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Abstract

Many human diseases arise as the result of DNA mutations in the patient’s genome. The neurodevelopmental
diseases of early childhood have proven difficult to model due to lack of access to embryonic tissue and ethical
concerns. Federal restrictions on the use of embryonic material also preclude studying some stages of
neurodevelopmental disease. The onset of illness in utero or early childhood is frequently preceded by normal
development of critical milestones. Recent work has led to methodologies to transform somatic cells to embryonic-
like stem cells using four exogenous transcription factors. With this approach, it is now possible to validate the use of
human induced pluripotent stem cells (hiPSCs) to model aspects of neurodevelopmental diseases using a patient’s
donated cells or genome editing of hiPSC cells to contain known disease mutations. The reprogramming of somatic
cells to hiPSC requires dedifferentiation and resetting of epigenetic signatures in the genome. The newest
approaches are evaluating propagating the cells in three dimensions on artificial matrices to recapitulate regional
neural cyto-architecture within the brain. Newer genome editing techniques that rely on site-specific sequence
recognition by synthetic enzymes can be used to generate hiPSC neurodevelopmental disease models. A hiPSC
disease model has several advantages, the patient’s own cells may be transduced to provide the investigative cell
model and compared to other patient’s cells with the same disease. Additionally, a hiPSC model addresses some of
the concerns about gene engineered animal models accurately recapitulating human disease since the model
context is a patient-specific human cell line. Here we review the emerging use of hiPSC to model
neurodevelopmental diseases.
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Introduction
Understanding the molecular basis of early developmental disease is 

hindered by the lack of appropriate human cell and organ models that 
accurately define disease pathology and progression. Genetically 
engineered animal disease models have contributed to our 
understanding of human pathophysiology but questions remain 
concerning whether small animal models can accurately reflect the 
human condition. Human cell lines derived from patients with disease 
are frequently difficult to establish and maintain in long-term cultures. 
Recently, Yamanaka and colleagues demonstrated that it requires only 
four introduced transcription factors (Sox2, Klf4, c-Myc, Oct3/4) to 
reprogram adult somatic cells to dedifferentiated induced pluripotent 
(hiPSC) cells [1-5]. With this innovative methodology, many 
laboratories are using hiPSC to model human diseases that occur in 
many organ systems [6-14]. While hiPSC are a promising investigative 
method to define molecular deficits in disease cells, it will require 
rigorous comparisons between many patients with the same disease to 
clearly characterize cellular dysfunction and abnormalities [15]. The 
ability to produce hiPSC models of human disease represents an 
opportunity to capture disease pathophysiology during disease 
progression. Here we summarize some of the emerging hiPSC cell 
themes and review the use of hiPSC methodology to study human 
neurodevelopment disorders.

Generation and Epigenetics of hiPSC cells

The Yamanaka method of reprograming cells to a pluripotent state
has been modified with many improvements but is not without

limitations. The process of generating induced pluripotent stem cells 
(hiPSC) from somatic cells by exogenous transcription factors is made 
possible by epigenetic changes that take place during the 
reprogramming process (Figure 1) [3,16-19]. The derivation of fully 
reprogrammed hiPSC is achieved through establishment of embryonic 
stem cell-like epigenetic changes permitting the reactivation of key 
endogenous pluripotency-related genes, establishment of appropriate 
bivalent chromatin domains and DNA hypomethylation of genomic 
heterochromatic regions [17,20,21]. Reconstitution of the epigenetic 
genome is a very inefficient process and the vast majority of the 
induced cells fail to complete the reprogramming process. Researchers 
are able to manipulate somatic cells (primarily fibroblasts from skin 
and PMBC from blood) and reprogram them to hiPSCs by ectopic 
expression of the pluripotent transcription factors Oct4, Sox2, Klf4, 
and c-Myc (or Nanog and Lin28 instead of Klf4 and c-Myc) [22-25]. 
To increase efficiency, accelerate kinetics, and reduce safety concerns, 
many improvements in methodology have been achieved. Several cell 
types are now shown to be reprogrammable with high efficiency. The 
newer methods involve overexpression of exogenous hiPSC 
transcription factors, manipulations involving the administration of 
cytokines or small molecules generating stem cells more rapidly and 
with somewhat higher efficiencies. Methods using virus-free, 
removable transposons, adenovirus, mini-circle systems, or episomal 
systems have been developed [26-30]. Although generating hiPSCs by 
these means are successful, the use of exogenous DNA constructs 
leaves the possibility of genomic integration into the patient cells. 
Other methods generate hiPSCs by using non-integrating Sendai
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virus-mediated gene delivery to reprogram hiPSCs, but their use may
be limited due to cost [31,32].

Figure 1: Stem cells reside in a microenvironment (niche) and have
plasticity.

Using growth cocktails they can be re-differentiated to many cells
types to model cell function. These techniques allow a scalable source
of cell material for in vitro study.

There are now promising strategies to regenerate neural progenitor
and specific neural lineages [33,34]. It is possible to cause the trans-
differentiation of mature fibroblasts directly into induced neurons
again by forced expression of key transcription factors, skipping the
intermediate pluripotency stage (Figure 2) [35]. Trans-differentiation
to neural cell types has the advantage of avoiding making the
intermediate hiPSCs stage to derive patient-specific cells. This
approach makes the process faster and more efficient and may reduce
the risk of pluripotency-associated tumorigenesis and possibly avoids
immunogenicity if these induced neural cells (iNCs) were to be used
for gene therapy [36]. These induced neurons can form synapses and
generate action potentials. In this approach, the source tissue has a
finite capacity to replicate. However, trans-differentiation may skip a
developmental window during which a molecular deficit underlying
disease is manifest. Despite these concerns, the iNC cells have the
properties of self-renewal and have developmental plasticity, making
them a promising resource for modeling neurodevelopmental
pathogenesis, drug screening, and cell based therapy [37,38].

Epigenetics studies the functionally relevant alterations in genome
activities that do not result from DNA sequence changes [20,39].
Epigenetic changes are represented by DNA (and RNA) methylation
patterns and histone modifications of the chromatin [16]. Epigenetic
activity is seen in the cellular differentiation process going from
totipotent cells in a zygote to define cell types (liver, muscle or neuron)
as the developmental program is completed. The reprogramming of
somatic cells (fibroblasts and peripheral blood mononuclear cells) to
hiPSCs by introducing exogenous transcription factors is made
possible by epigenetic changes. Completely reprogrammed hiPSCs re-
acquire activation of key endogenous pluripotency-related genes [40].
Reported epigenetic changes in remodeled hiPSC include appropriate
epigenetic bivalent chromatin domains, DNA hypomethylation of
heterochromatic regions and satellite repeats, reactivation of inactive
X chromosomes in female hiPSC, and resetting of imprinted loci to the
embryonic signature [41]. However, resetting the pluripotent
epigenetic signature in somatic cells is a very rare event (estimated at
<0.1% of differentiated cells exposed to reprogramming factors [42].
Two classes of cells are obtained during reprogramming: early/

intermediate, pre-hiPSC (partially reprogrammed) and completely
reprogrammed hiPSC cells. It is suggested that pre-hiPSC may
progress further to fully reprogrammed hiPSC with extended culture
time. As the molecular epigenetic chromatin signature is
reprogrammed in hiPSC, three-dimensional reorganization of
chromatin structures and nuclear subdomains is acquired [19].
Efficient epigenetic reorganization is a requirement for reliable
downstream in vitro modeling of patient-specific diseases and clinical
therapeutic uses of hiPSCs.

Figure 2: Developing neural cell models of disease from donated
patient cells.

Patient cells are used to develop induced pluripotent stem (iPS) 
cells that can be induced to form neural cell lineages or trans-
differentiated directly to neural stems cells (iNSC) that can form the 
neural lineages .

Microenvironment, Three Dimensional Scaffolds and
Organoids

The physical location and chemical microenvironment of stem cells
regulates whether the stem cell will retain its plasticity (self-renewal)
or will enter a differentiation pathway [43-45]. The intimate balance
between these two stem cell fates regulates homeostasis and tissue
repair [46,47].

Most multi-cellular tissues are composed of at least two cell types.
Understanding the complexity of cell-cell and cell-extra cellular matrix
interactions is needed to build better model systems to study
neurodevelopmental processes [48]. The development of three
dimensional (3D) hiPSC cultures relies on having a biocompatible
material to seed the cells on. This configuration encourages cell
attachment and proliferation with hiPSC producing their own
extracellular matrix (ECM). It also provides structural stability to
maintain the trans-differentiated cell phenotype [49]. Available 3D
matrices are limited and not always homogeneous. Popular substrates
are based on collagen or cellulose hydrogels [50]. Matrigel, isolated
from mouse tumor tissue, is expensive yet appears to provide a good
ECM alternative. The expectation is that the cells will self-organize
once introduced into the 3D matrix. The 3D organization of stem cells
permits interactions that resemble embryogenic processes including
morphogenesis, adhesion, biomechanical and biomolecular
communication between cells [43,51].

Three dimensional (3D) cultures may have advantages over the
standard two dimensional cell cultures. The 3D cultures appear to
capture more information on cell behavior, such as cell-cell
interactions and cell polarity orientations that may impact gene
activity [52]. 3D systems may better model the cell’s
microenvironment by more closely replicating the physiological tissue
environment [47,53]. In these systems, it is important to show
functionality. A recent study by Munhall, et al. [54] compared
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epithelial cancer cells grown in monolayer culture (2D) and in a 3D
system. The electrophysiological extracellular conductivity in 3D
grown cells was higher than 2D grown cells. This group also reported
differences in cell morphology and intracellular trafficking. In another
study, Itoh, et al. [55] reports the development of a 3D culture of
fibroblasts and keratinocytes from hiPSC to model skin dynmics. This
3D system may be useful for defining the etiology of skin diseases [55].
Both sets of findings argue that 3D cell models can be developed to
better mimic the in vivo tissue environment. Yet, 3D organoid cultures
are limited by length of preparation time (months), appropriate ECM
substitutes, the equipment to set-up and expensive consumables.
However, investigators are now developing scaffolds to facilitate the
derivation of 3D cultures especially for neuronal investigations [6,56].
Many cellular assays will need optimization and/or validation for 3D
cultures prior to in vitro comparisons [57]. Finally, there are not yet
enough data to show duplication of findings between laboratories.

The complexity of the human brain makes it difficult to study brain
disorders in model organisms [34,58,59]. There is a need for in vitro
models of human brain development. A promising approach now
being developed in hiPSC research is the three-dimensional organoid
culture [60,61]. Recently, human hiPSC were coaxed to generate a
three-dimensional neural cell structure, termed a cerebral organoid,
that developed various discrete, interdependent and multiple layered
brain regions [62,63]. Interestingly, cerebral organoids recapitulate
features of human cortical development, including the characteristic
progenitor zone organization with abundant outer radial glial stem
cells [63]. Three-dimensional neural organoids grown from hiPSCs
hold promise for elucidating phenotypes of neurodevelopmental
disease since these types of cultures more closely define the cyto-
architecture and the complexity of the neural circuitry in the brain.

hiPSC Models as Platforms to Study
Neurodevelopmental Diseases

Neurodevelopmental disorders, like autism spectrum disorders and
X-linked intellectual disability disorders are a group of syndromes of
unknown etiology characterized by deficits in language, development
of personal communication, reciprocal social interactions and
restrictive behavior [35,64-66]. There are few pharmacological
treatments for these syndromes or even identified targets for drug
development. During the last four decades, a large number of
mutations on the X chromosome have been documented as
contributors to intellectual disability syndromes including Fragile X
(FMR1 loci), Rhett (MECP2 loci) and Lesch-Nyhan (HGPRT loci)
(reviewed in [67,68]). The preponderance of cognitive disability
causing mutations on the X chromosome has raised the possibility that
the X chromosome is a repository for many genes regulating cognitive
function and/or brain development [69]. Mutations in genes (ex:
SCN1A, UBE3B and TBX1) associated with decreased cognitive ability
also map to autosomal locations. Consequently, the availability of in
vitro model systems for these diseases would allow a better
understanding of the development of functional defects arising from
known genetic defects [70,71].

Neurodevelopmental studies in animal models [72] that mimic
human cognitive developmental processes may be limited by the
ability to assess cognitive function in these models. The BTBR mouse
exhibits neurobehavioral deficits and some diagnostic symptomology
for autism and has become a model for pharmacological testing
[73-75]. Disruption of SHANK3 in the mouse leads to behavioral and
developmental deficits resulting in autism spectrum-like phenotypes.

Mouse models of other SHANK protein family members are providing
insight for neuronal synaptic and postsynaptic density aberrations that
may affect cognitive function [76]. Mouse models also exist for other
neurodevelopmental syndromes such as Downs [77-79], Fragile X [80]
and Rett Syndrome [81]. However, direct human tissue assays are
desirable to investigate these disorders. Availability of tissues or
biopsies from the critical early developmental period in patients rarely
can be obtained due to ethical concerns and access limitations.
Consequently, hiPSC lines (directly or indirectly differentiated to
neuronal cell types) may offer the best approach to defining the role of
putative gene mutations during the neurodevelopmental period. They
provide a novel patient-derived resource to experimentally define
human neurodevelopmental disease.

The neurodevelopmental cognitive dysfunction syndromes
represent a genetically heterogeneous disease grouping with complex
neuropathology that may intersect in common pathways that result in
neural activity deficits [82,83]. One of the most advantageous aspects
of hiPSC models is that the patient’s cells become the source of the
disease model [11]. These cells contain the genetic mutation in the
context of the patient’s genome including other potential risk factors
such as modifier genes. The introduction of hiPSC methods to
investigate neuronal activity and function in the developing cyto-
architecture of the brain, the intrinsic wiring of the synapses, neuron
metabolism and energy requirements may provide clues to
understanding how cognition is acquired. Several groups show that
hiPSCs can be directly or indirectly differentiated to neuronal cell
types. Induced pluripotent cells have the capacity to develop into
neural stem cells (iNSC) and, when cultured with specific growth
cocktails, to support the outgrowth of the neural subtypes (such as
neurons, astrocytes and oligodendrocytes [64,84-86]. The
development of the neuronal cell types can be ascertained by screening
for known biomarkers (e.g., NSE, GFAP). Thus, patient derived hiPSC
cells may be used to create early neurodevelopmental pathology
models for study.

Several groups have generated disease-specific lines from patients
with monogenic autism spectrum disorders including Rhett [87],
Fragile X [88] and Timothy Syndromes [89]. The objectives of these
studies are to identify functional disease-specific phenotypes and to
examine whether these phenotypes can be rescued by therapeutic
interventions. Another objective is to use patient hiPSC models to
understand the cellular and molecular changes that occur in these
diseases. Several studies have looked at gene profiling of disease hiPSC
compared to human donor tissue obtained from brain autopsies or
control hiPSC lines [90-93].

Fragile X Syndrome (FXS), the most common of the Autism
Spectrum Disorders, results from a trinucleotide repeat in the FMR1
gene and a subsequent loss of FMRP protein [94,95]. FMRP functions
as an RNA binding protein where it regulates aspects of translation,
stability and cell localization. A lack of FMRP enhances intracellular
signaling in the mTOR, GluR5, ERK, GSK3β, insulin and PI3K
pathways [88]. Neural stem cell plasticity and this cell’s ability to
change phenotype responding to signals from the environment may be
impacted by the FMRP protein [96]. Human iPSC were obtained from
fibroblasts obtained from three well-characterized Fragile X patients.
The patient’s FMR1 mutation was maintained in the hiPSCs.
Forebrain neurons differentiated from the hiPSCs showed defective
neurogenesis, presynaptic dysfunction [94] and decreased neurite
length [97-99].
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Another study using hiPSC created from FXS patient cells showed
that the FMR locus was resistant to histone methylation; the functional
significance remains unknown [100]. These studies potentially begin
to link FMR protein dysfunction with developmental cognitive
phenotype.

Rhett Syndrome, an X-linked neurodevelopmental disorder,
primarily affects females and is usually lethal in hemizygous X males.
Rhett patients have postnatal microcephaly, speech and developmental
milestone losses, growth retardation and autistic behaviors [101,102].
Estimates suggest that a large majority of the Rhett Syndrome cases
arise from de novo mutations in the methyl CpG binding protein 2
(MECP2) genes. Mouse knockout models demonstrated that MECP2
is critical for neuron function [87]. MECP2 function is located in
several neuronal cell types including inhibitory and excitatory
forebrain neurons. Several groups have functionally characterized
MECP2 deficient neurons derived from patient hiPSCs [87,103-105]
and reported reduced cell size, lowered expression of neuronal
biomarkers, decreased transient intracellular calcium level, decreased
response to excitatory and inhibitory stimuli and fewer action
potentials. Thus, neural cells derived from patient hiPSC are beginning
to document that specific neuronal deficits of MECP2 protein have
global functional impacts in Rhett Syndrome [103].

Timothy Syndrome is a channelopathy caused by a point mutation
in the α1 subunit of the L-type calcium channel (Cav1.2) resulting in
inactivation of the channel. These patients have autism, cardiac
dysfunction (long QT) and other developmental delay phenotypes
[89,106,107]. Well-defined cortical neurons generated from patient
hiPSC display calcium signaling deficits and variations in related gene
activities. These cells also show changes in expression of tyrosine
hydroxylase and overproduce norepinephrine and dopamine.
Electrophysiological analyses of control neurons showed no
differences in action potential generation, resting potential or action
potential amplitude. In contrast, the Timothy Syndrome induced
neural cells showed alterations in action potentials that were wider,
pointing to a loss of channel inactivation. This study suggests that
Timothy Syndrome patients have defects in action potential firing and
calcium signaling. Another study generated hiPSC to address cardiac
function in Timothy Syndrome patients; these findings suggest deficits
in cardiomyocyte contractile ability, electrophysiological signaling
between cardiomyocytes and calcium signaling [107]. Gene expression
arrays showed gene profiles in Timothy Syndrome derived cortical
neurons differed from control cells. The Timothy Syndrome gene
profile showed activity distortions in 11 genes previously implicated
with other autism spectrum or intellectual disability disorders
suggesting, perhaps, a cellular deficit associated with a common
cellular intersection during neurodevelopment.

Dravet Syndrome, another channelopathy, has also been studied
using a hiPSC model. Infantile-onset epilepsy syndrome is a
debilitating neurodevelopmental disease that has cognitive and autistic
features [108] resulting from de novo mutations in the SCN1A gene
(chromosome 2). It develops in a previously normal infant during the
first year and the epileptic seizures are refractory to current drug
treatments. Psychomotor development slows by the second year and
patients show other declines in mental development; 10-20% of the
patients die from the disease. The SCN1A gene encodes the α-subunit
of the voltage-gated sodium channel Nav1.1. In 50% of the patients,
the protein is shortened prematurely during translation. Knockout-
knockin mouse models suggest Nav1.1 channel haplo-insufficiency
accounts for the pathology where action potential generation is

impaired in rodent GABAergic forebrain neurons [109]. Autistic
behavior in heterozygote SCN1A mice is also linked to defective
GABA neurotransmission [110]. Hirgurashi et al., [108] approached
the syndrome’s pathology by using hiPSC to model and to evaluate cell
impairment in Dravet patients. Patient hiPSC were made from
fibroblasts identified to have a point mutation (c.4933C>T) that
resulted in a truncated Nav1.1 channel protein (all other closely related
Na+ channel genes in the patient were wildtype). Neural cells
differentiated from hiPSC neurospheres expressed neuron (tubulin III)
and astrocyte (GFAP) markers. Electrophysiological studies,
comparing Dravet and control derived hiPSC neural cell responses,
demonstrated that the Dravet neurons (largely GABAergic neurons)
malfunction during action potential generation using sustained
current. This study shows the potential to dissect and understand how
human GABAergic neurons contribute to Dravet pathophysiology
although several more patient hiPSC models are needed to validate
these findings as a common result.

Other studies have modeled imprinting disabilities like Prader-Willi
and Angelman Syndromes [9] in hiPSC lines. A common theme of the
described studies is the use of hiPSC models derived from patient
material to address the pathophysiology of neurons within the first
years of the patient’s life. These studies utilize patient neuronal cells
derived from hiPSC; these cell types are not easily obtained by other
means and represent a novel approach to solving how
neurodevelopmental dysfunction may impact these syndromes.

Creating Human Disease Models in hiPSC by Genome
Editing

Historically, causal relationships between disease and gene function
have been studied in cell or animal models by engineering gain or loss
of function mutations into the genome. The introduction of gene
knockouts or “humanized” knockins by gene replacement in mice to
model disease is a proven approach [111-114]. However, the
complexity of three-dimensional anatomical connections and the
physiology of species-specific metabolomes are different and may lead
to erroneous conclusions when modeling human disease in other
organisms. Human tissues for study may be acquired at autopsy but
postmortem tissues represent a fixed endpoint of disease. The ability
to produce hiPSC models of human disease represents an opportunity
to capture and/or recapitulate disease pathophysiology in human cell
model. Utilizing patient cells with inherited mutations or hiPSC
engineered by genome editing to contain common disease mutations
provides a unique approach and may overcome some of these
criticisms. The hiPSC technology is an alternative to animal models
providing a human tissue surrogate for research that is scalable and
sustainable.

Genome editing is an emerging approach to model disease based on
the ability to introduce either gene knockouts or patient-specific point
mutations into a hiPSC genome [115-117]. Sequence specific DNA
recognition is the hallmark of the synthetic editing nucleases described
here. The methods rely on introducing a DNA double strand break
initiated by a pair of DNA binding-nuclease protein modules. These
bind a unique DNA sequence creating specificity for the dsDNA
break. Methods initially employed were adapted using Zinc Finger
Nucleases (ZFN), a DNA binding protein linked in modules to
recognize a unique DNA sequence. The ZFN module is also linked to a
DNA restriction endonuclease (Fok I) that cleaves genomic DNA.
Introduction of the engineered ZFN modules into the cell produces a
dsDNA strand break left and right of the selected DNA target and

Citation: Kinney CEM, Brown SL (2014) Human iPSC Models: A Platform for Investigating Neurodevelopmental Diseases. J Mol Genet
Med 8: 122. doi:10.4172/1747-0862.1000122

Page 4 of 10

J Mol Genet Med
ISSN:1747-0862 JMGM, an open access journal

Volume 8 • Issue 3 • 1000122



activates endogenous DNA repair mechanisms in the cells that may
incorporate deletions or insertions. This activity results in different
size gaps in the genome (knockout) or using an exogenously supplied
template incorporates mutations into the genome (similar to the
homologous replacement vectors used in mouse genome engineering).
One drawback of this approach is the difficulty in optimizing the ZFN
modular protein recognition sites needed for DNA cleavage. ZFN
pairs also show context dependence making it difficult to estimate
each module’s binding specificity. These two problems make “off-
target” outcomes more likely when using ZFN technology. Hence,
ZFN pairs require extensive in vitro testing making them an expensive
choice for genome editing. ZFN genome editing is more fully reviewed
in [118,119].

More recently, TALENS (transcription activator-like effector
nucleases) systems were utilized to introduce mutations into hiPSC
genomes. TALENs are derived from a bacterial plant pathogen that
facilitates plant infections using TALE proteins [120]. The DNA target
sequence needed for the left and right side TALE protein is 16
nucleotides and they are very selective. These recognition modules also
are linked to the Fok I endonuclease. The TALE cutting of DNA is
efficient and their design may restrict “off-target” effects making this
approach more generally usable compared to ZFNs. However, there
are some requirements that make TALENs problematic. Their binding
is sensitive to 5-methylcytosines in the DNA and there is a
requirement for a T base to precede the recognition site. However, in
the short time that TALENs have been used for genome editing, a
TALEN library is available that predictably targets over 18,000
genomic sites [121] making the TALEN approach economically and
strategically easier. TALEN technology is further reviewed in
[122,123].

Another genome editing approach, the CRISPR/Cas9 system,
adapted from a bacterial immune system and reported in 2013,
employs a single strand RNA guide (sgRNA) to direct the Cas9
nuclease to the targeted genomic locus [124]. For genome editing, the
sgRNA is specific for the targeted genomic site and is co-introduced
into the cell with the Cas9 nuclease. The CRISPR/Cas9 system appears
the most useable by all laboratories since is requires less complex
modules that act on DNA and the sgRNA can be synthesized for
editing/targeting specific endogenous DNA sequences. This
technology is reliable and highly efficient in mice [125] and is being
utilized in hiPSC disease modeling [126]. Yet, there are some use
constraints. Cas9 can produce “off-target” cleavage because it is
permissive for mismatches in the sgRNA. Consequently, as with all the
described genome editing methods, hiPSC genome screens should be
conducted to confirm the introduced deletion, insertion or mutation.
The CRISPR/Cas9 approach is rapidly becoming the genome editing
technology of choice and is further reviewed in [127,128].

One of the promises of regenerative medicine is to rescue the
patient from disease by in vitro correcting stem cells ex vivo with
genome editing and transplanting the corrected cells back to the
patient [129,130]. This has been done successfully with hemopoietic
stem cells [131,132] for a few diseases and is now being investigated
for a number of conditions [133-137]. The potential to explore hiPSC
models of neurodevelopmental disease using genome editing
techniques is a promising and exciting area just beginning to emerge
from hiPSC technology (Figure 3).

Figure 3: Using a blood or other tissue (skin) sample from a patient
or control donor allows the creation of unique induced pluripotent
stem cell lines (hiPSC) to examine disease in the context of the
patient’s mutation or an introduced mutation that models a known
protein deficit in a neurodevelopmental syndrome or disease.

Limitations of hiPSC Models
Induced pluripotent stem cells hold promise for future research

paradigms and work in progress will refine our approaches and define
safe and efficient protocols for derivation of hiPSC models. However,
there are current limitations to hiPSC use. For the hiPSC approach to
be used as a neurodevelopmental model, researchers need to validate
that the derived hiPSC stably expresses the disease phenotype. Also, if
using the direct reprogramming approach (somatic cell→neuronal
cell), there are a limited number of mitotic cell divisions that occur
and it may take long-term culturing of the cells to obtain neural
connectivity. Some vectors (retroviral and lentivirus) used to
reprogram hiPSCs persist in the cell’s genome as foreign pro-viral
sequences. Using these cells as regenerative tissue sources or for gene
therapy protocols raises biosafety concerns. Some hiPSC are reported
to exhibit high phenotypic variability. Reports of genetic
(chromosome aberrations; common trisomies reported for
chromosomes 12 and 17 similar to those seen in mouse ES cells for
chromosome 8) and epigenetic instability even among clones derived
from the same cell source may be problematic [138,139]. Hence, the
hiPSC lines must be rigorously characterized, including karyotype,
before use as a disease model or before assaying in vivo therapeutic
responses. When developing transdifferentiation protocols to generate
neuronal cell lines relevant to neurodevelopmental diseases, the choice
of cell type, regional brain specificity, recapitulation of a
neurodevelopmental program, and functional connectivity
(synaptogenesis) should be evaluated. Furthermore, undifferentiated
hiPSCs co-cultured with mouse feeder cells or undefined media
constituents may introduce “noise” into the phenotypic
characterization. As discussed earlier, the epigenetic reprogramming
process is inefficient and many hiPSC fail to complete the process.
Heterogeneous neuronal cultures can acquire variability when
generated from various types of neurons and from differing states of
functional maturation. Awareness of these challenges should be
considered when planning any in vitro cellular phenotyping of hiPSC
disease models. Today, many studies are focused on refining culture
conditions with controlled supplements and 3D culture platforms that
mimic the microenvironment and that recapitulate the cyto-
architecture of neurodevelopment.

Conclusion and Future Directions
hiPSC represent an important and innovative tool to model and to

investigate neurodevelopmental disorders [140]. They are able to
recapitulate a developmental program and can be directed to become a
selected neural cell type. Consequently, researchers can approach and
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analyze disease specific mutations by differentiating hiPSCs to the
desired neural cell types and/or build neural organoids [34]. These
manipulations potentially target early embryonic developmental
programs not addressable by other methodologies. Reprogramming
patient somatic cells to hiPSC eliminates some of the ethical issues
with embryo-derived cells and allows the isolation of patient specific
mutations for study.

The hiPSC technology holds great promise for patient-specific stem 
cell based therapies and the production of in vitro  models of human 
disease, the so-called “disease in a dish” models. This technology also 
provides an opportunity to perform experiments on human cells that 
were not previously possible, such as high through put drug or 
chemical screens to identify compounds that may inhibit or reverse 
disease progression [104]. In the future, hiPSC may provide scalable 
and sustainable tissue sources for regenerative medicine as shown with 
gene corrected hemopoietic stem cells [43,141,142] used for bone 
marrow transplant studies to alleviate disease. hiPSC retain the genetic 
constitution of the patient and due to the cell’s plasticity provide a 
good model for linking cell functionality in neurodevelopment with 
disease phenotype. Due to safety issues and requirements for more 
advanced regenerative technology the current utility of hiPSCs is in 
vitro disease modeling from patient donor cells. The use of hiPSC to 
create and study neurodevelopmental disease platforms is an exciting 
advance and holds promise for changing our approach to these diseases 
[143,144].
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