
Research Article Open Access

Volume 5 • Issue 3 • 1000193
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Open AccessReview Article

Journal of 
Electrical & Electronic SystemsISSN: 2332-0796

Jo
ur

na
l o

f E
lec

trical & Electronic System
s

Alshammari and Al-Mogren, J Electr Electron Syst 2016, 5:3
DOI: 10.4172/2332-0796.1000193

*Corresponding author: Abdullah S. Alshammari, Computer Science College 
King Saudi University Riyadh, Saudi Arabia, Tel: +966 11 805 0953; E-mail: 
info@abdullah.sh

Received May 16, 2016; Accepted August 22, 2016; Published August 29, 2016

Citation: Alshammari AS, Al-Mogren A (2016) HTTP/2 in Modern Web and Mobile 
Sensing-based Applications Analysis, Benchmarks and Current Issues. J Electr 
Electron Syst 5: 193. doi: 10.4172/2332-0796.1000193

Copyright: © 2016 Alshammari AS, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

HTTP/2 in Modern Web and Mobile Sensing-based Applications Analysis, 
Benchmarks and Current Issues
Abdullah S. Alshammari* and Ahmad Al-Mogren
Computer Science College King Saud University Riyadh, Saudi Arabia

Keywords: HTTP; SPDY; HTTP2; UDP; QUIC; HTTP-Pipelining

Introduction
HTTP has been the Internet backbone for a long time even with 

some known drawback and bottlenecks. In HTTP protocol (version 
1.0), the client had to open a new connection on each request, after each 
response the connection should be closed. This affects the performance 
of the web page load due to a known TCP problem “ TCP Slow Start 
issue” which is related to the requirement of round trips for each 
connection initiating and that leads to a slowness once the connection 
is opened.

There are other issues such as security option in HTTP is not the 
first citizen and so on. There are several techniques and suggested 
protocol presented as experimental suggestions last years. In addition, 
HTTP 1.1 has been introduced several years ago that helps to improve 
the protocol.

The demand on HTTP protocol has been increasing in the recent 
years due to the increase of personal computers, smart phones, tablets 
and wearable devices. The protocol has been suggested as inter-
communication protocol for web services and mobile sensing-based 
applications that depend on embedded sensors to collect and share 
data.

In this paper, we show some new techniques that are implemented 
by several web client and server applications. These techniques include 
HTTP Pipelining, SPDY/HTTP2 and CUIC protocol. HTTP pipelining 
has been implemented in several web browsers/web servers, and the 
result so far was better than HTTP 1.0, however, there are still some 
issues that not have been solved yet.

We start with the list of drawbacks in HTTP 1.x from the 
performance perspective in addition to the other criteria such as 
security. Then we discuss the new feature in HTTP 1.x that helps to 
improve the performance dramatically by presenting some benchmarks 
and technical details. HTTP 1.1 still has some issues and that will be 
presented in section too. Section V we will analyze a new protocol 
called SPDY, it is still in the experimental phase but it shows good 
results from a performance perspective, in addition to the new security 
and bandwidth features that help build better web browsers and web 
servers. We also describe the new protocol called CUIC (pronounced 
as Quick) which is a new protocol in transport layer that helps to 
implement HTTP over UDP, and we will see the possibility of building 
the HTTP protocol based on this type of protocols, and the idea of 
building HTTP applications based on UDP protocol in general.

Finally, we analyze the current HTTP 1.x and HTTP/2 protocol from 
a different perspective such as performance and energy consumption.

HTTP Protocol Background Study
HTTP 1.x protocol

The Hypertext Transfer Protocol is defined in the RFC as “an 
application-level protocol for distributed, collaborative, hypermedia 
information systems. It is a generic, stateless, protocol which can be 
used for many tasks beyond its use for hypertext, such as name servers 
and distributed object management systems, through the extension of 
its request methods, error codes, and headers” [1].

HTTP has several bottlenecks such as the dependency on more 
than one connection for a parallel connection implementation. This 
leads to more problems such as extra round trips for each connection 
initiating (RTT)” [2].

HTTP by nature does not implement any security protocol, it is 
a plain text protocol, and can be easily inspected by the Man-In-The-
Middle attack. SSL/TLS can be used, as an external layer to get what is 
known as “HTTPS”.

HTTP 1.0 has the primitive support of caching mechanism, as in 
the web servers may cache a response with the help of “expires field” 
in HTTP header, to specify the expiring date of the response (or the 
document or image in case it’s not a plain text response). The web 
browser (or the web client in general) can ask for the caching page 
in a conditional way using what’s known as “conditional request”. By 
specifying the conditional request the client may receive the cached 
response from the server, or the latest version depends on the client 
requirement and the server settings [3].

HTTP 1.0 did not deal well with the bandwidth, it is expected for 

Abstract
This research paper is a survey paper that focuses on the current status of HTTP protocol and the suggested 

solutions that are implemented recently. New protocols and some new modification to the current protocol have been 
discussed and implemented in the recent years to meet the new requirements of advanced web and mobile sensing-
based applications. In this paper, we explore the current status of HTTP 1.1, SPDY, HTTP/2 and HTTP over UDP 
protocols. In addition to the analysis and benchmarking of HTTP/2 in modern web services and mobile sensing-based 
applications.



Citation: Alshammari AS, Al-Mogren A (2016) HTTP/2 in Modern Web and Mobile Sensing-based Applications Analysis, Benchmarks and Current 
Issues. J Electr Electron Syst 5: 193. doi: 10.4172/2332-0796.1000193

Page 2 of 5

Volume 5 • Issue 3 • 1000193
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Since SPDY improve the performance by decreasing the number 
of required TCP connection to load a web page, it improves the 
performance in a dramatic way, especially for the web pages contain 
more resource such as multiple CSS and JavaScript files. That’s done by 
a mechanism which is called multiplexing. Multiplexing is a process 
of sending a list of HTTP requests in a single TLS/TCP connection. 
This has a better latency improvement comparing with the pipelining 
feature that introduced in HTTP 1.1. When the SPDY protocol in a 
browser that supports it, each web request will never wait due to the 
“connection limitation exhausted” error, for example, the limit of an 
HTTP 1.1 connections is 6 or 8 connections to the same host name.

However, there are still some issues with SPDY and one of the main 
issues is the RTT still high at some points because there is a known 
issue in TCP called “TCP head-of-line blocking”, and that’s why QUIC 
protocol appeared which it depends on UDP instead of TCP. We discuss 
this protocol later in this paper.

HTTP Requests prioritization is another feature. The client can 
issue a request for specific resources to be delivered before any other 
requests. This helps to avoid the problem of filling the network with a 
fewer priority resources while another high priority HTTP request is 
pending. Another feature is headers compression and that overcomes 
the current issues where the client sends a significant amount of the 
same data in the HTTP headers, the compressing algorithm that is used 
is GZIP compression algorithm. Finally, the last feature is server pushed 
streams which allow the server to push the content to clients without a 
need for a request so it acts a publish -subscribe protocol which is useful 
in some applications such as chatting applications.

All HTTP 1.x features such as cookies, ETags, configurable headers 
work in the same way in SPDY, it only replaces the way the data is 
written to the socket [9-14].

QUIC protocol and HTTP over UDP

One of the reasons for introducing QUIC protocol was that in TCP 
there is a known issue called a delay of a single packet “head-of -line 
blocking” for an entire set of HTTP streams. QUIC has improved the 
multiplexing request which means that only one stream would pause.

QUIC provides better features such as high security which is 
similar to TLS in TCP, Fast connectivity with 0 round trip time, packet 
pacing to reduce the cost of packets, packet error correction instead 
of retransmission which lead to a retransmission latency, and it avoids 
TCP head-of-line blocking issue (Table 1).

HTTP/2 Protocol
HTTP 2.0 is a new protocol which has an RFC called rfc7540 [15]. 

a wasted bandwidth issue in the forward direction case. Let say that an 
HTTP/1.0 server receives a big request which could not be accepted 
due to large requests, that will lead to an error code. That will not help 
since the bandwidth had already been consumed. What it’s should be 
implemented is the ability to communicate with a server and to ensure 
that it’s able to handle this type of request size before even sending 
them. Another issue is related to a client, a client may need only part 
of a resource. For example, the client may need to display just the start 
of a big document, or it may want to resume a downloading file after a 
transfer was stopped in mid-stream [4].

HTTP 1.1 pipeline

HTTP 1.0 requests are generated in sequential order, so the next 
request is not issued until the response to the first request has been 
received completely and the connection is closed. In addition, multiple 
connection issues is a known problem in HTTP 1.0. Depending on 
network bandwidth and latencies, this can result in a delay before the 
server starts receiving the next request.

HTTP/1.1 has a new feature that calls persistent connection; which 
allows for multiple requests and responses during the same connection. 
In HTTP/1.1, the persistent connections is a default option and 
HTTP/1.1 clients, servers, and proxies will suppose that a connection 
will be kept open after the requests and their corresponding response 
have been processed and received. However, it is still possible to close a 
connection at any time, in order to save the resources and this could be 
done through tuning of persistent connections feature by sending the 
head “connection: close” to inform the recipients of the request that the 
connection could not be used anymore (Figure 1).

HTTP/1.1 also allows for multiple requests to be sent through a 
socket without pausing and waiting for the other responses. HTTP 
clients are granted to receive the responses in the same order in 
which they were issued. Requests pipelining can lead to a dramatic 
improvement in the performance of page loading and that performance 
improved more over high latency connections [5-8] (Figure 2).

SPDY protocol

SPDY is a modified protocol of HTTP and it’s primarily by Google 
for transporting web content [2]. SPDY improves HTTP-based 
applications performance by reducing the web page load latency in 
addition to other features such as security improvements.

SPDY adds various features such as multiplexing of multiple 
requests, which is a parallel stream of request on a single TCP 
connection. It also adds a framing layer which is optimized for HTTP 
request-response multiplexing stream, with the keeping of backward 
compatibility of the current HTTP applications, so they can work over 
SPDY without affecting the applications that do not support SPDY 
protocol.

multiple connections
client server

persistent connection
client server

open

open
close

open
close

close

open

close

tim
e

Figure 1: A comparison between HTTP 1.1 and HTTP 1.0 tcp connection: It 
shows the different between reused connections and non-reused connection 
which is known as a persistent and non-persistent connection.

no pipelining
client server

open

close

pipelining
client server

open

close

tim
e

Figure 2: HTTP with and without pipelining: It shows how the HTTP pipelining 
works comparing that with non-pipelining, It’s obvious that the pipelined version 
should be faster, but that’s not the case all time.



Citation: Alshammari AS, Al-Mogren A (2016) HTTP/2 in Modern Web and Mobile Sensing-based Applications Analysis, Benchmarks and Current 
Issues. J Electr Electron Syst 5: 193. doi: 10.4172/2332-0796.1000193

Page 3 of 5

Volume 5 • Issue 3 • 1000193
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Prioritization

In HTTP/2 it’s possible to prioritize the requests, so a request can be 
received from the other if its high prioritized. This normally useful in a 
web page that contains a large number of resources such as JavaScript 
or CSS files [16].

HTTP Performance on Mobile Devices
In recent years, the popularity of mobile devices (e.g., smartphones, 

and tablets) has dramatically increased, as millions of users are using 
these devices in their daily lives. These devices offer users the opportunity 
to have more computational power and even more capability in the 
palm of their hand than most users had on their desktop just a few 
years ago. This leads to the main concern about the current protocol 
used traditionally in the desktop applications and if they are energy 
efficient in the mobile applications environment. A recent study [17] 
shows that HTTP/2 can save energy more than the current HTTP 1.x 
protocol. This study compares a real world example using Google.com 
and Twitter.com websites to evaluate the client mobile applications 
(Figure 4).

To compare HTTP/2 protocol to HTTP 1.x protocol from the 
energy consumption perspective, we prepare a new experiment using 
Android OS and Android APIs from the client side. From the server 
side we use nginx with http/2 support. It is a high concurrency web 

This protocol based on SPDY protocol with some differences. HTTP 2.0 
allows for faster and more secure data transfer in web applications and 
services. HTTP/2 is based on SPDY which is explained earlier. It keeps 
the same feature as HTTP/1.x. This includes HTTP methods such as 
GET and POST and DELETE, status codes such as 200, URL format, 
and how header fields are defined and used. HTTP/2 introduces several 
features such as the supporting of single and persistent connection, 
multiplexing, header compression using HPACK algorithm, 
prioritization and TLS/SSL Encryption support within the protocol 
itself.

HTTP/2 single and persistent connection

From a theoretical perspective, HTTP implementation on top of 
UDP will help improve the performance since there a lot of bottlenecks 
in TCP will be ignored using UDP such as HOL packet issue (Head 
of Line), RTT, error correction and congestion control. QUIC (Quick 
UDP Internet Connections) is an early-stage network protocol that is in 
development phase right now by Google, it “ runs a stream multiplexing 
protocol over a new flavor of Transport Layer Security (TLS) on top of 
UDP instead of TCP” [4].

HTTP/1.0 protocol enforces the client to open a connection for 
each request. Even though it’s possible to keep the connection by setting 
the Connection header field to keep-alive HTTP/2, it’s not mentioned 
clearly in the RFC so it’s not considered as a standard technique (Figure 
3). Connection is single and persistent which helps to carry more 
requests at the same connection: This allows many requests to be shared 
at the same connection. This helps to reduce the network congestion 
since the number of TCP connections is lower. And it reduces the CPU 
and memory usage because of the fewer connections that are open at 
the same time which in turn saves the energy on the mobile device. 

Multiplexing

Each connection used by HTTP/2 can support more than one 
request which is called multiplexing, this is allowing it to be used by 
opened requests and responses. On another hand, HTTP 1.1 open up 
to 6 connections to mimic the multiplexing feature.

Table 2 shows a case of page-loading process workflow. It is clear 
that HTTP/1.1 requires more time and steps to complete the process 
than HTTP/2 which leads to a better performance.

Header compression and binary encoding

In HTTP/1.x, header data is sent as plain text. This has been changed 
in HTTP/2. The header data compressed using a special algorithm 
which is called HPACK. It is a binary encoding for the header and it’s 
improved comparing with GZIP algorithm. It’s defined in RFC7541 [5].

HPACK compressing adds CPU overhead and in some cases 
where the uncompressed request header fits in a single TCP packet, 
compression doesn’t help.

In HPACK compression, a static table contains known header fields 
and common values, each assigned an index number. A recent study 
shows compression of greater than 50% on headers sent by the client 
and nearly 90% on headers sent by the server [6].

Protocol
 Properties

RTT Congestion control Security On Packet Lost
HTTP/TCP >0 Exists TLS Resending
HTTP/UDP 0 Exists using a Pluggable interface Crypto Packet Pacing

Table 1: A Comparison between HTTP over UDP vs. TCP: shows a comparison between HTTP Implementation of TCP over UDP and HTTP over TCP.

HTTP/1.1 Loading of page HTTP/2 loading
of page

Up to 6 connection Single Connection.
Request the HTML page. Request the HTML page.

The page is received The page is received
Issue 6 requests to fetch files in

HTML pages Request all files

Wait for response Multiplexing
Request next resource ( repeat

until finish)
Close all connection Close just one connection

Table 2: HTTP 2.0 multiplexing vs. HTTP 1.1.

HTTP1.x client

HTTP2 client

HTTP1.x server

HTTP2 server
Figure 3: HTTP2.0 multiple connections vs. HTTP 1.x persistent connection.



Citation: Alshammari AS, Al-Mogren A (2016) HTTP/2 in Modern Web and Mobile Sensing-based Applications Analysis, Benchmarks and Current 
Issues. J Electr Electron Syst 5: 193. doi: 10.4172/2332-0796.1000193

Page 4 of 5

Volume 5 • Issue 3 • 1000193
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

server. It can also act as a reverse proxy server for a several different 
protocols. We build a special website for this purpose, the website 
specifications are shown in Table 3.

To measure the energy consumption we use Android energy 
consumption tool that is shipped with any Android device. We run an 
http 1.x app for 4 hours that sends multiple requests over the time and 
we see how much percentage is consumed during the running time. The 
same applied to HTTP/2 app (Figure 5).

Performance Benchmark
HTTP 1.1 pipelinging performance

We conduct a test to find how fast the HTTP pipeline compared 
with non-pipelined one. This test is based on the open source web 
engine Firefox v32.0. We applied the test by sending HTTP requests to a 
web server, these requests have been run two times, the first round was 
without HTTP pipelining and the second one is with HTTP pipelining 
(Figure 6). It shows the result, it’s obvious that HTTP pipelined helps 
improving the performance most of the time. However, first run of 
the test shows that pipelining feature does not help improving the 
performance. This happens sometimes if the server does not support 
HTTP pipelining properly or some queuing and reordering happened 
during the request sending. This is because all pending requests 
have to wait for the first request to be received and this may lead to a 
performance issue in some cases.

QUIC (HTTP over UDP) protocol performance

This test is to find the performance of HTTP under different 
protocols/techniques. The comparison of the performance is between 
HTTP/2 and QUIC (HTTP over UDP). The simulation is done under 
three different network conditions which are (latency, lost packets and 
download speed) and by downloading a 20 Mega Bytes file. The web 
browser is Chromium.

In Figure 7 the comparison shows the normal HTTP request 
(HTTP2 over TCP) with QUIC ( HTTP2 over UDP ) as the packet loss 
increasingly. When 1% of the packet lost, the speed of downloading 
drops down from 4Mbps to 1Mbps. That because TCP tries to resend 
the lost packets again, but UDP does not, however, since QUIC added 
the Forward error correction concept to UDP, it’s the reason of this 
slowness. In Figure 8 the comparison shows file downloading via 
normal HTTP request (HTTP2 over TCP) versus QUIC (HTTP2 over 
UDP ) as the latency increase. This diagram shows that UDP degrades 
the download speed as the latency increase more than TCP does [18].

HTTP/2 on web services performance

Among the key improvements brought by HTTP/2 are multiplexed 
streams, header compression, server push, and a binary protocol 
instead of textual one. These and other positive changes allowed to 
achieve good web pages loading results, including those having lots 
of additional files attached to them (e.g. styles, scripts, images, fonts). 
There are a lot of web service protocols that have been implemented 
during the last decade including Protocol Buffer, Protocol Buffer over 
HTTP2, Thrift and MQTT [19].

In this performance benchmark study we create a simple Web 
Service APIs, we use nginx as HTTP/2 web server and chrome 
developers tool as a benchmarking tool in addition to Apache 
Benchmark and Apache work which both help benchmark the web 
service API in real web services environment. We Measure the 
performance by counting the number of requests per second and 

Protocol
Properties

HTML Image CSS JS
Test website 1 238 5 1

Table 3: Our Comparison between HTTP over UDP vs. TCP.

Energy Consumption

51%

21%

28%

HTTP 2 App

HTTP 1 App
Other Apps

Figure 4: HTTP2.0 vs. HTTP 1.x energy consumption.

1400

1200

1000

800

600

400

200

0
1st Run               2nd Run              3rd Run               4th Run                5th Run

Pipelining Off

Pipelining On

Lower is better

Page Load Stages

M
ill

is
ec

on
ds

Figure 5: An experiment for the HTTP Pipelining Performance vs. No HTTP 
Pipelining on Firefox v32.0: The final results shows that HTTP 2 is better than 
HTTP 1.x in the term of energy consumption.

0%    1%     2%     3%     4%
The Packet lost

D
ow

nl
oa

d 
Sp

ee
d 

in
 M

bp
s 4

3.5
3

2.5
2

1.5
1

0.5
0

UDP

TCP

Figure 6: File Download speed decreased as packets loss increasing, HTTP/
UDP is a little bit better than HTTP/TCP.

the result in Figure 8 shows that HTTP/2 could help improving the 
performance by up to 30% comparing to HTTP 1.x protocol. In 
General, HTTP/2 main improvement is focusing on web applications 
with so many resources instead of single web service (Figure 8).

Conclusion
We showed the status of HTTP protocol from the beginning of 

HTTP 1.0 to the current status. HTTP 1.0 had a limitation in many 



Citation: Alshammari AS, Al-Mogren A (2016) HTTP/2 in Modern Web and Mobile Sensing-based Applications Analysis, Benchmarks and Current 
Issues. J Electr Electron Syst 5: 193. doi: 10.4172/2332-0796.1000193

Page 5 of 5

Volume 5 • Issue 3 • 1000193
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

areas which has been improved in HTTP 1.1, especially regarding the 
performance and bandwidth improvements by introducing HTTP 
pipelining. We show that HTTP pipelining has some limitations in 
HTTP specification which is called “head of line blocking”, since the 
specification force the web server to deliver the requests in the same 
order as it arrived. That issue almost solved in SPDY protocol, by 
introducing HTML multiplexing mechanism.

Implementing HTTP protocol on top of TCP is not the only option, 
QUIC is another protocol, that solve some issues such as HOL (Head of 
Line) packet and it should improve the performance from theoretically 
perspective. However, the tests that we conducted and the resulted 
benchmarks show clearly that HTTP over UDP has some main issues 
and sometimes it’s worse than TCP especially when the latency is 
high. The working on HTTP over UDP idea is going on to improve 
HTTP response time, and there are many ideas that we can work on 
such as using a different protocol like RTP and SCTP (Stream Control 

Transmission Protocol) which may increase the performance and 
overcome the current issues in HTTP performance.

References

1. Yang F, Amer P, Leighton J, Belshe M (2012) A Methodology to Derive SPDY’s 
Initial Dictionary for Zlib Compression.

2. Belshe M, Peon R (2012) SPDY protocol. The Chromium Projects.

3. Thomas B, Jurdak R, Atkinson J (2012) SPDYing up the web. Communications 
of the ACM 55: 64-73.

4. Regundwar NP, Shukla DA, Lokhande P (2013) A Study paper on SPDY
protocol: Let’s make the web faster. International Journal of Scientific and 
Engineering Research 4: 222-226.

5. Carlucci G, Cicco LD, Mascolo S (2015) HTTP over UDP: an Experimental
Investigation of QUIC. ACM SAC.

6. Peon R, Ruellan H (2015) HPACK: Header Compression for HTTP/2. Internet
Engineering Task Force.

7.  Nginx (2015) HTTP/2 for Web Application Developers.

8. Montenegro G, Mazahir O, Padhye J, Trace R (2012) HTTP 2.0 Principles for
Flow Control.

9. Shimizu K, Kihara B (2012) Considerations for Protocols with Compression
over TLS. Network Working Group.

10. Miller K (2010) Wormhole-An Active HTTP Tunnel. EuroSys Conference, Paris.

11. Peon R (2012) Explicit Proxies for HTTP/2.0. Network Working Group. 

12. Barrett M, Blackledge J (2011) A Transparent approach to web site streaming
using Man-in-The-middle code injection and HTML5 features. ISAST
Transactions on Computers and Intelligent Systems 3: 1-70.

13. Erman J, Gopalakrishnan V, Jana R, Ramakrishnan KK (2013) Towards a
SPDY’ier mobile web. Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. New York, NY, USA.

14. Fielding R, Gettys J, Frystyket H, Masinter L, Leach P, et al. (1999) Hypertext
transfer protocol--HTTP/1.1. No. RFC 2616. Network Working Group.

15. Stewart R (2007) Stream control transmission protocol. Network Working
Group. 

16. Grigorik I (2013) Making the web faster with HTTP 2.0. Communications of the 
ACM 56: 42-49.

17. Chowdhury SA, Sapra V, Hindle A (2015) Is HTTP/2 more energy efficient than 
HTTP/1.1 for mobile users. PeerJ PrePrints 3.

18. Thomson M (2015) Hypertext Transfer Protocol Version 2 (HTTP/2). No. RFC
7540. Internet Engineering Task Force.

19. Essaili AE, Schroeder D, Staehle D, Shehada M, et al. (2013) Quality-
of-experience driven adaptive HTTP media delivery. IEEE International
Conference on Communications (ICC).

12
10

8
6
4
2
0

100     200     400     600     800
Round Trip Time

D
ow

nl
oa

d 
Sp

ee
d 

in
M

bp
s UDP

TCP

Figure 7: File Download speed decreased as the latency increase, HTTP over 
UDP is worse than HTTP over TCP.

1000

950

900

850

800

750

700

R
eq

ue
st

s 
pe

r S
ec

on
ds

Restful Protocol Buffer Thrift
Protocol Types

HTTP  1.x

HTTP  /2

MQTT

Figure 8: Number of requests per second in HTTP 2.x, HTTP 1.x and MQTT 
protocols.

https://www.eecis.udel.edu/~amer/PEL/poc/pdf/SPDY-Fan.pdf
https://www.eecis.udel.edu/~amer/PEL/poc/pdf/SPDY-Fan.pdf
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft1
http://dx.doi.org/10.1145/2380656.2380673
http://dx.doi.org/10.1145/2380656.2380673
http://www.ijser.org/researchpaper%5CA_Study_paper_on_SPDY_protocol_Let%E2%80%99s_make_the_web_faster.pdf
http://www.ijser.org/researchpaper%5CA_Study_paper_on_SPDY_protocol_Let%E2%80%99s_make_the_web_faster.pdf
http://www.ijser.org/researchpaper%5CA_Study_paper_on_SPDY_protocol_Let%E2%80%99s_make_the_web_faster.pdf
http://dx.doi.org/10.1145/2695664.2695706 .
http://dx.doi.org/10.1145/2695664.2695706 .
https://tools.ietf.org/html/rfc7541
https://tools.ietf.org/html/rfc7541
https://assets.wp.nginx.com/wp-content/uploads/2015/09/NGINX_HTTP2_White_Paper_v4.pdf
https://www.ietf.org/proceedings/85/slides/slides-85-httpbis-3.pdf
https://www.ietf.org/proceedings/85/slides/slides-85-httpbis-3.pdf
https://tools.ietf.org/html/draft-kihara-compression-considered-harmful-00
https://tools.ietf.org/html/draft-kihara-compression-considered-harmful-00
https://os.itec.kit.edu/downloads/publ_2010_miller_wormhole-abstract.pdf
https://tools.ietf.org/html/draft-rpeon-httpbis-exproxy-00
http://users.jyu.fi/~timoh/cis3.pdf
http://users.jyu.fi/~timoh/cis3.pdf
http://users.jyu.fi/~timoh/cis3.pdf
http://dx.doi.org/10.1145/2535372.2535399
http://dx.doi.org/10.1145/2535372.2535399
http://dx.doi.org/10.1145/2535372.2535399
http://www.rfc-base.org/txt/rfc-2616.txt
http://www.rfc-base.org/txt/rfc-2616.txt
https://tools.ietf.org/html/rfc4960
https://tools.ietf.org/html/rfc4960
http://dx.doi.org/10.1145/2534706.2534721
http://dx.doi.org/10.1145/2534706.2534721
https://doi.org/10.7287/peerj.preprints.1280v1
https://doi.org/10.7287/peerj.preprints.1280v1
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
http://dx.doi.org/10.1109/ICC.2013.6654905
http://dx.doi.org/10.1109/ICC.2013.6654905
http://dx.doi.org/10.1109/ICC.2013.6654905

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	HTTP Protocol Background Study
	HTTP 1.x protocol
	HTTP 1.1 pipeline
	SPDY protocol
	QUIC protocol and HTTP over UDP

	HTTP/2 Protocol
	HTTP/2 single and persistent connection
	Multiplexing
	Header compression and binary encoding
	Prioritization

	HTTP Performance on Mobile Devices
	Performance Benchmark
	HTTP 1.1 pipelinging performance
	QUIC (HTTP over UDP) protocol performance
	HTTP/2 on web services performance

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2
	Table 3
	References

