfer mediator containing copolymers 
of Gycidyl Methacrylate (GMA) and Vinylferrocene (VFc), with 
different molar ratios, was prepared by free-radical copolymerization. 
The mediated H2O2 biosensor showed a fast response of less than 
4 s, with a linear range 2.0-30.0 mM. Some other meterials, such as 
β-cyclodextrin-branched carboxymethylcellulose residues [62], 
manganese oxide [63], zinc oxide [64], magnetic dextran microsphere 
[65], bilayer lipid membrane [66], and ionic liquid [67], are reported 
for the immobilization of HRP and development of mediated H2O2 
biosensor. Table 1 summarizes characteristics of the mediated HRP 
based H2O2 biosensors. 

Mediator-free HRP based biosensor

The direct electrochemical behavior of the enzyme or protein at 
the electrode surface provides a foundation for the fabrication of the 
mediator-free biosensors. It simplifies the preparation processes of 
sensing devices and avoids the toxicity of the mediator, in comparison 
with the mediator based biosensors. It features the advantages of high 
sensitivity and selectivity, and therefore, attracts considerable attention. 

Depending on the immobilizing matrix, HRP exhibited direct 
electrochemical behavior towards the reduction of H2O2. For example, 
a quasi-reversible electron transfer was observed in the absence of 
mediator, when HRP is incorporated in a salt bridge-supported Bilayer 
Lipid Membrane (sb-BLM), modified with Lauric Acid (LA). Zhang 
et al. [68] utilize this quasi-reversible electron transfer to construct a 
H2O2 biosensor. 

Different nano materials are widely used for the development of 
mediator-free HRP enzyme based biosensor. Liu and Ju [69] proposed 
a renewable reagentless H2O2 biosensor based on the direct electron 
transfer of HRP, which was immobilized on a gold nano particle-
modified carbon paste electrode. Electrochemical methods were 
used to investigate the direct electrochemistry of HRP. The biosensor 
displayed an excellent electrocatalytic response to the reduction of 
H2O2, without the aid of an electron mediator. Gold nanoparticle-
modified ITO electrode was also used for the immobilization of 
HRP and investigation of the direct electrochemistry of HRP [70,71]. 
However, the performance of the mediator-free biosensor increased 
when gold nanoparticle and HRP embedded simultaneously on sol–gel 
network [72]. Yin et al. [73] reported the preparation of HRP–Gold 
Nanoparticles (GNPs)–Silk Fibroin (SF) modified GCE by one step 
procedure, and investigated the direct electrochemistry of HRP at the 
modified electrode. The fabricated mediator-free biosensor showed an 
excellent and quick electrocatalytic response to the reduction of H2O2. 
A very sensitive mediator-free biosensor was prepared based on the 
layer-by-layer assembly of Mercapto Propionic Acid (MPA), Cystine-
based polymethylene-bridged cyclic bisureas (CBU)/GNPs and HRP 
on gold electrode [74]. A lower detection limit of 50 nM for H2O2 was 
obtained. Gold electrode was further modified with one-dimensional 
gold nanowires (Au NWs) and TiO2 nanoparticles (nano-TiO2) [75]. 
However, the sensitivity of the biosensor using the modified electrode 
was not as high as the previous one. A better performance of the 
biosensor was obtained when a layered Calcium carbonate–Gold 

Fcu-pPA Fcu-pPA

GNPs

HRP

Figure 3: Illustration of the fabrication process of the biosensor (redrawn from 
reference [52], [80]).
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Nanoparticles (CaCO3–GNPs) inorganic hybrid composite was used 
for the immobilization of HRP [76]. 

electrode was prepared for the immobilization of HRP [78]. The 
prepared enzyme electrode was used for the bioelectrocatalytic 
reduction of H2O2, without using any mediator. A remarkable 
detection limit of 1.5 nM was achieved when HRP was covalently 
attached to layered nonoriented MWNTs modified electrode 
[79]. The composites of MWCNTs and core–shell organosilica@
CHIT crosslinked nanospheres as an immobilization matrix for the 
construction of an amperometric H2O2 biosensor was described by 
Chen et al. [80]. HRP was immobilized onto the composite film through 
electrostatic interaction between oppositely charged organosilica@

Modified Electrode Mediator Linear range Detection
Limit (µM) 

Reference

GE/MB/HRP methylene blue 10–560  µM 3.0 [20]
SGCE/PPy/HRP ferrocene carboxylic acid 0.9 µM–0.2 mM 50.0 [22]
GCE/SG/HG/HRP potassium hexacyanoferrate 0.1 µM–3.4 mM 0.5 [23]
SGOIH/HRP Tetrathiafulvalene up to 1.3 mM 0.3 [24]
SPCE/ TH/HRP thionine 5–65  µM 0.5 [27]
GCE/GNP/HRP Hydroquinone 6.1 µM–1.8 mM 6.1 [30]
GCE/SSG/AH/GNP/HRP Hydroquinone 12.2 µM–1.5 mM 0.6 [31]
PPDA/GNP/HRP Hydroquinone 0.3 µM–2.0 mM 0.1 [32]
CSG/GNP/HRP Hydroquinone 12.2 µM–1.1 mM 6.1 [33]
Cys/PAMAM/GNP/HRP Hydroquinone 10 µM–2.5 mM 2.0 [34]
TB/GNP/HRP toluidine blue 0.2 µM–8.6 mM 70 nM [35]
GL/PTH/GNP/HRP Polythionine 50 µM–30.2 mM 20.0 [36]
GCE/PTH/GNP/HRP Hydroquinone 5.0 µM–0.2 mM 1.5 [37]
PTHNW/GNP/HRP Polythionine 0.5 µM–13.0 mM 0.3 [38]
GCE/BAPV/GNP/HRP    BAPV 0.2 µM–2.0 mM 0.1 [39]
BCN/GNP/HRP Hydroquinone 0.3 µM–1.0 mM 0.1 [40]
FMC/BSA/MWNTs/OC/HRP ferrocene carboxylic acid 20 µM–1.0 mM 5.0 [41]
MG/MWCNTs/HRP methylene green 0.5 µM–20.0  µM 0.5 [42]
MB/MWCNTs/HRP methylene blue 4.0 µM–3.8 mM 1.0 [43]
BCB/MWCNTs/HRP brilliantcresyl blue 0.3 µM–10.0 mM 0.1 [44]
NB/MWCNTs/HRP nile blue 0.2 µM–38.0 mM 0.1 [45]
TB/MWCNTs/HRP toluidine blue up to 40 mM 1.7 [46]
MB/SDS/MWCNTs/HRP methylene blue 0.2 µM–1.4 mM 5 nM [48]
GCE/FC-CHIT/HRP/CHIT-GLY Ferrocene 35.0 µM–1.1 mM 8.0 [49]
GCE/CMS/CHIT/HRP Hydroquinone 0.1–1.6  mM 0.93 [51]
ZrO2/CHIT/GNP/HRP 2,6-pyridinediamine -copper 0.8 µM–3.7 mM 0.3 [52]
GCE/ Fe3O4/CHIT/HRP methylene blue 0.2–12.0 mM 100 [53]
GCE/ γ-Al2O3/CHIT/HRP ferrocene carboxylic acid 0.5 µM–0.7 mM 70 nM [54]
GCE/ NiFe2O4/CHIT/HRP ferrocene carboxylic acid 10.0 µM–2.0 mM 2.0 [55]
Nano-MgO/CHIT/HRP Hydroquinone 0.1 µM–1.3 mM 50 nM [56]
TiO2 nanotube/CHIT/HRP methylene blue 5.0 µM–40.0 mM 2.0 [57]
GCE/ PNRNWs/HRP neutral red 1.0 µM–8.0 mM 1.0 [58]
GCE/PAMAM/HRP Hydroquinone 3.1 µM–2.0 mM 0.8 [59]
GDE/PTHCD/HRP Hydroquinone 28.0 µM–5.5 mM 7.0 [60]
PGMAVF/HRP Ferrocene 2.0–30.0 mM 2.6 [61]
ZnO/CHIT/HRP Hydroquinone 0.5 µM–70 mM 0.3 [64]
GCE/MDMS/HRP Hydroquinone 0.2 µM–0.7 mM 78 nM [65]
PLM/PDA/HRP Hydroquinone 0.3 µM–3.1 mM 0.1 [66]
GCE/PTBA/RTIL/HRP Hydroquinone 5.0 µM–17.5 mM 0.5 [67]

GE: Graphite Electrode; MB: Methylene Blue; HRP: Horseradish Peroxidase; SGCE: Sol–gel Derived Composite Carbon; PPy: Polypyrrole; GCE: Glassy Carbon Electrode; 
SG: Sol-gel; HG: Hydro Gel; SGOIH: Sol-gel Organic-Inorganic Hybrid; SPCE: Screen-Printed Carbon Electrode; TH: Thionine; GNP: Gold Nanoparticle; SSG: Silica Sol-
Gel; AH: Alginate Hybrid; PPDA: Poly(2,6-pyridinedicarboxlic acid); CSG: Carbon Sol-Gel; Cys: Cystamine; TB: Toluidine Blue; PTH: Polythionine; GL: Gelatin; PTHNW: 
Polythionine Nanowire; BAPV: N,N′-bis(3-aminopropyl-4,4′-bipyridinium) Tetrabromide; BCN: Bacterial Cellulose Nanofibers; FMC: Ferrocene Mono Carboxylic acid; BSA: 
Bovine Serum Albumin ; MWCNTs: Multi-Walled Carbon Nanotubes; OC: Ormosil Composite; MG: Methylene Green; BCB: Brilliant Cresyl Blue; NB: Nile Blue; TB: Toluidine 
Blue; SDS: Sodium Dodecylsulfate; FC: Ferrocene; CHIT: Chitosan; GLY: Glyoxal; CMS: Carbon Micro Spheres; PNRNWs: Poly (neutral red) Nanowires; PAMAM: 
Poly(amidoamine); PTHCD: Polythiolated-β-Cyclodextrin; GDE: Gold Electrode; PGMAVF: 
Poly(glycidylmethacrylate-co-vinylferrocene); MDMS: Magnetic Dextran Microsphere; PDA: Polydopamine; BLM: Bilayer Lipid Membrane; PTBA: Poly(thiophene-3-boronic 
acid); RTIL: Room Temperature Ionic Liquids

Table 1: Characteristics of the mediated HRP based H2O2 biosensors.

Carbon nanotubes are widely used for the development of 
mediator-free HRP based H2O2 biosensor. Qian and Yang [77] 
developed an amperometric H2O2 biosensor, based on cross-linking 
HRP by glutaraldehyde with multiwall carbon nanotubes/CHIT 
(MWNTs/CHIT) composite film coated on a GCE. The linear range of 
detection towards H2O2 was from 16.7 µM to 0.7 mM, with correction 
coefficient of 0.998. A nanocomposite film of Tetrathiafulvalene–
Tetracyanoquinodimethane (TTF–TCNQ)/MWCNTs modified gold 
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CHIT nanospheres and HRP, as shown in figure 4. The direct electron 
transfer of HRP was achieved at HRP /organosilica@CHIT/MWNTs/
GCE, which exhibited excellent electrocatalytic activity for the 
reduction of H2O2. Huang and Tsai [81] found direct electrochemistry 
and bioelectrocatalytic ability of HRP towards the reduction of H2O2 at 
the Multiwalled Carbon Nanotube/Alumina-coated Silica (MWCNT/
ACS) nanocomposite modified GCE. The HRP/MWCNT/ACS 
nanobiocomposite modified GCE was prepared by casting HRP onto 
the surface of GCE. Direct electrochemistry of HRP was also achieved 
when HRP was cross-linked with MWCNTs, by using glutaraldehyde 
and bovine serum albumin. The sensitivity was found a little higher 
without using alumina-coated silica with MWCNTs. Besides CNTs, 
some other nanomaterials have been used for the development of 
HRP based mediator-free H2O2 biosensor, such as graphene [82-84], 
quantum dots [85], silver nanoparticles [86,87], silver nanowires [88], 
dendritic silver/silicon dioxide nanocomposites [89], graphene nano 
platelet [90], etc. (Figure 4).

Conducting polymer has been widely used for the construction 
of HRP based mediator-free H2O2 biosenosr. Kong et al. [91] 
investigated the direct electron transfer process of immobilized HRP 
on a conducting poly (5, 2’: 5’, 2’’-terthiophene-3’-carboxylic acid). 
The HRP was immobilized by covalent bonding between amino 
group of the HRP and carboxylic acid group of the polymer. Amine 
group containing conducting polymer also can be used for the 
immobilization of HRP, by using cross-linking agent. For example, 
a H2O2 biosensor is constructed by cross-linking between HRP and 
Polyaniline (PANI), using glutaraldehyde as a cross-linking agent on 
F-doped Tin Oxide (FTO) electrode [92].The immobilization of HRP 
onto ordered mesoporous polymaniline was reported by Xua et al. 
[93], to construct a mediator-free H2O2 biosensor. The mesoporous 
polyaniline film was fabricated by electrodepositing from the hexagonal 
lyotropic liquid crystalline (LLC). The proposed biosensor combined 
the advantages of the good conductivity of polyaniline and the higher 
surface area of the ordered mesoporous film. The PANI nanofibers also 
reported for the immobilization of HRP [94]. Pt Nanoparticle (PtNP) 
was electrochemically deposited on the PANI nanofibers, which was 
electropolymerized on a gold electrode surface. Then, the hybrid film 
of GNPs, CHIT, and HRP was cast onto the modified electrode to 
form a stable biofunctional film. A higher sensitive H2O2 biosensor 
can be fabricated by using the hybrid film of chitosan and HRP onto 
the nanocomposite film of Au-Pt alloy Nanoparticles (NPs) and 
polyaniline nanotube [95]. 

Some other conducting polymers, copolymers and materials 
are reported for the construction of HRP based mediator-free H2O2 
biosenosr such as polypyrrole [96,97], poly-(vinylferrocenium 
perchlorate) [98], poly 2,6-pyridinediamine [99], poly(3,4-
ethylenedioxythiophene) [100], poly (N-isopropylacyamide-co-3-
methacryloxy-propyltrimethoxysilane) [101], ionic liquids [102-104], 
4-Carboxyphenyl [105], zirconia enhanced grafted collagen tri-helix 
scaffold [106], DNA films [107], Nafion–Sonogel–Carbon composite 
[108], silica–hydroxyapatite hybrid film [109], porous structure of 
screen-printed electrode [110], kieselguhr membrane [111], lipid 

membrane [112,113] etc. Table 2 summarizes characteristics of the 
mediator-free HRP based H2O2 biosensor.

It is well known that HRP is the most commonly used enzyme 
for the fabrication of H2O2 electrochemical biosensors. Owing to its 
expensiveness and unstableness, finding alternatives to reduce the cost 
and to improve the performance of H2O2 biosensors is scientifically 
interesting and important practically. Hb, a protein, can be utilized as 
the HRP substitute in the detection of H2O2, in virtue of the low cost 
and the stable property of in solution. Although Hb does not play a role 
as an electron transfer carrier in biological systems, it has been shown 
to possess enzyme-like catalytic activity. Its bioelectrocatalytic activity 
to reduce H2O2 is also well documented. 

GCE GCE GCE

HRP
Organosilica@
Chitosan/MWCNTs

Figure 4: Illustration of the preparation process of the biosensor (redrawn from 
reference [80]).

Hb based H2O2 biosensor

CPE: Carbon Paste Electrode; GNP: Gold Nano Particle; ITO: Indium Tin 
Oxide; GDE: Gold Electrode; SSG: Silica Sol-gel; SF: Silk Fibroin; MPA: 
Mercapto Propionic Acid; CBU: Cyclic Bisureas;  AuNWs:  Gold Nanowires; ATP: 
4-aminothiophenol; APTMS, (3-aminopropyl) Trimethoxysilane; MWCNTs: Multi-
Walled Carbon Nanotubes; CHIT: Chitosan; TTF–TCNQ: Tetrathiafulvalene–
Tetracyanoquinodimethane; PDDA: Poly(dially dimethylammonium); ACS: 
Alumina-Coated Silica; GP: Graphene; QDs: Quantum Dots; SNP: Silver 
Nanoparticles; SNW: Silver Nanowire; DSSD: Dendritic Silver/Silicon Dioxide; 
TPA: Tetrasodium 1,3,6,8-Pyrenetetrasulfonic acid); SLGnP: Single-Layer 
Graphene Nanoplate; PANI: Polyaniline; FTO: F-doped Tin Oxide; PNP: Pt 
Nanoparticle; PPy, polypyrrole, Pt: Platinum; PPA: Poly 2,6-Pyridinediamine; 
PEDOT: Poly(3,4-ethylenedioxythiophene); PSS: Poly(styrene sulfonic acid); 
PNM: Poly (N-isopropylacyamide-co-3-methacryloxy-propyltrimethoxysilane); 
BMITB: 1-Butyl-3-Methylimidazolium Tetrafluoroborate; β-CD: β-cyclodextrin; ILs: 
Ionic Liquids; BMIMBF4: 1-Butyl-3-Methylimidazolium Tetrafluoroborate; 4-CP: 
4-carboxyphenyl; SGE: Sonogel–Carbon Electrode; SHAP: Silica–Hydroxyapatite; 
PSPCE: Porous Screen-Printed Carbon Electrode 

Table 2: Characteristics of the mediator-free HRP based H2O2 biosensor.

Modified Electrode Linear range Detection 
Limit (µM) 

Reference

CPE/GNP/HRP 0.5–50  µM 0.2 [69]
ITO/APTMS /GNP /HRP 20.0 µM–8.0 mM 8.0 [70]
ITO/GNP/HRP 8.0 µM–3.0 mM 2.0 [71]
GDE/SSG/GNP/HRP 1.6 µM–3.2 mM 0.5 [72]
GCE/SF/GNP/HRP 10.0 µM–1.8 mM 5 [73]
GDE/MPA/CBU/GNP/HRP 0.4–0.9  µM 50 nM [74]
GDE/nano-TiO2/AuNWs/HRP 2.3 µM–2.4 mM 0.7 [75]
GDE/ATP/CaCO3–GNPs/HRP 0.5 µM–5.2 mM 0.1 [76]
GCE/MWCNTs/CHIT/HRP 16.7 µM–0.7 mM 10.3 [77]
GDE/MWCNTs/TTF–TCNQ/HRP 5.0 µM–1.1 mM 0.5 [78]
PDDA/MWNTs/HRP Up to 120 nM 1.5 nM [79]
MWNTs/organosilica@chitosan/HRP 0.7 µM–2.8 mM 0.3 [80]
GCE/ACS/MWCNTs/HRP 1.0 µM–0.5 mM 0.6 [81]
GCE/CHIT/GP/HRP 5.0 µM–5.3 mM 1.7 [82]
ITO/CHIT/GP-Fe3O4/HRP 5.0 µM–3.8 mM 0.6 [83]
GP/GNP/CdTe–CdS/GNP/HRP 0.1–12.0 nM 0.03 nM [84]
GCE/QDs/HRP 5.0 µM–0.1 mM 0.3 [85]
GDE/SNP/HRP 3.3 µM–9.4 mM 0.8 [86]
GDE/DNA/SNP/HRP 1.5 µM–2.0 mM 0.5 [87]
GDE/SNW/HRP 4.8 nM–0.31 µM 1.2 nM [88]
GCE/DSSD/HRP 0.7 µM–0.1 mM 50 nM [89]
TPA/SLGnP/HRP 0.6–16.8 µM 0.1 [90]
FTO/PANI/HRP up to 20 mM --- [92]
GCE/PANI/HRP 1.0 µM–2.0 mM 0.6 [93]
PANI/PNP/CHIT/GNP/HRP 7.0 µM–14.0 mM 2.8 [94]
Nano-PANI/GNP-PNP/CHIT/HRP 1.0 µM–2.2 mM 0.5 [95]
PPy/PNP/GNP/HRP 4.9 µM–4.8 mM 1.3 [97]
Pt/PPA/GNP/HRP 0.4 µM–1.5 mM 0.1 [99]
Au/PEDOT-PSS/HRP 0.2 µM–38.0 mM 0.1 [100]
GCE/PNM/HRP 0.2–1.4 µM 47.5 nM [101]
GDE/DNA/ BMITB/HRP 10.0 µM–7.4 mM 3.5 [102]
β-CD//ILs/ BMIMBF4/HRP 4.0–84.0 µM 2.7 [103]
GDE/4-CP/HRP 20.0 µM–20.0 

mM
5.0 [105]

SGE/HRP 4.0 µM–0.1 mM 1.6 [108]
GCE/SHAP/HRP 1.0 µM–0.1 mM 0.4 [109]
PSPCE/HRP 5.9–35.4 µM 0.5 [110]
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Carbon nanotubes and GNPs are widely used with Hb for the 
construction of biosensor. Qi et al. [114] designed a mediator-free 
H2O2 biosensor by immobilizing Hb on MWCNTs modified with GCE. 
The direct electron transfer of the Hb was observed. A linear in the 
concentration range from 6.0 µM to 6.0 mM, with a detection limit of 
1.2 µM was obtained. The direct electron transfer of Hb also observed 
onto MWCNTs enhanced grafted collagen matrix [115]. However, 
the fabricated biosensor by this way showed lower sensitivity. A high 
sensitive Hb based mediator-free biosensor can be constructed by 
using the nanocomposite of MWNTs, CeO2 nanoparticles, and CHIT 
as an immobilizing matrix [116]. The composite matrix combined 
the advantages of MWNTs, CeO2 nanoparticles, and CHIT, with 
good electron-transfer ability, attractive biocompatibility, and fine 
filmforming ability, which could increase Hb attachment quantity and 
H2O2 detection sensitivity. The nanocomposite of MWCNTs and GNPs 
also used for the fabrication of high sensitive Hb based mediator-free 
biosensor [117]. 

Zhang and Oyama [118] prepared a modified ITO electrode 
surface, with spherical and rod-shaped GNPs surfactant-assisted 
seeding growth approach, which provided a biocompatible matrix for 
the immobilization of Hb. The Hb immobilized GNPs-modified ITO 
(Hb/Au/ITO) electrode exhibited an effective catalytic response to the 
reduction of H2O2. The linear relationship existed between the catalytic 
current and the H2O2 concentration, in the range of 10 µM to 7 mM. 
The detection limit (S/N=3) was 4.5 µM. The nano molar detection 
limit can be achieved by using gold electrode, instead of ITO [119]. In 
this case 1,6-hexanedithiol (HDT) need to be used as a molecule bridge. 
The layer-by-layer assemble of the composite of C at SiO2 with GNPs 
shown in figure 5, was also reported to achieve the lower detection limit 
[120] (Figure 5).

Tang et al. [121] described a facile strategy of a mediator-free 
H2O2 biosensor based on the direct electrocatalysis of Hb immobilized 
on GNPs/1,6-diaminohexane (DAH) modified GCE. A uniform 
monolayer film of DAH was initially covalently bound on a GCE surface, 
by virtue of the electrooxidation of one amino group of DAH, and 
another amino group was modified with GNPs and Hb, successively. 
In another way, a biocompatibile nanocomposite of colloidal gold 
and Hydroxyapatite nanotubes (Hap) was first prepared, then the 
Hb was immobilized on the nanocomposite [122]. The immobilized 
Hb showed fast direct electron transfer and excellent electrocatalytic 
behavior toward reduction of H2O2. Another composite film of gold 
colloid (nano-Au)/l-cysteine (l-cys)/nano-Au/nanoparticles Pt (nano-
Pt)/CHIT was also reported for the fabrication of high sensitive Hb 
based mediator-free H2O2 biosensor [123]. 

One-dimensional (1D) GNPs were prepared and used for the 
immobilization of Hb, to construct an amperometric biosensor 
for H2O2 [124]. The linear range for the determination of H2O2 was 
0.6 to 12.4 µM, with detection limit of 24 nM was obtained. Three-
dimensionally ordered macroporous gold-nanoparticle-doped 
titanium dioxide (3DOM GTD) film by Wei et al. [125] to fabricate a 
mediator-free H2O2 biosensor. However, the detection limit was not as 

low as one-dimensional (1D) GNPs. Nevertheless, three-dimensional 
nanoporous Au networks modified Ti substrate can lower the detection 
limit to 20 nM [126]. Some other nanomaterials have been reported 
for the construction of Hb based mediator-free H2O2 biosensor, such 
as zirconium dioxide nanoparticles [127-129], iron nanoparticles [130-
132], Fe3O4 nanoparticles [133], Ag nanoparticles [134], Cadmium 
telluride (CdTe) nanoparticles [135], titania nanotubes [136], 
nanographene [137], activated carbon nanoparticles [138], carbon 
nanofiber [139], etc. 

Polymer and copolymer have been used for the development of 
Hb based mediator-free H2O2 biosensor. Jia et al. [140] prepared an 
unmediated H2O2 biosensor by co-immobilizing Hb, with platinum 
nanoparticles enhanced poly(chloromethyl thiirane) cross-linked 
CHIT (CCCS-PNs) hybrid film. CCCS could provide a biocompatible 
microenvironment for Hb, and PNs could accelerate the electron 
transfer between Hb and the electrode. A linear range for H2O2 from 

PDDA

TEOS

GNPs Hb

Figure 5: Procedure for preparation of Hb–GNPs–C@SiO2(redrawn from 
reference [120]).

Modified Electrode Linear range Detection 
Limit (µM)

Reference

GCE/MWCNTs/Hb 6.0- µM–6.0 mM 1.2 [114]
grafted collagen-MWNTs/Hb 0.6–30.0 µM 0.1 [115]
CHIT/MWCNTs/CeO2/Hb 5.0 µM–0.5 mM 0.6 [116]
GNP/MWCNTs/Hb 0.2 µM–3.0 mM 80 nM [117]
ITO/GNP/Hb 10.0 µM–7.0 mM 4.5 [118]
HDT/GNP/Hb 50.0 nM–1.0 µM 10 nM [119]
C@SiO2/GNP/Hb 5.0–80.0  µM 80 nM [120]
HAP/GNP/Hb 0.5–25.0  µM 0.2 [122]
GNP/PNP/CHIT/Hb 0.1 µM–6.6 mM 45 nM [123]
ODGNP/Hb 0.6–12.4  µM 24 nM [124]
ITO/TiO2/GNP/Hb 5.0 µM–1.0 mM 0.6 [125]
Ti/TDN-Au/Hb 50.0 nM–0.2 µM 20 nM [126]
PG/ZrO2/Hb 1.5–30.2 µM 0.1 [127]
ZrO2/Hb 0.8 µM–0.1 mM 0.1 [128]
SA/HZMS/Hb 1.8 µM–4.9 mM 0.6 [129]
CIN/Hb 3.1 µM–4.0 mM 1.2 [130]
CFN/CHIT/Hb 50 nM–1.0 mM 10 nM [131]
GCE/MCMS/CHIT/Hb 69.0 µM–0.3 mM 21.0 [132]
Fe3O4/CHIT/Hb 50.0 µM–1.8 mM 4.0 [133]
GCE/AgNPs/Hb 1.0 µM–0.1 mM 0.3 [134]
CdTe/CHIT/Hb 7.4 µM–0.7 mM 2.2 [135]
TNT/Hb 1.0 µM–0.1 mM 0.9 [136]
PP123-NGP/Hb 10.0 µM–0.1 mM 8.2 [137]
GCE/CAN/NF/Hb 0.9–17.0  mM 0.4 [138]
PG/P123/Hb 1.0 µM–0.5 mM 0.5 [142]
GCE/PAN-co-PAA/Hb 9.2 µM–2.0 mM 4.5 [143]
GCE/BMIM•PF6–MSFs/Hb 0.2–28.0 µM 80 nM [144]
BPPF6/MWCNTs/Hb 50.0 nM – 0.7 µM 3.8 nM [145]
GCE/LCCP/Hb 7.0 µM–0.2 mM 3.1 [146]
Fe3O4-GP/Hb 1.5 µM–0.6 mM 0.5 [155]

Hb: Hemoglobin; HDT: 1,6-hexanedithiol; TDN: Three-Dimensional Nanoporous; 
HAP: Hydroxyapatite Nanotubes; ODGNP: One-Dimensional Gold Nanoparticles; 
PG: Pyrolytic Graphite; BMIM: 1-Butyl-3-Methyl-Imidazolium; HZMS: Hollow 
Zirconium Dioxide Microspheres; SA: Sodium Alginate, CIN: Carbon-Coated 
Iron Nanoparticles; CFN: Cobalt Ferrite Nanoparticles; MCMS: Magnetic 
Chitosan Microsphere; TNT: TiO2 Nanotubes; PP123: Pluronic P123, NGP: 
Nanographene Platelet; CAN: Activated Carbon Nanoparticles; NF: Nafion; P123: 
Triblock Copolymer EO20PO70EO20; PAN-co-PAA: Poly(acrylonitrile-co-acrylic 
acid); BMIM•PF6: 1-butyl-3-Methylimidazolium Hexafluorophosphate; MSFs: 
Mesocellular Siliceous Foams. LCCP: Liquid Crystal Cubic Phase; Mb: Myoglobin; 
RZnOMs: Rod-constructed Zinc Oxide Microspheres; ZGS: Zwitterionic Gemini 
Surfactant; TATP:  Triacetone Triperoxide; SWNHs: Single-walled Carbon 
Nanohorns; PSSF: Poly(sodium 4-styrenesulfonate); PPI: Poly(propyleneimine) 

Table 3: Characteristics of the Hb based H2O2 biosensors.



Citation: Saleh Ahammad AJ  (2013) Hydrogen Peroxide Biosensors Based on Horseradish Peroxidase and Hemoglobin. J Biosens Bioelectron 
S9:001. doi: 10.4172/2155-6210.S9-001

Page 7 of 11

 J Biosens Bioelectron                  Biosensors: Analytical Techniques           ISSN:2155-6210 JBSBE an open access journal 

0.4 to 44 µM, with a limit of detection of 28 nM was obtained. A film 
of triblock copolymer EO20PO70EO20 (P123) was used to incorporate 
Hb onto the surface of Pyrolytic Graphite (PG) electrode [141]. 
The amphiphilic, biomembrane like structure of the film provided 
a favorable microenvironment around Hb to retain its biological 
activity and native structure. Immobilized Hb in the film displayed 
good electrocatalytic response to H2O2. Another film of copolymer 
poly(acrylonitrile-co-acrylic acid) (PAN-co-PAA) was also used for 
the immobilization of Hb [142]. The Hb in PAN-co-PAA matrix 
acted as a biologic catalyst to catalyze reduction of H2O2. Some other 
materials have been used for the fabrication of mediator-free Hb based 
H2O2 biosensor, such as ionic liquid [143-145], liquid crystal [146], 
sol–gel film [147-149], kieselgubr film [150], DNA membrane [151], 
triton X-100 [152], niobate [153], collagen [154], magnetite–graphene 
[155], etc. Table 3 summarizes characteristics of the Hb based H2O2 
biosensors. 

Conclusions 
The goal of this review paper was to provide an updated summary of 

the HRP and Hb based electrochemical H2O2 biosensor. Modification 
of the electrode is an important task for the construction of biosensor. 
Nanomaterials modified electrode showed better performance, in terms 
of sensitivity and detection limit. However, less attention has been given 
to the fundamental research into understanding the mechanisms by 
which nano materilas give such excellent electrochemical performance. 
Enzyme based biosensor is still dominating, although they are costly. 
Moreover, the activity of enzymes is affected by the temperature, 
pH, humidity, and toxic chemicals. Much attention should be given 
on the simple fabrication, and cost should be considered during the 
construction of the biosensor. This would be helpful for the commercial 
production of the H2O2 biosensor. 
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