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Notations
hmin: Minimum required prv-inlet pressure for the prv to function 

reliably in the active mode [L];

hmax: Maximum recommended prv-inlet pressure for the prv to 
operate reliably in the active mode [L];

hu: prv-inlet (-upstream) pressure [L];

prv: Pressure reducing valve [-];

D: Lateral diameter [L];

H: Nodal head [L];

Q: Link discharge [L3/T];

Z: Nodal elevation [L];

i and j: Link and nodal indices, respectively [-];

f: Friction factor [-];

p: Lateral-wide iteration index [-];

εf and εr: Relative error with algebraic sign and without algebraic 
sign, respectively [-].

Introduction
Linear-move sprinkler irrigation systems are considered among the 

most efficient irrigation methods [1]. They are used to irrigate a wide 
variety of crops, ranging from pasture to field and industrial crops, in 
moderately sloping fields [2]. Low-pressure sprinklers or spray nozzles 
coupled to pressure regulators and drop-tubes are often used in these 
systems to minimize energy consumption, achieve better control of 
water application, and reduce wind drift and spray evaporation losses. 
Furthermore, because of their amenability to automation linear-move 

systems are particularly suitable for site-specific application of water 
and agricultural chemicals and have minimal labor requirements. 
Owing to these advantages, the acreage irrigated with linear-move 
systems is expanding. Consequently, the development of accurate and 
flexible mathematical models that can be used in the hydraulic analysis, 
design, and management of these systems is becoming increasingly 
important.

Flow in irrigation laterals, including in linear-move systems, 
are generally considered steady. Accordingly, forms of the energy 
conservation and continuity equations applicable to one-dimensional 
steady flow in pipes can be used to describe the hydraulics of such 
systems [3]. Explicit analytical expressions, derived based on simplifying 
assumptions, were typically used to determine friction head losses and 
pressure distribution along solid-set and set-move sprinkler irrigation 
laterals [4-6]. Hydraulic modeling and design of center-pivot laterals as 
well relied mainly on analytical formulations or a simplified numerical 
approach. Kincaid and Heermann [7] presented a step-wise approach 
to compute pressure drop and distribution along a center-pivot lateral, 
assuming variable outlet discharge profile. Equations for predicting the 
pressure head profile of a center-pivot lateral were derived by Chu and 
Moe [8] considering continuous and nonuniform outflow discharge 
profile, constant lateral diameter, and zero slope. Scaloppi and Allen 
[9] extended the results of Chu and Moe by taking into account the 
effects of, constant slope and residual outflow discharge at the distal-
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end, on lateral hydraulics. Equations for computing friction head 
loss in center-pivot laterals were proposed by Anwar [10], assuming 
constant outlet spacing and nonuniform outlet discharges as well as 
variable outlet spacing and constant outlet discharge. Valiantzas and 
Dercas [11] presented expressions for hydraulic analysis of variable 
diameter center-pivot laterals based on both continuous and discrete 
outflow assumptions. A model for design and evaluation of center-
pivot systems, CPED, was presented by Heermann and Stahl [12]. 
Furthermore, equations for computing friction head loss in center-
pivot laterals, with variable diameter, were proposed by Tabuada [13].

Published studies on hydraulic analysis of linear-move irrigation 
laterals are limited. A set of equations and procedure for designing 
linear-move irrigation systems were presented by Keller and Bleisner 
[5]. Fraisse et al. [14] reported the results of a simulation study on 
variable water application with linear-move systems. The study was 
conducted with a model adapted from the center-pivot evaluation 
and design model developed based on the earlier work of Heermann 
and Hein [15] and Kincaid and Heermann [7]. Existing approaches 
to the formulation and solution of the hydraulics of continuous-
move sprinkler irrigation systems, typically, have limited flexibility 
in regard to their capability to accommodate variations in lateral 
hydraulic, geometric, and elevation profile characteristics. More 
importantly, most lack provisions for taking into account the effects of 
appurtenances such as pressure regulators, which are often used with 
these systems, on lateral hydraulics.

Availability of improved computational resources have allowed 
the development of more accurate and versatile numerical simulation 
models for the laterals of solid-set and set-move sprinkler irrigation 
systems [16-19]. These approaches can be used to develop hydraulic 
simulation models, of linear-move laterals, that are not limited by the 
constraints associated with the simplified formulations cited earlier.

The study presented here concerns the development and 
evaluation of a hydraulic simulation model for linear-move laterals 
equipped with pressure reducing valves, prvs. The configuration of the 
system, considered, and its components are described in manuscript 
I. Accordingly, a linear-move lateral is comprised of a concatenated 
series of arched spans with known geometry and multiple outlet-
ports. Lateral diameter, hydraulic resistance characteristics, field slope, 
spacing between outlets, and sprinkler hydraulic characteristics can 
be constant or variable along the lateral. prv-sprinkler assemblies, 
suspended at a constant above ground clearance from the lateral outlet-
ports, are used as emission devices to meter outflows at a pre-set rate 
along the lateral. In a well-designed and maintained system, the use 
of prv-sprinkler assemblies for precise irrigation applications should 
lead to a uniform and efficient application of water and agricultural 
chemicals along the lateral. Depending on their modes of operation, 
pressure reducing valves can have a significant effect on lateral 
hydraulics. Accordingly, the full range of the operating modes of prvs 
are defined, in the context of an irrigation lateral, and their effects on 
system hydraulics are described in part-one this paper.

Computational methods applicable to hydraulic manifolds are 
used in the development of the hydraulic computation functionality 
of the simulation model presented here [17]. However, the basic 
algorithms developed as such are modified to account for the particular 
conditions that prvs impose on the hydraulics of a linear-move lateral, 
as described in the companion manuscript. The solution to a lateral 
hydraulic simulation problem requires finding a hydraulic scenario 
(i.e., a combination of link discharge and nodal head vectors) with an 
inlet head that is sufficiently close to the imposed inlet head. Hence, 

it generally involves multiple iterative lateral-wide computations 
(sweeps), each leading to a hydraulic scenario that corresponds to a 
different distal-end nodal head. Thus, in order to systematize the 
search for the distal-end head, that corresponds to a scenario with an 
inlet head that is sufficiently close to the imposed head, in the model 
presented here the iterative solution of the linear-move lateral hydraulic 
simulation problem is cast as a one-dimensional optimization problem.

The current manuscript is part-two of a three-part paper and it 
describes the formulation and numerical solution of the hydraulic 
simulation problem of a linear-move lateral equipped with prvs. 
Background discussion on system configuration and components, 
statement of model assumptions, and specification of the lateral 
hydraulic simulation problem are presented in part-one of the paper. 
Results of model evaluation are presented and potential applications of 
the model are explored in the third manuscript.

System Configuration and Components, Assumptions, 
and Definition of the Hydraulic Simulation Problem

The specific configuration of the linear-move system, considered in 
the current study, and its components are described in part-one of this 
paper. The linear-move lateral, that is of interest here, is comprised of a 
series of arched spans with multiple outlet-ports placed at a constant or 
variable spacing. Low-pressure sprinklers, or spray nozzles, coupled to 
prvs are used to distribute irrigation water in the form of precipitation 
along these laterals and water is conveyed from the overhead lateral 
outlet-ports down to the prv-sprinkler assemblies through drop-tubes. 
Noting the significance of prv operating modes on lateral hydraulics, 
the full range of operating modes of prvs relevant to linear-move 
sprinkler irrigation laterals are defined in part-one of the current paper. 
Accordingly, the operating modes of prvs used in irrigation laterals 
are described as: active, passive, and fully-throttled. As will be shown 
shortly, the definitions of prv operating modes and related equations 
are integrated into the numerical solution presented here. Thus, for 
convenience, the equations that specify the operating modes of prvs are 
listed below. A prv is said to operate in the active mode, if

hmin ≤ hu ≤ hmax 					                    (1)

Where hmin and hmax are the lower and upper limits, respectively, of 
the recommended prv-inlet pressure head range for the prv to operate 
reliably in the active mode [L] and hu is the upstream-end or inlet 
pressure of the prv [L]. On the other hand, a pressure reducing valve is 
considered to operate in the passive mode, if

hu<hmin		  			                     (2)

and a prv is considered to operate in a fully-throttled mode, if

hmax <hu 					                            (3)

Furthermore, assumptions that form the basis of the lateral 
hydraulic simulation model, presented here, are summarized in 
part-one of the current paper. Specification of the lateral hydraulic 
simulation problem and schematization of the linear-move lateral as 
a branched pipe network, consisting of links and nodes, for hydraulic 
analysis and simulation are also presented in the first part of this article.

Formulation and Numerical Solution of the Hydraulic 
Simulation Problem, Synopsis

The basic algorithms of the linear-move lateral hydraulic simulation 
model developed here are based on computational methods applicable 
to hydraulic manifolds [17]. Accordingly, the solution to the hydraulic 
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simulation problem involves a series of iterative sweeps through each 
node of the lateral. Each lateral-wide hydraulic computation (iteration) 
begins at the distal-end junction node where an assumed initial nodal 
head (in the first iteration), or a revised estimate of the nodal head (in 
subsequent iterations), is used to compute the discharges in the attached 
links. Computation then proceeds upstream sequentially through each 
junction node, where a nodal continuity equation and link energy 
balance equations (forming a small nonlinear system) are solved 
iteratively for the nodal head and the discharges in the attached links. A 
lateral-wide hydraulic computation ends with the determination of the 
corresponding total head at the lateral inlet. At the end of each lateral-
wide sweep, an error metric that measures the difference between the 
computed head at the lateral inlet and the actual imposed head will be 
compared with a preset tolerance to ascertain convergence.

If convergence is achieved, then the nodal head and link discharge 
vectors, Q and H, computed in the current iteration will be accepted as 
the solution to the hydraulic simulation problem. If, on the other hand, 
the error in the computed lateral inlet head exceeds the tolerance, then a 
revised estimate of the head at the distal-end junction node is calculated 

and a new lateral-wide iteration is initiated. In order to systematize the 
search for the distal-end head that leads to a combination of Q and 
H vectors with an inlet-head that is sufficiently close to the imposed 
head, the lateral hydraulic simulation problem is cast here as a one-
dimensional error minimization problem. Accordingly, in the model 
presented here lateral hydraulic simulations are conducted with a 
pair of coupled computational modules, consisting of a hydraulic 
module (which performs the lateral-wide iterative sweeps described 
above) and a one-dimensional error minimization module. In other 
words, the lateral hydraulic module is programmatically coupled 
to a one-dimensional error minimization module to form the core 
computational functionality of the lateral hydraulic simulation model 
(Figure 1). Discussion on model components and their modes of 
interactions will be provided shortly based on Figure 1.

Depending on the specific configuration of the linear-move system, 
the hydraulic module executes a lateral-wide iterative sweep following 
some combination of the steps outlined here:

(1) Computation of link discharges at the distal-end junction node;

Hydraulic module

Feasible interval delimitation 
submodule

Golden-section search submodule

  Hp J   Qp and Hp 

Start lateral hydraulic simulation

Input data: Lateral hydraulic, 
geometric, and elevation profile 

characteristics 

Set p = 0, where p is the lateral-wide iteration index

Qp and Hp 

  Hp J

Solution is Qp and Hp   Lateral hydraulic simulation 
ends without solution

End lateral hydraulic simulation

Print simulation output or Error message

Computational modules

     Qp and Hp 

Feasible interval 
delimited

Preprocessing

Postprocessing

 

Figure 1: Flow diagram schematizing model components, modes of interactions, and directions of data flow.
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(2) Iterative computation of the nodal head and link discharges at 
each of the offtake junction nodes upstream of the distal-end node;

(3) Computation of total head at the non-offtake junction nodes 
upstream of the distal-end node; and

(4) Computation of the lateral inlet head corresponding to the 
current lateral-wide iteration.

The one-dimensional error minimization module is comprised of 
two submodules:

(1) An interval bounding procedure to delimit the feasible interval 
of the head at the distal-end junction node and

(2) A golden-section based one-dimensional optimization (line-
search) algorithm to compute the distal-end head that leads to a 
hydraulic scenario with an inlet head that is sufficiently close to the 
imposed inlet head. Note that each error minimization phase iteration 
involves a lateral-wide hydraulic computation. Thus, the simulation 
model is programmed in such way that the hydraulic computational 
module is embedded within the optimization algorithm.

The formulation and solution of the lateral hydraulic simulation 
problem as an optimization problem will now be presented in five steps. 
Steps 1 to 4 describe the hydraulic equations and applicable solutions 
in a single lateral-wide iteration. In Step 5, the lateral-wide iterative 
computation is cast as a one-dimensional optimization problem that 
seeks to minimize the error in the computed lateral inlet head.

Step 1: Equations and applicable solutions, distal-end 
junction node

A sketch of the distal-end and inlet-end nodes along with the 

intermediate junction nodes of the lateral are shown in Figure 2. 
Considering the distal-end junction node and the links attached to it, 
Figure 2a, it can be observed that the unknowns are the discharge into 
the node, Q(I-1); the distal-end drop-tube discharge, QI; and the head just 
upstream of the junction node, HJ. As noted above, in any given lateral-
wide iteration an estimate of HJ is given, thus the unknowns are Q(I-1) 
and QI. Determination of QI and hence Q(I-1) needs to take into account 
the effects of the prv attached to the distal-end drop-tube.

Generally, simulation of hydraulic networks with prvs begins with 
an assumed operational mode for the prvs. Typically, the operating 
mode of prvs is initialized as active and then the network topology is 
modified in accordance with the assumption [20-22]. This would then 
be followed by formulation of pertinent equations and the development 
of applicable solution. The solution obtained as such is used either 
to verify or refute the assumed operational mode of the prvs. If the 
assumption is verified, then the corresponding head and discharge 
vector is accepted as the solution to the hydraulic simulation problem. 
If, on the other hand, the assumed prv mode of operation does not 
hold, then the numerical solution will point to the correct prv mode 
of operation and applicable computational alternative [20,22,23]. A 
similar approach will be adopted here to solve the simulation problem 
of irrigation laterals with prvs.

For irrigation laterals, the formulation and solution of the 
equations pertaining to an active prv are relatively simpler than those 
of a passive prv. Thus, starting the nodal computations with an active 
prv assumption can lead to a more efficient simulation algorithm. 
Accordingly, computation at the distal-end junction node will be 
initiated here with the presumption that the pressure reducing valve 
is operating in the active mode. In other words, the inlet pressure of 
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Figure 2: (a) Schematics of the inlet-end node, the distal-end junction node, and intermediate junction nodes and (b) a virtual reservoir with a constant head, Hs, 
equal to the sum of the prv-set pressure, sprinkler elevation, and velocity head at the sprinkler inlet (Note: Qi is the ith link discharge; H j and Z j are total head and 
elevation, respectively, at the jth node; and Hs is the total head at the inlet of a sprinkler coupled with a prv operating in the active mode).
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the distal-end prv is assumed to be within the range recommended for 
an active prv, eqn. (1). The implication is that the reduced pressure 
at the outlet of the prv (which is also the sprinkler inlet pressure) can 
be operationally considered to be the same as the prv-set pressure, 
regardless of the inlet pressure (may note discussion in Manuscript I). 
It can thus be readily observed that the prv has exactly the same effect 
on the sprinkler as that of a reservoir, with an equivalent constant head, 
installed just upstream of the sprinkler.

The preceding implies that from the perspective of computing 
the link discharge (i.e., the discharge through the drop-tube and 
prv-sprinkler assembly), the drop-tube has no significance and 
hence can be ignored. It also shows that the prv can be replaced by 
a hydraulically equivalent but conceptually more meaningful network 
element, specifically by a virtual-reservoir with a constant head equal 
to the prv-set pressure plus the sum of the sprinkler elevation and the 
velocity head at the sprinkler inlet (Figure 2b). Thus, a convenient way 
to look at the hydraulic condition under which a sprinkler, coupled 
with an active prv, operates is to conceptualize the sprinkler simply as 
a nozzle of known hydraulic characteristics plugged into the bottom of 
a reservoir with a fixed head. It then follows that for an active prv, the 
discharge, QI, of the attached sprinkler, and hence the Ith link, can be 
computed as a function of the set pressure of the prv independently of 
the system hydraulics upstream.

Once the sprinkler discharge operating under an active prv is 
computed, the active prv assumption can then be tested based on the 
computed sprinkler discharge, QI, and an estimate of the total head at 
the distal-end junction node for the current lateral-wide iteration, HJ. 
If the active mode assumption is verified, then the computed sprinkler 
discharge would be accepted and the solution proceeds to the next 
junction node upstream. If not, the correct operational mode of the 
prv will be determined in accordance with the criteria set earlier, eqns. 
(2) and (3), and an appropriate form of the flow equations will be 
formulated and solved.

Computation of sprinkler discharge for an active prv (hmin
 ≤ 

hu
I≤ hmax), distal-end: Based on energy balance principles, the head-

discharge relationship across a sprinkler can be given as

s s sH Z Qλρ− = 					                      (4)

where Hs is the total head at the sprinkler inlet [L], Zs is the sprinkler 
elevation [L], Qs is sprinkler discharge [L3/s], and ρ [TλL(1-3λ)] and λ [-] 
are parameters of the sprinkler head-discharge function. The sprinkler 
parameters, ρ and λ, can be obtained based on data from sprinkler 
manufacturers’ catalogue. Resolving the head at the sprinkler inlet, 
Hs, into its components (i.e., elevation, pressure, and velocity heads) 
and substituting the resultant expression in eqn. (4) and rearranging 
yields a nonlinear expression with the distal-end sprinkler, QI, as the 
unknown.

( ) ( ) 0
I 2I I I I

prvQ Q h
λ

ρ φ− − = 		                                     (5)

The first term in eqn. (5) is defined in eqn. (4), the second term 
represents the velocity head at the sprinkler inlet, and the third term 
is the prv-set pressure. In eqn. (5), I is the link index for the distal-end 
drop-tube and prv-sprinkler assembly and φI is the coefficient of the 
velocity head term [T2/L5], given as

( )4
I

I

k

D
φ = 					                    (6)

where k is a dimensional constant whose value depends on the 
combination of units used [T2/L]. Assuming that the diameter of the 
tubing between the prv and the sprinkler is the same as that of the attached 

drop-tube, DI is set equal to the diameter of the distal-end drop-tube [L].

Equation 5 can be readily solved for QI with a suitable iteration 
method. A procedure developed based on the Newton-Raphson 
method is used in the model presented here. The discharge of the 
distal-end sprinkler, QI, computed as such will now be used to verify 
the active prv assumption or to determine the actual mode of operation 
of the prv and decide on subsequent computational alternatives.

Verification of the active prv assumption, distal-end node: 
Verification of the active prv assumption is performed in two steps. 
First, the prv-inlet pressure head, that corresponds to the sprinkler 
discharge computed earlier based on an active prv assumption, is 
determined. The prv-inlet pressure is then compared with the inlet 
pressure range recommended for an active prv, eqn. (1), so as to verify 
or refute the assumption and decide on the computational alternatives 
to advance the solution further.

An expression for the inlet pressure of the prv attached to the distal-
end drop-tube, hu

I [L], can be obtained based on the energy balance 
equation written over a path spanning the distal-end junction node and 
the inlet of the corresponding prv.

( ) ( ) ( )2 2 2 J 1I I I I I I J
u q

q
h Q Q Q H Zξ φ π +=− − − + −∑   	                 (7)

In eqn. (7), ξ I is the hydraulic resistance coefficient of the friction 
head loss equation [T2/L5]; QI and φI are defined earlier in relation to 
eqn. (5); Σq[.] is the sum of all the local head losses that occur along 
the distal-end drop-tube; πq

I is the parameter of the local head loss 
equation for the qth pipe appurtenance in the Ith link [T2/L5]; Q is the 
link discharge pertinent to the qth local head loss component (As can 
be noted from eqn. (I.3) of Appendix I, depending on the source of 
the local head loss, Q can be the discharge upstream or downstream 
of an appurtenance or it can be the through-flow discharge across the 
appurtenance); and Z(J+1) is the elevation of the distal-end sprinkler 
(Figure 2a). Note that the elevation differential between the inlet 
and outlet of a prv-sprinkler assembly is within a few inches, thus it 
is considered here negligible. Accordingly, the current formulation 
assumes that the elevation of a sprinkler and the attached prv is the 
same.

In eqn. (7), the first term on the right hand side is the friction head 
loss in the distal-end drop-tube, i.e., a segment of the Ith link upstream 
of the corresponding prv. Noting that the Darcy-Weisbach formula is 
used here to calculate friction head loss in a drop-tube or a lateral pipe 
segment, the parameter ξ I can be evaluated with eqn. (I.2) of Appendix 
I. The second term on the right-hand side of eqn. (7) is the velocity 
head at the prv inlet. The third term is the sum of the local head losses 
that occur within the drop-tube upstream of the prv, which includes 
local head losses due to flow division at the junction node, bending loss 
at the connector, and other local head loss that may occur within the 
drop-tube. The local head loss parameter, πq

I, can be calculated with 
eqn. (I.3) of Appendix I as a function of applicable link diameter.

As noted earlier, at any given lateral-wide hydraulic computation 
the head just upstream of the distal-end junction node, HJ, is known. 
It is either an assumed initial value, in the first iteration, or a revised 
estimate based the results of the preceding iteration. Furthermore, the 
sprinkler elevation, Z(J+1), is specified at the input and QI has already 
been computed in the preceding step based on the assumption of an 
active prv. Depending on the pipe appurtenance considered, the link 
discharge, Q, in the local head loss term can be QI or Q(I-1). Thus, eqn. (7) 
is a function of two variables: QI and Q(I-1). However, from continuity at 
the distal-end junction node, it can be observed that
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( )I 1 I
resQ Q Q− = + 				                  (8)

The residual outflow at the distal-end of the lateral, Qres, is 
considered here zero. It then follows from eqn. (8) that Q(I-1)=QI. The 
implication is that eqn. (7) is a function of only QI. Considering that QI 
has already been computed based on the active prv assumption, it can 
be observed that the inlet pressure for the distal-end prv, hu

I, can be 
calculated directly from eqn. (7). Thus, hu

I along with the recommended 
pressure head range for an active prv, defined in eqn. (1), can now be 
used to test the active prv assumption.

(1.1) Compare hu
I with hmin : If hmin ≤ hu

I  then proceed to step 1.2. If, 
on the other hand, hu

I<hmin then proceed to 1.4.

(1.2) Compare hu
I with hmax

 : If hu
I ≤ hmax then proceed to 1.3. If, on 

the other hand, hmax<hu
I then proceed to step 1.5.

(1.3) Active mode of operation verified (hmin ≤ hu
I ≤ hmax): The 

discharge of the distal-end sprinkler, QI, computed based on an active 
prv assumption would be accepted as the nodal solution for the current 
lateral-wide hydraulic computation. As noted earlier, Q(I-1)=QI. Thus, 
the solution can now advance to the next junction node upstream. 
Considering the next node upstream, the appropriate computational 
procedure to execute among possible alternatives depends on the 
nature of the node. If the next node upstream is an offtake junction 
node, then the computational procedure outlined in Step 2 is applicable. 
On the other hand, if the node is a non-offtake node then the procedure 
described in Step 3 applies.

(1.4) prv is operating in the passive mode (hu
I < hmin): As noted in 

the companion manuscript, a prv operating in a passive mode does 
not regulate the outlet pressure. Instead, it behaves as a fully open 
inline valve and its effect on the flow is limited to that of introducing 
some local energy loss. Under such a scenario, the attached sprinkler 
interacts directly with the system hydraulics upstream. Hence, for a 
drop-tube with a passive prv, the applicable form of the energy balance 
equation is the same as that of a drop-tube without a prv, except that 
here the local head loss that occurs across a fully open prv needs to 
be taken into account. Accordingly, the link energy balance equation 
written between a point just upstream of the distal-end junction node 
and the exit end of the distal-end sprinkler can be used to compute QI.

( ) ( ) ( )2 2 0
I

J 1I I I I I J
q

q
Q Q Q H Z

λ
ξ ρ π ++ + − + =∑ 	                (9)

Equation 9 is nonlinear in the unknown, QI, and it can be solved 
iteratively with a suitable procedure. An iterative algorithm based on 
the Newton method is implemented in the current model.

Once QI and hence Q(I-1) are determined, the solution advances to 
the junction node upstream. As noted earlier in Step 1.3, depending 
on the nature of the junction node upstream computation proceeds in 
accordance with the procedure discussed in Step 2 or 3.

(1.5) Inlet head of the prv exceeds the upper limit of the recommended 
range (hmax < hu

I ): When the inlet pressure of the distal-end prv, hu
I, 

exceeds the recommended maximum, hmax, the prv is considered fully-
throttled and hence the attached sprinkler is assumed not functional 
(may note discussion in manuscript I). An apparently realistic 
computational approach would be to set the discharge of the distal-end 
sprinkler to zero. However, such an approach would change the system 
configuration and complicates computation, especially when multiple 
prvs have inlet heads that exceed the hmax. Thus, the approach used 
here consists of one in which the effect of the prv is ignored and the 
hydraulic computation proceeds assuming a drop-tube without a prv. 

Note that under such a scenario the resultant hydraulic problem will 
be the same as that discussed above for a passive prv (Step 1.4), except 
that here the effect of a fully open prv on the flow will not be taken into 
account. In other words, a form of eqn. (9), that does not include the 
local head loss term associated with the prv, will be used to compute Q I.

The fact that the effect of the prv is not taken into account may imply 
that computation proceeded only by ignoring a pipe appurtenance and 
hence the solution obtained as such cannot be considered realistic. 
However, it is important to note that the approach introduced here 
is a mere computational contrivance designed to allow the hydraulic 
simulation to advance forward in the current lateral-wide iteration. It is 
necessary, because as the lateral-wide iteration progresses it is possible 
that the inlet pressure of all the prvs in the lateral can fall below the 
maximum recommended pressure head for an active prv and hence in 
the eventual solution all the prvs could operate in the active or passive 
mode. Nonetheless, at the end of a hydraulic simulation, if for any one 
of the prvs in the lateral the inlet pressure, hu, exceeds hmax then the 
solution is deemed unacceptable and a message to that effect will be 
printed on the screen.

Following the determination of QI and hence Q(I-1), computation 
can proceed to the junction node upstream. In accordance with the 
discussion in Step 1.3, the nodal head and link discharges into and from 
the node can be computed with the procedures described in Step 2 or 
3, as the case may be.

Step 2. Equations and numerical solution, offtake junction 
nodes upstream of the distal-end node

The equations and computational procedure applicable to offtake 
junction nodes, located upstream of the distal-end node, is presented 
here. As noted earlier, an offtake junction node is a point along a 
lateral where a drop-tube (with prv-sprinkler assembly) is connected 
to an outlet port. Figure 2a depicts two consecutive offtake junction 
nodes upstream of the distal-end node, nodes j and (j+2), and the link 
that carries discharge from node j to node (j+2), i.e., the (i+1)th link. 
As noted earlier each lateral-wide hydraulic computation proceeds, 
sequentially through the junction nodes, in the upstream direction 
starting from the distal-end. Accordingly, the head just upstream of the 
(j+2)th node, H(j+2), and the discharge through the (i+1)th link, Q(i+1), 
would be treated here as variables whose values have been determined 
in the preceding computational step. The head just upstream of node j, 
H j, the discharge into node j, Q(i-1), and the discharge through the drop-
tube attached to node j, Qi, would then be considered as unknowns.

The approach developed in Step 1 to take into account prv effects 
on the flow will be used here. Accordingly, first the sprinkler discharge, 
Qi, is computed assuming an active prv in the ith link. Then Q(i-1) and H j 
will be computed based on Qi. Estimates of Qi, Q(i-1), and H j obtained as 
such are then used in the determination of the actual mode of operation 
of the prv and in the decision on how to advance the solution further.

Computation of Q(i-1), Qi, and Hj for an active prv (hmin
 ≤ hu

i 

≤ hmax), offtake nodes upstream of distal-end junction node: 
Considering an active prv, the discharge of the sprinkler in the ith 
link, Qi, can be calculated with a form of eqn. (5) adapted for the ith 
link. Furthermore, from continuity the discharge into node j, Q(i-1), can 
determined with

(i 1) i (i 1)Q Q Q− += + 				                  (10)

Given Q(i-1), an estimate of the head just upstream of the jth junction 
node, Hj, can be calculated directly from an energy balance equation 
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written over a path connecting the points just upstream of the jth and 
(j+2)th junction nodes.

( )2 2j (i 1) (i 1) (i 1) (j 2)
q

q
H Q Q Hξ π+ + + += + +∑ 		               (11)

Once estimates of Q(i-1), Qi, and Hj are obtained based on the 
active prv assumption, the next step is verification of the active prv 
assumption.

Verification of the active prv assumption, upstream of the distal-
end junction node: For each of the offtake junction nodes upstream of 
the distal-end, say node j, the following steps are used in the verification 
of the active prv assumption or in the determination of the alternative 
operating modes of the prv.

(2.1) Compute prv inlet pressure head, hu
i: The prv-inlet pressure in 

the drop-tube attached to node j, hu
i, is calculated with a form of eqn. 

(7) adapted for the ith link. Proceed to Step 2.2.

(2.2) Compare hu
i with hmin: If hmin

 ≤ hu
i then proceed to Step 2.3. If, 

on the other hand, hu
i<hmin

 then proceed to Step 2.5.

(2.3) Compare hu
i with hmax: If hu

i ≤ hmax then proceed to Step 2.4. If, 
on the other hand, hmax<hu

i then proceed to Step 2.6.

(2.4) Active mode of operation verified (hmin
 ≤ hu

i ≤ hmax): The Q(i-1), 
Qi, and H j computed above based on the active prv assumption can be 
accepted as the nodal solution for the current lateral-wide iteration. 
Computation then proceeds to the next node upstream, which would 
be node j-2. If node j-2 is an offtake junction node, then the procedure 
described here, in Step 2, is applicable. If, on the other hand, node j-2 
is a non-offtake junction node, then Step 3 applies. If the computation 
reached the inlet-end node, then Step 4 is pertinent.

(2.5) prv is operating in the passive mode (hu
i<hmin): As noted earlier 

in Step I.4, for a prv operating in the passive mode pertinent equations 
and applicable solutions have the same form as those of laterals without 
prvs. In order to solve for the unknown link discharges and nodal 
head (i.e., Q(i-1), Qi, and Hj) a pair of link energy balance and a nodal 
continuity equations need to be formulated.

Accordingly, the energy balance equation between a point just 
upstream of the jth junction node and the (j+1)th node (which is the 
exit end of the corresponding sprinkler) can be obtained by adapting 
eqn. (9) for the ith link.

( ) ( ) ( )j 1i i i i i jQ Q Q H Zξ ρ π+ + − + =∑ 		                (12)

Furthermore, the energy balance equation along the path 
connecting points just upstream of the jth and (j+2)th junction nodes 
is given in eqn. (11) and is reproduced here for convenience.

( )22 0(i+1) j (i 1) (i 1) (j 2)
q

q
Q H Q Hπ ξ + + +− + + =∑ 		             (13)

and the continuity equation for the jth junction node is given in eqn. (10).

Some components of the local head loss terms in eqns. (12) and 
(13) are functions of the discharge in the (i-1)th link, Q(i-1). Now, 
substituting an expression for Q(i-1), obtained from eqn. (10), into the 
local head loss terms of eqns. (12) and (13) reduces the number of 
equations and variables each to two.

( ) ( ) ( )2
0

i
j 1i i i i i i j

q
q

Q Q f (Q ) H Z
λ

ξ ρ π ++ + − + =∑ 	               (14)

( ) ( )2
0j 1(i+1) i j (i 1) (j 2)

q
q

f ( Q ) H Q Hπ ξ + + +− + + =∑ 	               (15)

All the notations in eqns. (14) and (15), except for the expression 
f(Qi) in the local head loss terms, are defined in the preceding 
discussions. It can be shown based on eqn. (I.3) of Appendix I and eqn. 
(10) that the expression f (Qi) in eqns. (14) and (15) can have one of the 
following forms

( )
( ) ( )
( ) ( )

2

2 2

, ,

,

,

i i i
l

i i (i 1) i (i 1) (i 1)
l

0 2i i (i 1) (i 1)
l

f ( Q ) Q if h is a functionof Q

f ( Q ) Q 2Q Q Q if h is a functionof Q

f ( Q ) Q Q if h is a functionof Q

+ + −

+ +

=

= + + 

=


      (16)

where hl refers to the local head loss component.

As can be noted from Figure 2a, eqns. (14) and (15) are the energy 
balance equations for the ith and (i+1)th links, respectively, expressed 
as functions of the total head just upstream of the jth junction node, Hj, 
and the discharge through the drop-tube and prv-sprinkler assembly 
attached to node j, Qi. Equations 14 and 15 are nonlinear and hence 
need to be solved iteratively for Hj and Qi. A formulation of the 
iterative solution of eqns. (14) and (15) is presented in Appendix II 
and an outline of the iterative algorithm implemented in the model is 
summarized in Appendix III.

Once Qi and Hj are computed, Q(i-1) can be readily calculated 
with eqn. (10). Computation can then proceed to the next node 
upstream along the lateral. As stated earlier in Step 2.4, the appropriate 
computational alternative to execute at the next node upstream 
depends on the nature of the node. If the node is a junction node with 
a drop-tube, then the procedure described here (Step 2) is applicable. If 
the next node upstream is a non-offtake junction node, then Step 3 can 
be used to determine the nodal head. If, on the other hand, the node 
upstream is an inlet-end node, then Step 4 applies.

(2.6) Inlet head of the prv exceeds the upper limit of the recommended 
range (hmax<hu

i): For the scenario in which the inlet pressure of the prv 
in the ith link, hu

i, exceeds the recommended maximum, hmax, the prv is 
ignored and computation proceeds following the procedure outlined in 
Step 2.5 above for a drop-tube with a passive prv. However, as noted in 
Step 1.5, here as well the local head loss term associated with a fully open 
prv will be dropped from the energy equation. Once Q(i-1), Qi, and Hj is 
determined, computation can then proceed to the next node upstream 
along the lateral. However, as described in Steps 2.4 and 2.5, above, 
pertinent computational procedure that needs to be executed, among 
possible alternatives, depends on the nature of the node upstream.

Step 3. Calculation of nodal head at a non-offtake junction 
node upstream of the distal-end

A non-offtake junction node is a point where two lateral pipe 
segments join, but it has no outlet port and hence it is not connected 
to a drop-tube. As described in manuscript I, if the jth junction node 
is a non-offtake node, then Qi=0. It then follows that the discharge in 
the pipe segment that carries flow into the node, Q(i-1), is equal to the 
discharge in the lateral segment that carries discharge from the node, 
Q(i+1). Noting that Q(i+1) is known from a preceding computational step, 
it can then be readily observed that for a non-offtake junction node, 
the nodal computational problem can be reduced to one of finding the 
total head just upstream of the junction node, H j. Accordingly, H j can 
be determined directly from the energy balance equation for the (i+1)
th lateral pipe segment, eqn. (11). Once H j is determined computation 
then proceeds to the node upstream and depending on the nature of 
the node the procedure described here or that presented in Step 2 or 
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4 can be used.

Step 4. Computation of total head at the lateral inlet

At any given lateral-wide iteration, the corresponding total head 
at the lateral inlet can be computed with the energy balance equation 
written between the inlet node and the junction node immediately 
downstream of the lateral inlet. A form of eqn. (11) adapted for the 
upstream-end lateral pipe segment can be used to directly compute the 
head at the lateral-inlet, H1[L], for the current lateral-wide iteration.

( )21 1 1 1 1 2 2
q

q
H Q (Q ) Hξ π= + +∑ 			                 (17)

In eqn. (17), H2 [L] is the head at the junction node immediately 
downstream of the lateral inlet for the current lateral-wide iteration. 
Note that the local head loss term does not include the head loss that 
occurs at the lateral inlet.

Step 5. Lateral hydraulic simulation as a one-dimensional 
error minimization problem

Problem description: The solution to the lateral hydraulic 
simulation problem involves iterative computation, consisting of 
multiple lateral-wide sweeps, each starting at the distal-end node and 
ending at the inlet-end node. A lateral-wide sweep is executed using 
some combination of the procedures described in Steps 1 through 4 
above. The goal of the iterative computation is to determine the link 
discharge, Q, and nodal head, H, vectors that lead to a lateral inlet head, 
H1, that is sufficiently close to the head imposed at the lateral inlet, H0. 
A computationally robust and efficient lateral-wide iterative procedure 
can be constructed, if the hydraulic simulation problem is cast as a one-
dimensional error minimization problem. Accordingly, the hydraulic 
simulation problem is formulated here as an optimization problem that 
seeks to minimize the error in the computed inlet head as a function of 
the head at the distal-end junction node.

0
r

0

1 J
J J J J

min max

H H (H )
(H )= subject to H H H

H
ε

−
≤ ≤ min                  (18)

where εr is the normalized absolute error function of the inlet head 
[-], and Hmin

J and Hmax
J are the lower and upper limits, respectively, 

of the feasible interval of HJ. Equation 18 states that the objective 
of optimization here is to determine the distal-end head, HJ, that 
minimizes the normalized absolute error function of the inlet head, εr 
[-], subject to the constraint on the feasible interval of HJ.

Note that in eqn. (18) the expression H1(HJ) is a statement of the 
fact that for a lateral with a given hydraulic, geometric, and elevation 
profile characteristics, the lateral inlet head, H1, computed in any given 
lateral-wide iteration is a function of the head at the distal-end node, HJ. 
Experience with hydraulic simulations of irrigation laterals [24] as well 
as intuitive reasoning suggest that H1 is a strictly increasing function of 
HJ. It thus follows that the error function, εr, is a unimodal function of 
HJ. As will be shown shortly, the εr function and its unimodal property 
will be used in developing the optimization algorithm programmed 
into the hydraulic simulation model presented here.

The one-dimensional error minimization module: In the model 
presented here, a one-dimensional error minimization algorithm 
based on the golden-section method is used to search for the distal-
end head, HJ, that leads to a hydraulic scenario with an inlet head that 
is sufficiently close to the imposed head. The golden-section method 
uses function evaluation and comparison to steadily reduce the search 
interval and generate a sequence of iterates, (Hp

J,εr(Hp
J)), that would 

eventually converge to the solution ([HJ]*,εr([H
J]*)), where p is lateral-

wide iteration index and [HJ]* is the distal-end head that minimizes the 
function εr(H

J), eqn. (18). The technique is suitable for optimizing unimodal 
functions, which is a property of the objective function considered 
here. Details regarding the underlying theory, scope of application, and 
convergence properties of the golden-section method can be found in 
the optimization literature [25,26]. Thus, the discussion here will simply 
outline the algorithm implemented in the current model.

In order to initiate the golden-section search, first the feasible 
interval of HJ, [Hmin

J,Hmax
J], needs to be defined. For a simulation 

problem, the potential feasible range of HJ can be defined based on 
hydraulic considerations. Physical requirements dictate that Hmin

J 
should exceed the elevation of the distal-end junction node of the 
lateral, ZJ, and Hmax

J should be less than the imposed inlet head, H0. 
Thus, the range of variation of the head at the distal-end junction node 
can then be given as: ZJ<HJ<H0. This observation establishes the outer 
limits of the interval over which HJ can vary. However, these limits 
are not precisely defined for the corresponding interval to be used 
as the feasible set over which the error function is to be minimized. 
Furthermore, the use of a smaller subinterval, that is a subset of the 
interval (ZJ,H0), would allow a more efficient solution. Accordingly, the 
one-dimensional optimization (line-search) algorithm implemented in 
the current model is coupled with an interval delimitation subroutine 
designed to compute a feasible set, labeled here as (a,d), which is a subset 
of the larger feasible interval given in eqn. (18) (Note that the notations 
used here to label the lower and upper limits of the feasible interval 
were set as such keeping in view of the properties of the golden-section 
search interval, which will be discussed shortly). Thus, in the current 
model one-dimensional error minimization computation involves two 
distinct phases: feasible interval delimitation and one-dimensional 
optimization (line-search) steps. A concise description of these phases 
is presented below.

I. Feasible interval delimitation phase: The goal here is to define 
a subset, of the larger feasible set of the error minimization problem 
posed in eqn. (18), that contains the solution. For convenience, the 
subset of the feasible set derived here will henceforth be referred to 
simply as the feasible set or the feasible interval. Delimitation of the 
feasible set is performed based on at least two lateral-wide hydraulic 
computations, each using a different estimate of the head at the distal-
end junction node. The interval delimitation procedure starts in the 
first lateral-wide iteration, for which p is set to 0, with initialization of 
the head at the distal-end junction node, Hp

J. The distal-end head is 
initialized as

0
J J J J J 
p pH z ( H z )or H zβ δ= + − = +  		                (19)

whichever is larger. In eqn. (19), β [-] is an initial head reduction factor 
that vary in the range (0,1) and δ [L] is minimum required margin 
between ZJ and an estimate of HJ. In the model presented here, β and δ 
are set to 0.5 and 0.5 m, respectively. Note that the initial head needs to 
satisfy the constraint ZJ<Hp 

j<Hmax
J.

Given the initial estimate of the head at the distal-end junction 
node, Hp

J, the first lateral-wide iteration can now be conducted in 
accordance with the procedures presented earlier in Steps 1 to 4. The 
normalized absolute error, εr([H

J]), can then be obtained from eqn. (18) 
and the corresponding normalized error, εf(Hp

J), can be calculated with

0

0

1 J
pJ

f p

H H ( H )
( H )

H
ε

−
=  			                (20)

Note that εf(Hp
J), labeled here simply as the normalized error, is 
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the signed counterpart of the normalized absolute error function, 
eqn. (18). A closer look at eqn. (18) shows that the exact optimal 
solution, εr([H

J]*), is equal to 0 and it occurs when H1=H0. A feasible 
interval delimitation test will now be devised based on this property 
of the optimal solution and a comparison of the algebraic sign of the 
normalized error, εf(H

J), calculated with eqn. (20) in two consecutive 
lateral-wide iterations. Accordingly, it will now be shown that there 
are two distinct sets of conditions, labeled here as scenarios I.1 and I.2, 
under which the feasible set of the error minimization problem can be 
considered delimited.

Scenario I.1: This is a case in which εf(H(p-1)
J)>0 and εf(Hp

J)<0. Under 
such a scenario, eqn. (20) shows that H1(H(p-1)

J)<H0 and H0<H1(Hp
J). An 

alternative, but compact restatement of these inequalities consists of

( )0 1

J1 1 J
pPH ( H ( H ),H ( H ))−∈  			                (21)

As noted earlier the exact optimal solution, εr([H
J]*), is equal to 

0 and it occurs when H1=H0. Thus, under scenario I.1 the following 
relationship should hold

( ) ( )*1 1 1
( 1)( ), ( )J J J

p pH H H H H H−  ∈ 
 		                (22)

Considering that H1 is a strictly increasing function of HJ, it then 
follows that the distal-end nodal head that minimizes the normalized 
absolute error function, [HJ]*, which is unique given the unimodal 
property of εr(H

J), can be readily shown to be an element of the open 
set bounded by H(p-1)

J and Hp
J.

( )*

( 1) ,
J J J

p pH H H−  ∈   				                (23)

Thus, under scenario I.1, the open interval (H(p-1)
J,Hp

J) represents 
the feasible set for the error minimization problem.

Scenario I.2: Consists of a case in which, εf(H(p-1)
J)<0 and εf(Hp

J)>0. 
This scenario corresponds to H0<H1(H(p-1)

J) and H1(Hp
J)<H0, thus H0 

∈ (H1(Hp
J),H1(H(p-1)

J)). Following the same line of reasoning as that 
outlined under scenario I.1, above, it can be shown that under scenario 
I.2 the feasible interval consists of

( )*

( 1),J J J
p pH H H −  ∈   				                 (24)

Hence, under scenario I.2, the interval (Hp
J,H(p-1)

J) constitutes the 
feasible set for the error minimization problem.

Accordingly, at the end of each lateral-wide iteration, subsequent 
to the first, the algebraic sign of the normalized error for the current 
iteration, εf(Hp

J), is compared with that of the immediately preceding 
iteration, εf(H(p-1)

J), to determine if the feasible interval is successfully 
delimited. In other words, a test is conducted to determine if the 
condition stated earlier in either scenario I.1 or I.2 (Eqns. 23 or 24) is 
satisfied. If the feasible interval is delimited, then the solution advances 
to the error minimization phase.

If, on the other hand, the algebraic sign of εf(Hp
J) is the same as 

that of εf(H(p-1)
J), it then shows that depending on the relevant scenario 

either [HJ]* ∉ (H(p-1)
J,Hp

J ) or [HJ]* ∉ (Hp
J,H(p-1)

J) and hence the solution 
interval is yet to be defined. In which case, a revised estimate of HJ, 
H(p+1)

J, needs to be determined in order to advance the solution to 
the next lateral-wide iteration. A revised estimate of HJ for the next 
iteration is calculated with

( ) 0
( 1) 2

J
f pJ J

p p

H H
H H

ε
+ = +  			              (25)

Given H(p+1)
J a new lateral-wide hydraulic computation is conducted 

and the interval delimitation test described above is executed. This 
process is repeated until one of the following conditions are met: (i) 

The feasible interval is delimited and hence solution can advance to the 
error minimization phase. Note that if scenario I.1 holds, at the end of 
a successful interval delimitation phase computation, then the feasible 
golden-section search interval, (a,d), is given as a=H(p-1)

J and d=Hp
J. If, 

on the other hand, scenario I.2 holds, then a=Hp
J and d=H(p-1)

J. (ii) The 
maximum allowable number of lateral-wide iterations in the interval 
delimitation phase (which is equal to 30 in the current model setting) 
is exceeded before the feasible interval is delimited. In which case the 
simulation ends without a solution. or (iii) The lateral-wide iteration 
converges to the solution of the hydraulic simulation problem during 
the feasible interval delimitation phase. Thus, in order to account for 
the latter option, εr(Hp

J) is calculated with eqn. (18) and convergence 
test is performed following each lateral-wide iteration. If εr(Hp

J) ≤ ε 
(where ε is the lateral inlet head error tolerance criteria, which is set 
here at 0.0001), then convergence is assumed. In which case, the link 
discharge and nodal head vectors of the current iteration (Qp and Hp) 
constitute the solution.

II. One-dimensional optimization (line-search) phase

First golden-section search step: As noted in the interval bounding 
phase, the lower limit of the golden-section search interval, a, is equal 
to H(p-1)

J and the upper limit, d, is set to Hp
J, if scenario I.1 of the interval 

delimitation phase holds. If, on the other hand, scenario I.2 holds, then 
a=Hp

J and d=H(p-1)
J. Now, in order to execute a golden-section search 

step four points need to be defined over the feasible interval. Thus, two 
additional points, labeled here as b and c, need to be determined within 
the feasible interval, such that a<b<c<d. A particular property of the 
golden-section method is that at any given line-search step, say the nth 
search, the intermediate points are placed within the feasible interval, 
(an,dn), such that the following ratios are satisfied

1 2
3 5 5 10.382 0.618

2 2
n n n n

n n n n

b a c a
and

d a d a
α α

− −− −
= = ≈ = = ≈

− −
  (26)

The theoretical basis for the definition of the constants, α1 and α2, 
per eqn. (26) can be found in the optimization literature [25,26].

It can now be shown, based on eqn. (26), that the intermediate 
points bn and cn for the first golden-section search, where n is set to 0, 
can be calculated with

( ) ( )1 2n n n n n n n nb d a a and c d a aα α= − + = − +  	             (27)

Note that the objective function values corresponding to the lower 
and upper limits of the search interval in the first golden-section step, 
(an,dn), are known from the interval delimitation phase. They are given 
as: εr(an)=εr(H(p-1)

J) and εr(dn)=εr(Hp
J) for the case in which scenario 

I.1 holds and εr(an)=εr(Hp
J) and εr(dn)=εr(H(p-1)

J), if scenario I.2 holds. 
However, the objective function values of the intermediate points, εr(bn) 
and εr(cn), are unknowns. Thus, two consecutive lateral-wide hydraulic 
computations with Hp

J=bn and then H(p+1)
J=cn need to be conducted to 

determine H1(bn) and H1(cn). The corresponding error function values, 
εr(bn) and εr(cn), can then be determined with eqn. (18).

The error function values obtained for both intermediate points, 
bn and cn, will then be tested for convergence. First the function value 
at bn, εr(bn), is compared with the error tolerance criterion, ε, which 
is set to 0.0001 in the current application. Accordingly, if εr(bn) ≤ ε, 
then convergence is assumed and the computed link discharge, Qp, and 
nodal head, Hp, vectors corresponding to the distal-end head, bn, will 
be accepted as the solution to the hydraulic simulation problem. If, on 
the other hand, εr(bn)>ε, then the function value at cn, εr(cn), will be 
tested for convergence. If εr(cn) ≤ ε, then the solution to the hydraulic 
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simulation problem is the link discharge and nodal head vectors 
corresponding to cn. Conversely, if εr(cn)>ε, then the solution advances 
to the next golden-section search step. Each golden-section search 
subsequent to the first is executed in three stages: function comparison 
and interval reduction, function evaluation, and convergence test. Note 
that subsequent discussion will be structured in accordance with this 
observation.

Function comparison and feasible interval reduction: Any given 
golden-section search (say the (n+1)th step) begins with a comparison 
of the normalized absolute errors, at the intermediate points, of the 
preceding (i.e., the nth) golden-section search step. In other words, 
the (n+1)th step begins by comparing εr(bn) with εr(cn). Function 
comparison can lead to one of the following two distinct outcomes: 
a scenario where εr(bn) ≤ εr(cn), labeled here as scenario II.1, or one in 
which εr(cn)<εr(bn), defined here as scenario II.2.

First consider a case in which scenario II.1 [i.e., εr(bn) ≤ εr(cn)] 
holds. Noting that εr is a unimodal function of HJ, it can then be readily 
reasoned that the subinterval [cn,dn) does not contain the minimum 
point of the function, i.e., [HJ]* ∉ [cn,dn). Thus, the search interval for 
the next golden-section step can be reduced to (an,cn). Accordingly, the 
interval for the (n+1)th iteration can be given as:

( 1) ( 1)n n n na a and d c+ += =  			                (28)

Furthermore, if c(n+1) is set equal to bn and b(n+1) is defined as

( )( 1) 1 ( 1) ( 1) ( 1)n n n nb d a aα+ + + += − +  		                  (29)

it can then be shown that the placement of the intermediate points, 
b(n+1) and c(n+1), within the reduced interval (a(n+1),d(n+1)) conforms to the 
requirements stated in eqn. (26).

Alternatively, if εr(cn)<εr(bn) (i.e., if scenario II.2 holds), then the 
search interval for the next golden-section step can be reduced to 
(bn,dn). Accordingly, the interval for the (n+1)th step becomes

( 1) ( 1)n n n na b and d d+ += =  			               (30)

In addition, if b(n+1) is set equal to cn and c(n+1) is defined as

( )( 1) 2 ( 1) ( 1) ( 1)n n n nc d a aα+ + + += − +  		               (31)

then the placement of points, b(n+1) and c(n+1), within the reduced 
interval (a(n+1),d(n+1)) will satisfy the requirements stated in eqn. (26). 
Once the feasible interval and the intermediate points for the current 
golden-section search are determined computation then proceeds to 
the next stage, which involves evaluation of the normalized absolute 
error function at each of these points.

Function evaluation: Considering the case in which function 
comparison shows that εr(bn) ≤ εr(cn) (i.e., if scenario II.1 holds), then 
from eqns. (28) and (29) it can be readily inferred that

( 1) ( 1) ( 1)( ) ( ), ( ) ( ), ( ) ( )r n r n r n r n r n r na a c b and d cε ε ε ε ε ε+ + += = =   (32)

However, the function value at the intermediate point b(n+1), which 
is a point generated in the current iteration, is unknown. Thus, a lateral-
wide hydraulic computation needs to be conducted with Hp

J=b(n+1) to 
determine H1(b(n+1)). The corresponding normalized absolute error, 
εr(b(n+1)), will then be calculated with eqn. (18).

Alternatively, if function comparison showed that εr(cn)<εr(bn) (i.e., 
if scenario II.2 holds), then it follows from eqns. (30) and (31) that

( 1) ( 1) ( 1)( ) ( ), ( ) ( ), ( ) ( )r n r n r n r n r n r na b b c and d dε ε ε ε ε ε+ + += = =   (33)

The function value at the intermediate point c(n+1) is unknown. Thus, 
a lateral-wide hydraulic computation will be conducted with Hp

J=c(n+1) 
to determine H1(c(n+1)). The corresponding normalized absolute error, 
εr(c(n+1)), will then be calculated with eqn. (18).

Once the error function is evaluated at the newly generated 
intermediate point (which could be either b(n+1) or c(n+1), depending on 
the relevant scenario), computation can then proceed to the next stage.

Convergence test: At the end of a golden-section search step a 
convergence test is conducted. Convergence is assumed, if εr(b(n+1)) ≤ 
ε for the case in which scenario II.1 holds or if εr(c(n+1)) ≤ ε for the case 
in which scenario II.2 holds. Either way, the link discharge and nodal 
head vectors, Qp and Hp, obtained in the current lateral-wide hydraulic 
computation would constitute the solution to the simulation problem. 
Conversely, if the computed normalized absolute error is greater than 
the preset tolerance (i.e., if εr(b(n+1))>ε for scenario II.1 or εr(c(n+1))>ε 
for scenario II.2), then computation proceeds to the next golden-
section search step and the procedure outlined above (consisting of 
function comparison and interval reduction, function evaluation, and 
convergence test phases) will be repeated. Minimization of the error 
function, eqn. (18), continues until either convergence is achieved 
or a specified maximum number of searches (which is set to 50 in 
the current model) is exceeded, in which case the computation ends 
without a solution.

It can be readily shown, based on eqns. (28)-(31), that if the 
placement of the intermediate points within the first search interval 
satisfy the requirements specified in eqn. (26), then the placement of 
the intermediate points for all subsequent iterations will automatically 
satisfy these requirements. Although four points are needed to execute 
a golden-section search step, it needs to be noted that only one new 
function evaluation is required in all but the first iteration. In theory, 
the golden-section method has a lower rate of convergence than other 
more widely used methods, such as the Newton method [25,26]. 
However, the fact that the golden-section method does not require 
evaluation of derivatives makes it suitable for optimizing problems 
in which the objective function and the decision variable cannot be 
related in terms of a simple functional expression.

Highlight of Model Inputs and Outputs, Model 
Components, and Their Modes of Interactions
Highlight of model inputs and outputs

The linear-move lateral hydraulic simulation model presented 
here is implemented in a C++ program developed based on the object 
oriented approach. The model produces a range of outputs given the 
hydraulic, geometric, and elevation data of a linear-move sprinkler 
irrigation system as input. The specific input data items include lateral 
pipe segment lengths and lateral elevation profiles (both defined along 
the centerline of a lateral), lateral diameter, pipe relative roughness, 
drop-tube lengths and diameters, prv parameters, outlet spacing, 
sprinkler parameters, local head loss coefficients, and total head at 
the lateral inlet. The main outputs of the numerical model are the link 
discharge vector (lateral pipe segment and sprinkler discharges), Q, 
and total heads just upstream of each junction node, H. Additional 
model outputs include velocity heads and friction head losses in each 
of the lateral pipe segments, local head losses, piezometric head profile 
along the lateral, lateral pressure head profile, inlet and outlet pressures 
of each prv, prv operating modes (active and/or passive), and head 
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differential across each sprinkler.

Components of the lateral hydraulic simulation model and 
their modes of interaction

The main elements of the hydraulic simulation model, their 
modes of interaction, and the directions of data flow are depicted in 
a simplified flow diagram schematized in Figure 1. Based on a theme 
of model functionality, model components are categorized here into 
three elements: pre-processing, computation, and post-processing 
(Figure 1). Note that varied background shedding is used in Figure 1 to 
differentiate between the program components.

Pre-processing and post-processing: The pre-processing and 
post-processing model components are shown in the top and bottom 
boxes of Figure 1 and they represent model functionalities that relate to 
the processing of input and output data, respectively.

Computation: As noted earlier, the lateral hydraulic simulation 
problem is cast here as a one-dimensional error minimization 
(optimization) problem. Given a lateral parameter set, the objective of 
the optimization problem is one of finding the distal-end nodal head, 
HJ, that leads to a combination of link discharge and nodal head vectors, 
Q and H, with an inlet head that is sufficiently close to the imposed 
head (i.e., the lateral inlet head specified at the input). Accordingly, 
in the model presented here hydraulic simulation computations are 
conducted using a pair of coupled modules, consisting of a hydraulic 
module (which performs a lateral-wide iterative sweep through each 
node of the lateral) and a one-dimensional error minimization module. 
As will be shown shortly, each one-dimensional error minimization 
computational step (iteration) involves at least one function call to 
the hydraulic module. Thus, programmatically speaking, the hydraulic 
module is embedded within the error minimization module. The error 
minimization module itself is comprised of two submodules: a feasible 
interval delimitation submodule and a one-dimensional optimization 
(line-search) algorithm developed based on the golden-section 
method, which is simply termed in Figure 1 as a golden-section search 
submodule.

As can be noted from Figure 1, hydraulic simulation computations 
start in the feasible interval delimitation submodule. The interval 
delimitation submodule determines the feasible set of the independent 
variable, HJ, of the error minimization problem. In order to 
successfully delimit the feasible interval of the distal-end nodal head, 
the interval delimitation submodule invokes the hydraulic module at 
least twice, typically multiple times. In each function call, the interval 
delimitation submodule passes the value of the distal-end nodal 
head for the current iteration (Hp

J), which is an assumed initial value 
determined in accordance with eqn. (19) (in the first iteration) or a 
revised estimate of the nodal head (in subsequent iterations), to the 
hydraulic module (Figure 1). The hydraulic module then performs a 
lateral-wide sweep that starts at the distal-end node and ends at the 
inlet-end node of the lateral. In a lateral-wide sweep, if any of the nodal 
iterative computations fail to converge, then the hydraulic simulation 
will end without a solution, as shown in Figure 1 with a dotted-line. A 
successful lateral-wide hydraulic computation, on the other hand, ends 
with the determination of the link discharge and nodal head arrays 
corresponding to Hp

J. The hydraulic module then returns the link 
discharge and nodal head arrays computed in the current iteration, Qp 
and Hp, to the interval delimitation submodule.

The feasible interval delimitation submodule then performs 
convergence test (in accordance with the criterion describe earlier) 

to determine if the inlet head computed in the current iteration is 
sufficiently close to the imposed head. If convergence is achieved, 
then the link discharge and nodal head arrays computed in the 
current iteration, Qp and Hp, will be accepted as the solution to the 
hydraulic simulation problem. The Qp and Hp arrays will be passed, as 
shown in Figure 1 with a dashed-line, to the post-processing model 
functionality where output data will be saved in output data files. Note 
that the interval delimitation submodule is not specifically designed to 
determine the solution to a hydraulic simulation problem, thus to the 
extent that convergence occurs within the interval delimitation phase it 
is only incidental and hence it is not a typical computational outcome.

If, on the other hand, convergence test returns false, then the 
interval delimitation submodule calculates a revised estimate of the 
distal-end nodal head in accordance with eqn. (25). The hydraulic 
module is then invoked and a new lateral-wide computation based 
on the revised estimate of the head at the distal-end node, Hp

J, will be 
executed. These steps are repeated until either the maximum allowable 
number of interval delimitation iterations are exceeded, in which case 
simulation ends without a solution (Figure 1), or the feasible interval 
of HJ is delimited. Once the feasible interval is bounded, then discharge 
and nodal head arrays computed in the current iteration, Qp and Hp, 
will be passed to the golden-section search submodule.

A line-search algorithm developed based on the golden-section 
method is used here to systematically search, within the feasible interval, 
for the distal-end nodal head that minimizes the normalized absolute 
error between the computed and the imposed inlet heads, eqn. (18). 
In a golden-section search step, the golden-section submodule invokes 
the hydraulic module, at least once, and passes the value of the distal-
end nodal head for the current iteration, Hp

J. The hydraulic module 
then performs a lateral-wide sweep to determine the nodal head and 
discharge arrays corresponding to the current distal-end nodal head. 
Following a successful lateral–wide hydraulic computation, the lateral 
hydraulic module returns the computed discharge and head vectors, Qp 
and Hp, to the golden-section search submodule (Figure 1).

The golden-section search submodule will then perform 
convergence test using the criterion described earlier. If convergence 
test returns true, then the link discharge and nodal head vectors 
computed in the current golden-section search step will be accepted 
as the solution to the hydraulic simulation problem. The Qp and Hp

 

vectors will then be passed, as shown in Figure 1 with a dashed-line, 
to the post-processing model functionality where model outputs are 
processed. If, on the other hand, the golden-section search step did not 
converge, then a revised estimate HJ will be determined in accordance 
with the golden-section procedure and a new lateral-wide iteration is 
initiated. This process is repeated until either a specified number of 
maximum allowable iterations are exceeded, in which case program 
ends without a solution, or a solution is obtained.

Discussion and Conclusions
A hydraulic simulation model is developed for linear-move 

sprinkler irrigation laterals equipped with pressure reducing valves, 
prvs. The linear-move lateral considered here consist of a series of 
arched spans with a specified geometry and multiple outlet-ports. 
The lateral hydraulic and geometric characteristics can be constant or 
variable along the lateral. In order to maintain a pressure sufficiently 
close to a suitably selected set pressure upstream of the sprinklers, 
each sprinkler is coupled to a prv at its inlet-end. Operating modes 
of prvs determine prv-effects on lateral hydraulics. Accordingly, the 
full range of prv operational modes are defined, in the context an 
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irrigation lateral, and their effects on lateral hydraulics is described in a 
companion manuscript. The definition of the operating modes of prvs 
and pertinent equations are then integrated into the formulation and 
numerical solution of the hydraulic simulation model presented here.

Computational methods applicable to hydraulic manifolds form 
the basis of the numerical algorithms of the hydraulic computation 
functionality of the simulation model. However, the basic algorithms 
developed as such are modified to account for the effects of prvs on 
the hydraulics of a linear-move lateral. The solution to a hydraulic 
simulation problem requires the determination of a hydraulic scenario 
(i.e., a combination of link discharge and nodal head arrays) with 
an inlet head that is sufficiently close to the imposed head. Hence, it 
generally involves multiple lateral-wide iterative sweeps, each leading 
to a hydraulic scenario that corresponds to a different distal-end 
nodal head. Thus, in order to systematize the search for the distal-
end head, that corresponds to a hydraulic scenario with an inlet head 
that is sufficiently close to the imposed head, the linear-move lateral 
hydraulic simulation problem is formulated here as a one-dimensional 
optimization problem. Accordingly, a line-search algorithm, developed 
based on the golden-section method, is used in the model presented 
here to minimize the normalized absolute error, between the computed 
lateral inlet-head and the imposed head, as a function of the distal-end 
nodal head of the lateral.

This manuscript presents the formulation and numerical solution 
of the hydraulic simulation problem of a linear-move lateral equipped 
with prvs. The companion manuscripts present system description, 
model assumptions, specification of the hydraulic simulation problem, 
and model evaluation. 

References

1.	 Keller J, Corey F, Walker WR, Vavra ME (1980) Evaluation of Irrigation 
Systems. In Irrigation: Challenges of the 80’s. Proceedings of the Second 
National  Irrigation Symposium, 95-105, St. Joseph, MI, ASAE.

2.	 Gregg T (2004) Water Conservation Best Management Practice Guide, Report 
362, Texas Water Development Board, Austin, Texas.

3.	 Granger RA (1995) Fluid Mechanics. Dover Publications Inc., New York, NY.

4.	 Christiansen JE (1942) Irrigation by Sprinkling.  California Agricultural 
Experiment Station Bulletin, 670, University of California, Davis, CA. 

5.	 Keller J, Bliesner R (1990) Sprinkle and trickle irrigation. Van Nostrand 
Reinhold, New York, NY.

6.	 Martin DL, Heermann DF, Madison M (2007) Design and Operation of Farm 
Irrigation Systems. In: Hoffmans GJ, Evans RG, Jensen ME, Martin DL, Elliott 
RL, (2nd eds.) Hydraulics of Sprinkler and Micro-Irrigation Systems American 
Society of Agricultural and Biological Engineers Chapter 15, pp. 532-556. 

7.	 Kincaid DC, Heermann DF (1970) Pressure Distribution on a Center-Pivot 
Sprinkler Irrigation System. Trans ASAE, 13(5):556-558.

8.	 Chu ST, Moe DL (1972) Hydraulics of a Center Pivot System. Amer Soc Agr 
Eng Trans ASAE, 15(5):894-896.

9.	 Scaloppi EJ, Allen RG (1993) Hydraulics of Center-Pivot Laterals. J Irrig Drain 
Eng ASCE, 119(3): 554-567.

10.	Anwar AA (1999) Friction Correction Factors for Center-Pivots. J Irrig Drain Eng 
ASCE, 125(5): 280-286.

11.	Valiantzas JD, Dercas N (2005) Hydraulic Analysis of Multidiameter Center-
Pivot Sprinkler Laterals. J Irrig Drain Eng ASCE, 131(2): 137-142.

12.	Heermann DF, Stahl KM (2006) CPED: Center Pivot Evaluation and Design 
Center for Agricultural Resources Research, Water Management and Systems 
Research, USDA. 

13.	Tabuada MA (2014) Friction Head Loss in Center-Pivot Laterals with Single 
Diameter and Multidiameter. J Irrig Drain Eng ASCE 140(10): 04014033.

14.	Fraisse CW, Heermann DF, Duke HR (1995) Simulation of Variable Water 
Application with Linear-Move Irrigation System. Transactions of the ASAE, 
38(5):1371-1376.

15.	Heermann DF, Hein PR (1968) Performance Characteristics of Self-Propelled 
Center- Pivot Sprinkler Irrigation System. Trans ASAE, 11(1):11-15.

16.	Hathoot HM, Abo-Ghobar HM, Al-Amud AI, Mohammad FS (1994) Analysis and 
Design of Sprinkler Irrigation Laterals. J Irrig Drain Eng ASCE, 120(3):534-549.

17.	Zerihun D, Sanchez CA, Nolte K (2014) Field-scale Sprinkler Irrigation Hydraulic 
Model. I. Hydraulic Characterization. J Irrig Drain Eng 140(7): 04014019.

18.	Zerihun D, Sanchez CA (2014) Field-Scale Sprinkler Irrigation Hydraulic Model. 
1100 II: Hydraulic Simulation. J Irrig Drain Eng 140(7): 04014020. 

19.	Zerihun D, Sanchez CA (2017) Irrigation Lateral Hydraulics with the Gradient 
Method.  J Irrig Drain Eng ASCE 143(8): 04017023.

20.	Jeppson RW (1976) Analysis of flow in pipe networks. Butterworth Publishers, 
Boston, MA.

21.	Jeppson RW, Davis AL (1976) Pressure Reducing Valves in Pipe Network 
Analyses. J Hydraul Div ASCE, 102(7): 987-1001.

22.	Larock BE, Jeppson RW, Watters GZ (1999) Hydraulics of Pipeline Systems. 
CRC Press, Washington, DC. 

23.	Behave PR, Gupta R (2006) Analysis of Water Distribution Networks. Alpha 
Science International Ltd., Oxford, UK. 

24.	Zerihun D, Sanchez CA (2012) Sprinkler model: A field-scale solid set sprinkler 
irrigation hydraulic model, Program documentation. 

25.	Avriel M (1976) Nonlinear Programming: Analysis and Methods. Prentice Hall 
Inc., Englewood cliffs, NJ.

26.	 Beightler CS, Phillips DT, Wilde DJ (1979) Foundations of Optimization. 
Prentice-Hall, Inc., Englewood Cliffs, NJ. 

27.	Lipschutz S (1991) Theory and problems of linear algebra. Schaum’s Outline 
Series, 2nd edition, McGraw-Hill, Inc., New York, NY.Y.

http://www.twdb.texas.gov/publications/reports/numbered_reports/doc/R362_BMPGuide.pdf
http://www.twdb.texas.gov/publications/reports/numbered_reports/doc/R362_BMPGuide.pdf
https://books.google.co.in/books/about/Fluid_Mechanics.html?id=o6fAL6bxLBIC
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1264539
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1264539
http://agris.fao.org/agris-search/search.do?recordID=XF2016006384
http://agris.fao.org/agris-search/search.do?recordID=XF2016006384
https://elibrary.asabe.org/azdez.asp?JID=7&AID=23698&CID=dos2007&T=1
https://elibrary.asabe.org/azdez.asp?JID=7&AID=23698&CID=dos2007&T=1
https://elibrary.asabe.org/azdez.asp?JID=7&AID=23698&CID=dos2007&T=1
https://elibrary.asabe.org/azdez.asp?JID=7&AID=23698&CID=dos2007&T=1
https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/J/9HPNG/HJ/L/jBHJ_L_GLLM.5tv&param2=M/HP/IGHP&param3=HHL.IKO.ILJ.HJN
https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/J/9HPNG/HJ/L/jBHJ_L_GLLM.5tv&param2=M/HP/IGHP&param3=HHL.IKO.ILJ.HJN
http://agris.fao.org/agris-search/search.do?recordID=US201302230357
http://agris.fao.org/agris-search/search.do?recordID=US201302230357
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9437%281993%29119%3A3%28554%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9437%281993%29119%3A3%28554%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9437%281999%29125%3A5%28280%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9437%281999%29125%3A5%28280%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9437%282005%29131%3A2%28137%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9437%282005%29131%3A2%28137%29
https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-resources-research/water-management-and-systems-research/docs/cped/
https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-resources-research/water-management-and-systems-research/docs/cped/
https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-resources-research/water-management-and-systems-research/docs/cped/
https://ascelibrary.org/doi/10.1061/%28ASCE%29IR.1943-4774.0000755
https://ascelibrary.org/doi/10.1061/%28ASCE%29IR.1943-4774.0000755
http://agris.fao.org/agris-search/search.do?recordID=US9567582
http://agris.fao.org/agris-search/search.do?recordID=US9567582
http://agris.fao.org/agris-search/search.do?recordID=US9567582
https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/J/9HPMO/HH/H/jBHH_H_GGHH.5tv&param2=M/HP/IGHP&param3=HHL.IKO.ILJ.HJN
https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/J/9HPMO/HH/H/jBHH_H_GGHH.5tv&param2=M/HP/IGHP&param3=HHL.IKO.ILJ.HJN
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9437%281994%29120%3A3%28534%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9437%281994%29120%3A3%28534%29
mailto:https://ascelibrary.org/doi/full/10.1061/%28ASCE%29IR.1943-4774.0000791
mailto:https://ascelibrary.org/doi/full/10.1061/%28ASCE%29IR.1943-4774.0000791
https://ascelibrary.org/doi/10.1061/%28ASCE%29IR.1943-4774.0001195
https://ascelibrary.org/doi/10.1061/%28ASCE%29IR.1943-4774.0001195
https://books.google.co.in/books/about/Analysis_of_flow_in_pipe_networks.html?id=peZSAAAAMAAJ&redir_esc=y
https://books.google.co.in/books/about/Analysis_of_flow_in_pipe_networks.html?id=peZSAAAAMAAJ&redir_esc=y
https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006783
https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006783
https://www.crcpress.com/Hydraulics-of-Pipeline-Systems/Larock-Jeppson-Watters/p/book/9780849318061
https://www.crcpress.com/Hydraulics-of-Pipeline-Systems/Larock-Jeppson-Watters/p/book/9780849318061
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=990964
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=990964
https://lib.ugent.be/en/catalog/rug01:000485227
https://lib.ugent.be/en/catalog/rug01:000485227
https://rathalyce.files.wordpress.com/2016/04/zumy.pdf
https://rathalyce.files.wordpress.com/2016/04/zumy.pdf
https://trove.nla.gov.au/work/6249217
https://trove.nla.gov.au/work/6249217
https://trove.nla.gov.au/work/6249217


Appendix I. Equations for friction and local head loss terms 

 

Friction head loss, hf [L], in a hydraulic link (i.e., a lateral pipe segment or a drop-tube) can be expressed as  

.1)IQh 2
f (  

In Eq. I.1,  is the hydraulic resistance coefficient of the friction head loss equation [T2/L5] and Q is link 

discharge [L3/T]. Note that for convenience, in Eq. I.1 the hydraulic resistance coefficient, , and the link 

discharge, Q, are written without the link index.  

Noting that the Darcy-Weisbach formula is used to calculate friction head loss in the current model,  can be 

given as  

(I.2)l
D

f
k

5f  

where kf is a dimensional constant in the friction head loss equation [T2/L];  f is the friction factor for a hydraulic 

link [-]; l is the link length [L]; and D is the link diameter [L].  

In the model presented here, for R  4000, where R is the Reynolds number, the link friction factor,  f, is 

calculated with the friction factor formula applicable to laminar flow in pipes. For turbulent flow (4000 < R), f  

is computed through iterative solution of the Colebrook-White equation. The exact form of the Colebrook-White 

equation used in the model presented here is given by Zerihun and Sanchez (2017).  

Furthermore, the local head losses, hl [L], across pipe transitions (such as pipe size changes, fittings, tees, 

elbows, valves) where the flow is constrained, changes direction, or changes velocity are calculated with  

(I.3)
D

k
kwhereQh

4
L

l
2

l   ,  

In Eq. I.3, π is local head loss parameter [T2/L5], kl is a dimensional constant [T2/L], and kL is the local head loss 

coefficient of an appurtenance [-]. Note that depending on the source of the local head loss, the link discharge, 

Q, and diameter, D, applicable to Eq. I.3 could be those corresponding to the link carrying discharge into the 

pipe appurtenance that caused the head loss or the link that carries discharge from it. Alternatively, for 

appurtenances across which link discharges and diameters are the same, the through-flow discharge and the 

local link diameter is used in these equations.  

 

Appendix II. Formulation of the iterative solution of Eqs. 14 and 15  

Equations 14 and 15 are nonlinear in the unknowns, Q i and H j, and need to be solved iteratively. In order to 

formulate the iterative solution, Eqs. 14 and 15 will now be expressed as   
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where functions F1(Q i,H j) and F2(Q i, H j) represent, respectively, the residuals of energy balance over the ith 

and (i+1)th links in an iteration. An iterative algorithm developed based on the Newton method is used here to 

solve Eqs. II.1 and II.2 for Qi and H j. Accordingly, at any given iteration, say at the (m+1)th iteration (where m 

is the iteration index), the incremental changes in Q i and H j is computed through the simultaneous solution of a 

pair of linear equations, which can be expressed in vector form as  

).()( 3IIFxζ m1mm   

For convenience, in subsequent development the variables in Eqs. II.1 and II.2 (i.e., Q i and H j) will be written 

without the link and nodal indices. Accordingly, the notations m, xm, and Fm, in Eq. II.3, can be expressed as 
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In Eq. II. 4, m is a coefficient matrix evaluated based on Qm
 and Hm (Note that the first and second rows of m 

represent the transpose of the gradient vectors of F1 and F2, respectively, at the mth iteration); Qm
 and Hm are 

estimates of the ith link discharge and the head just upstream of the jth junction node at the mth iteration, 

respectively; x(m+1)
 is vector of the incremental changes in the unknowns in the (m+1)th iteration; and Fm is the 

residual vector evaluated based Qm
 and Hm. Note that details regarding the evaluation of the derivatives of the 

functions F1 and F2 with respect to Q and H, Eq. II.4, are presented by Zerihun and Sanchez (2017).  

 

Appendix III. Iterative algorithm for the solution of Eqs. 14 and 15 

Iterative solution of Eqs. 14 and 15 for the ith link discharge, Qi, and the jth junction node, H j, is outlined here. 

For simplicity, in subsequent discussion the ith link discharge at the mth iteration, Qm
i, and the jth nodal head at 

the mth iteration, Hm 
j, will be written without the link and nodal indices simply as Qm and Hm, respectively.   

1. Set m = 0 and initialize Qm and Hm. A good initial approximation consists of setting Qm equal to the 

discharge of the nearest sprinkler downstream of the current sprinkler and Hm equal to the head at the nearest 

junction node, with an outlet port, downstream of the current node. Proceed to step 2. 

2. Compute elements of the residual vector, Fm, as a function of Qm and Hm (Eqs. II.1 and II.2). Proceed 

to step 3.  

3. Compute elements of the coefficient matrix, m, (Eq. II.4) based on Qm and Hm. Proceed to step 4. 

4. Compute the incremental change in the variable vector in the current iteration, x(m+1), Eq. II.3. Proceed 

to step 5. [Note that in the current model, Eq. II.3 is solved for x(m+1) with Cramer’s rule (e.g., Lipschutz, 

1991)].  

5. Update variables: set Q(m+1) = Qm+Q(m+1) and H(m+1) = Hm+H(m+1). Proceed to step 6. 

6. Convergence test:  

6a. If |Q(m+1)|/Q(m+1)  10-7, then proceed to step 6b. If not proceed to step 7. 

6b. If |H(m+1)|/H(m+1)  10-7, then proceed to step 10. If not, proceed to step 7. 

7. Set m = m+1, proceed to step 8. 



8. If m   MaximumNodalIteration, then proceed to step 2. If, on the other hand, MaximumNodalIteration 

< m, then proceed to step 9. (Note: MaximumNodalIteration is the maximum allowed number of nodal 

iterations, which is set to 30 in the current model)   

9. Iterative computation of the total head just upstream of the jth junction node, H j, and the discharge in 

the attached drop-tube and prv-sprinkler assembly (i.e., the ith link), Q i, failed to converge. End computation. 

10. The total head just upstream of the jth junction node and the discharge in the attached  

drop-tube and prv-sprinkler assembly (i.e., the ith link) for the current lateral-wide iteration has been computed 

and it can be given as: Q i = Q(m+1) and H j = H(m+1). End nodal computation. 
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