

Humanoid Robotics: Progress, Challenges, and Ethics

Tobias Klein*

Department of Autonomous Systems, Rhein Robotics University, Dusseldorf, Germany

Introduction

The advancement of humanoid robots is a multifaceted endeavor, encompassing complex challenges in achieving natural and effective operation in human environments. A significant area of study focuses on sophisticated locomotion. For example, research explores the application of Deep Reinforcement Learning (DRL) for creating agile and robust movement in humanoid robots. This work delves into various DRL algorithms, state and action representations, reward functions, and techniques for transferring simulated learning to physical robots, highlighting both successes and the persistent difficulties in this transfer [1].

Closely related is the development of robust bipedal walking control strategies. These are critical for maintaining stability, rejecting disturbances, and adapting to uneven terrains. A survey in this field covers diverse control methodologies, modeling approaches, and sensing techniques essential for achieving reliable, dynamic gait in varied environments [4]. Further enhancing physical capabilities, whole-body control methods based on Hierarchical Quadratic Programming (HQP) are key. HQP provides a flexible framework, enabling the coordinated execution of multiple tasks—such as maintaining balance, performing locomotion, and executing manipulation—each with different priorities, thus supporting complex humanoid behaviors [5].

Beyond movement, human-robot interaction (HRI) is paramount. One survey examines the intricate interplay of perception, cognition, and action in HRI for humanoid robots. It discusses how humans interpret their surroundings and human partners, formulate cognitive decisions, and carry out physical actions, pointing out both current challenges and future avenues for more natural and intuitive interactions [2].

The ability for humanoids to learn complex tasks is another pivotal research area. One method introduces combining teleoperation for initial human-provided demonstrations with reinforcement learning for subsequent refinement. This technique aims to empower robots to acquire versatile skills through guided human input and autonomous optimization, leading to more adaptable robot behaviors [3]. More broadly, learning-based control methods for humanoid robots are being thoroughly surveyed. These techniques include reinforcement learning, imitation learning, and adaptive control, all designed to enable robots to acquire and refine complex motor skills, ultimately enhancing adaptability, robustness, and performance in dynamic and uncertain settings [9].

Manipulation and grasping capabilities represent major challenges for humanoid robots. This domain necessitates addressing the intricacies of dexterous hand design, improving perception for object interaction, and developing effective planning strategies for a wide range of tasks. The goal is to achieve human-level manipulation through advanced sensing, learning algorithms, and robust control [10].

Navigation and mapping are also crucial for deploying humanoids effectively. Reviews in this area specifically consider the unique hurdles presented by bipedal locomotion and limited sensing in complex, human-centric environments. They cover various localization, mapping, and path planning algorithms, emphasizing their adaptation for humanoid platforms [6].

The physical design of humanoids is evolving too, with the integration of soft robotics principles. This approach focuses on how compliant materials and structures can improve safety, adaptability, and foster more human-like interactions. Discussions include advancements in soft actuators, sensors, and concepts for full-body soft humanoids, along with the challenges in their control and fabrication [7].

Finally, the ethical dimensions of humanoid and autonomous robot deployment cannot be overlooked, especially concerning their use in healthcare for older people. This critical discussion examines the perceived value and existing challenges, covering issues like autonomy, dignity, privacy, and their potential impact on human-human relationships, offering insights for responsible design and integration [8].

Description

Humanoid robot research addresses a broad spectrum of challenges, aiming to create intelligent machines capable of complex behaviors and interactions. A core area involves advanced locomotion techniques, with deep reinforcement learning (DRL) emerging as a powerful paradigm. DRL approaches cover various algorithms, state and action representations, and reward functions to achieve agile and robust movement [1]. A significant hurdle remains in effectively transferring these DRL-learned policies from simulated environments to actual physical humanoid platforms, ensuring real-world applicability and safety [1]. Concurrently, robust bipedal walking control strategies are continuously being refined to ensure stability, effectively reject disturbances, and enable adaptability to uneven terrains. This involves a comprehensive review of control methodologies, modeling approaches, and sensing techniques, which are all critical for achieving dynamic and reliable gait in diverse, challenging environments [4].

Further enhancing the physical capabilities of humanoids, whole-body control methods are essential for coordinating multiple complex actions. Hierarchical Quadratic Programming (HQP) provides a widely adopted framework, allowing for the simultaneous execution of tasks such as maintaining balance, performing intricate locomotion, and precise manipulation. This HQP-based approach is reviewed for its flexibility in managing tasks with different priorities, thus facilitating sophisticated humanoid behaviors [5]. Another crucial aspect is how humanoids interact with their surroundings and human partners. Human-Robot Interaction (HRI)

studies explore the intricate interplay of perception, cognition, and action. Researchers analyze how humanoids interpret their environment and human cues, make informed cognitive decisions, and translate these into physical actions, emphasizing the ongoing challenges and future directions for developing more natural and intuitive HRI [2].

The ability of humanoid robots to learn new skills is rapidly advancing through various methodologies. One innovative approach combines teleoperation, where humans provide initial demonstrations, with reinforcement learning for subsequent autonomous refinement. This method allows robots to acquire a versatile range of skills through initial human guidance, followed by independent optimization, ultimately paving the way for highly adaptable robot behaviors [3]. More generally, learning-based control methods, encompassing reinforcement learning, imitation learning, and adaptive control, are being extensively surveyed. These techniques are fundamental in enabling humanoids to acquire and refine complex motor skills, thereby enhancing their adaptability, overall robustness, and performance in dynamic and often unpredictable environments [9].

Manipulation and grasping present formidable challenges, requiring significant breakthroughs in several key areas. The complexity starts with designing dexterous hands that can perform human-like tasks, extends to developing advanced perception systems for accurate object interaction, and culminates in planning for a diverse array of manipulation tasks. Achieving human-level manipulation capabilities necessitates substantial progress in sensing technologies, sophisticated learning algorithms, and highly robust control strategies [10]. Moreover, effective navigation and mapping are indispensable for humanoid robots operating in real-world settings. Reviews in this field specifically address the unique difficulties posed by bipedal locomotion and the inherent limitations of sensing capabilities within complex, human-centric environments. This includes adaptations of various localization, mapping, and path planning algorithms tailored for humanoid platforms [6].

The integration of soft robotics principles into humanoid design marks a significant evolution, focusing on enhancing safety, adaptability, and promoting more natural human-like interactions. This involves exploring compliant materials and structures, and discussing advancements in soft actuators, sensors, and the conceptualization of full-body soft humanoids, while also addressing inherent challenges in their control and fabrication [7]. Alongside these technological advancements, the ethical implications of deploying humanoid and autonomous robots, especially in sensitive domains like healthcare for older individuals, are under intense scrutiny. This involves examining the perceived value of such robots, the challenges they introduce, and critical issues concerning autonomy, dignity, privacy, and their potential impact on established human-human relationships. These discussions aim to inform responsible design and integration practices for future robotic deployments [8].

Conclusion

The body of work highlights significant advancements and ongoing challenges in humanoid robotics. A key focus is on locomotion, with Deep Reinforcement Learning (DRL) emerging as a powerful tool for agile and robust movement, though transferring these policies to physical robots remains complex [1]. Parallel efforts concentrate on robust bipedal walking control, ensuring stability and adaptability in diverse terrains through various modeling and sensing techniques [4]. Whole-body control, often implemented through Hierarchical Quadratic Programming (HQP), provides a flexible framework for coordinating multiple tasks like balance, movement, and manipulation simultaneously [5]. Beyond physical control, Human-Robot Interaction (HRI) is thoroughly examined, considering how humanoids perceive, cognitively process, and act to foster more natural and intuitive interactions [2]. Learning capabilities are enhanced through methods combining teleoperation

for initial demonstrations with reinforcement learning for skill refinement, leading to more adaptable behaviors [3]. Learning-based control methods broadly improve robot adaptability and performance in dynamic settings [9]. Manipulation and grasping tasks represent another frontier, demanding sophisticated hand designs, advanced perception, and intricate planning for human-level dexterity [10]. Navigation and mapping techniques are also being adapted for humanoids, addressing their unique bipedal nature and sensor limitations in complex, human-centric spaces [6]. Materials science contributes through soft robotics, which aims to improve safety and interaction quality by integrating compliant structures and actuators into humanoid design [7]. Finally, the ethical implications of deploying humanoid and autonomous robots, particularly in sensitive sectors like healthcare, are critically assessed to ensure responsible innovation and integration, focusing on autonomy, dignity, and privacy for older people [8].

Acknowledgement

None.

Conflict of Interest

None.

References

1. Xiaocong Zhang, Zhijun Li, Haibo Tan. "Humanoid Robot Locomotion with Deep Reinforcement Learning: A Review." *IEEE Trans. Cybern.* 53 (2023):5202-5216.
2. Jinjun Tang, Chenhao Wang, Zhifei Lin. "Perception, Cognition, and Action in Human-Robot Interaction: A Survey of Humanoid Robots." *Robot. Auton. Syst.* 153 (2022):104278.
3. Zhibin Li, Tianbo Song, Kai Huang. "Learning Complex Tasks for Humanoid Robots Through Teleoperation and Reinforcement Learning." *IEEE Trans. Cogn. Dev. Syst.* (2024):1-13.
4. Yifan Liu, Longhui Zhang, Junlong Huang. "Robust Bipedal Walking Control for Humanoid Robots: A Survey." *Robot. Auton. Syst.* 146 (2021):103986.
5. Zhong-Xing He, Yongchun Fang, Haoyong Yu. "Whole-body control of humanoid robots based on hierarchical quadratic programming: A review." *Robot. Comput. Integrat. Manuf.* 82 (2023):102434.
6. Muhammad Atif Khan, Kashif Khan, Wajahat Aziz. "A Review of Navigation and Mapping Techniques for Humanoid Robots." *IEEE Access* 8 (2020):167385-167401.
7. Zhiyuan Dong, Xiaoyuan Meng, Yan Song. "Soft robotics for humanoid applications: A review." *Robot. Biomimetics* 10 (2023):36.
8. Stefanie D. Schrank, Carola Graf, Katja Gutsche. "Robot ethics in the healthcare sector: The value of autonomous and humanoid robots for older people." *Front. Robot. AI* 9 (2022):951061.
9. Jingjing Yuan, Xinyu Wu, Min Zhang. "Learning-Based Control for Humanoid Robots: A Review." *IEEE Trans. Ind. Electron.* 68 (2021):10984-10996.
10. Chenxi Wang, Fengjie Liu, Yangang Hu. "Humanoid Robot Manipulation and Grasping: Challenges and Future Directions." *IEEE Trans. Autom. Sci. Eng.* (2024):1-15.

How to cite this article: Klein, Tobias. "Humanoid Robotics: Progress, Challenges, and Ethics." *Adv Robot Autom* 14 (2025):327.

***Address for Correspondence:** Tobias, Klein, Department of Autonomous Systems, Rhein Robotics University, Dusseldorf, Germany, E-mail: tklein@rru.de

Copyright: © 2025 Klein T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Jun-2025, Manuscript No. ara-25-175570; **Editor assigned:** 04-Jun-2025, PreQC No. P-175570; **Reviewed:** 18-Jun-2025, QC No. Q-175570; **Revised:** 23-Jun-2025, Manuscript No. R-175570; **Published:** 30-Jun-2025, DOI: 10.37421/2168-9695.2025.14.327
