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Introduction
The exponentially increasing of biological data poses new challenges 

for bioinformatics in the post-genome era. Now if you want to search a 
DNA sequence in all of current DNA databases, you will find it’s a very 
tough mission. But if you want to search a word sequence in billions 
of documents in Internet, you only need several ms using Google. 
So could we build a DNA search engine like Google? This paper just 
discusses this “simple” question.

Now most DNA search and comparing methods are similar to 
BLAST/FASTA algorithm, which compares one sequence with the 
other sequences on by one [1,2]. Faster hash-table based heuristic 
methods like BLAT [3] and SSAHA [4] are also proposed. More 
recently, suffix tree based methods are also used to align large genomic 
sequences [5].These methods are popular because of their potentially 
fast search speed, but suffer from huge memory overheads, affecting 
their scalability. Although many heuristic and pre-index methods could 
greatly reduce the search time, it’s still difficult to meet the challenge in 
this DNA information explosion period. Many researchers agree that 
high performance search algorithm is demanding in current research 
of bioinformatics. 

We may find some tips from the history of text information 
retrieval. If we need search a word sequence in several documents, 
we could scan each document by some string matching algorithms 
like KMP. But if there are millions of documents, the search time will 
become intolerable. So many pre-process methods like Tree based 
methods are proposed. Many of them are also applied in DNA analysis 
[6]. But for mass data like Internet information, the inverted index 
based search systems are almost the only choice [7]. We could use a 
simple example to show the inverted index methods:

Three documents:

D0= “a big apple”;

D1= “a apple I love apple”;

D2 = “big pig eat apple”;

The “inverted index” is an index data structure storing a mapping 
from content, such as words or numbers, to its locations in a database 
file, or in a document or a set of documents. In search engine, the 
inverted index is normally the mapping from “word” to “document”:

word Document ID
a D0,D1
big D0,D2, 

apple D0,D1,D1,D2
I D1
pig D2
love D1

If we want to search “a apple”, we first search the words “a” 
in word column and obtain its corresponding Document ID list: 
R(“a”)={D0,D1,D2}. Then for “apple”, R(“apple”)={D0,D1,D1,D2}. 
The search results is the intersection set of R(“a”) and R(“apple”):

(" ") (" ")
{ 0, 1} ( 0, 1, 1, 2) { 0, 1}
R R a R apple
D D D D D D D D

= =
=





The search result is D0 and D1. Normally, a scoring method 
is designed to rank the results. The simplest method is TF (term 
frequency) score, which is defined as the same words amount between 
query and result sequence. Here the score of D0 is 2, D1 is 3. So D1 will 
rank first and D0 in second. 

The common string matching method need scan each target 
document. Its time complexity is more than O (n), in which n is the 
number of documents. In some heuristic method, we only need scan 
some “seeds” of all documents. But its complexity is still related to the 
number of target documents. But for inverted index system, its time 
complexity mainly depends on the number of words in query (m). The 
proper set merging algorithm could ensure the search time complexity 
is O (NP(m)). Normally the document is billion level, which is much 
more than O(NP(m)). It’s just the “secret” of Google to provide the ms 
level search service for mass WWW documents.

DNA search engine design

Brief idea: The inverted index could be used to index any symbol 
sequence and provide the quick search service, no matter it’s music, 
noise etc. We only need solve two problems. First, how to divide or 
segment the sequence into “words”. Second, we should ensure the 
word set or vocabulary is not too long. In addition. For DNA sequence 
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Abstract
This paper proposed a new method to build the large scale DNA sequences search system based on web 

search engine technology. We give a very brief introduction for the methods used in search engine first. Then how to 
build a DNA search system like Google is illustrated in detail. Since there is no local alignment process, this system 
is able to provide the ms level search services for billions of DNA sequences in a typical server. 
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like full genome, we should also divide the long sequence into short 
“document” to directly apply the mature technology in search engine. 
The following parts just discuss these questions.

DNA document

In this paper, we use the full genome as experiment data. We 
could index the position of words, but we need revise many available 
search methods. So we divide long sequence into short sequences, just 
like dividing a long book into short paragraphs. There is no a strict 
standard to determine the proper length of “document”. Normally, this 
length should be a multiple of the length of most queries. Here assume 
a common DNA query is about 100 bps. So we use 500 as the length 
of DNA “document”. This length could be adjusted according to the 
search requirement. 

The advantages of “document” could be easily explained. For query 
“I love apple”, the “I really love apple” could be regarded as a matching 
sequence. But for “I + (1000 words) + love+ (10000 words) + apple” is 
obviously not a matching sequence. The “document ID” list merging 
in search process will be much easier than merging operation based 
on position. 

Here the genome of Arabidopsis is successively divided into 500 bps 
length documents. There are about 272,336 documents. Each is marked 
by their position in genome, which is as same as the description of 
FASTA format. We also give a unique document ID to each document 
to identify them. 

DNA words and segment

For some language like English, the sequence could be easily 
segmented into words according to space and punctuation. But for 
DNA sequence, there is no space and punctuation. This problem can 
be solved considering some languages with no natural delimiters like 
Chinese. The simplest method to index Chinese is using n-grams 
methods to (normally, 2-grams) segment the sentence. To obtain 
the n-grams segment, one shifts progressively by one base a “reading 
window” of length n along the sequence. For example, a sentence:

T=“ABCDE”;

The 1-gram segment divided the T into {A, B, C, D, E};

The 2-grams segment divided the T into {AB, BC, CD, DE}

For a query “ABC”, it’s divided into “A”+”B”+”C” (1-gram) or 
“AB”+”BC” (2-grams) and search them in related inverted files. 

Obviously, we could also use the n-grams segments to divide the 
DNA sequences. The only question is to determine a proper “word” 
length to ensure the “vocabulary” is not too big. If we select 1 as the 
length of DNA word, there are only 4 words {A, T, C, G}. The DNA 
sequences corresponding to one word will too many to process the 
union operation. According to the practice, the word in vocabulary 
should not more than 10 million level. So the proper word length of 
DNA could be 7 to 12. Here we could select length 12 (412 =16,777,216).

After 12-ngrams segmenting the DNA sequence, we could easily 
apply the current search engine technology to create inverted index 
and build a DNA search engine. We write a simple DNA search system 
based on a tutorial search system [8]. 

DNA search process

We use the genome of Arabidopsis as experiment data and build a 
search system. But we find there is no search result for most queries. It’s 
mainly because there is almost no exact match “Document” for query 
sequence. To deal with this problem, we only need adjust the search 
process.

First, we sort the query word by the Document Frequency of word. 
Document Frequency of a word is defined as number of documents 
containing this word. Then we merge the document list according to 
this sorted query list successively, until the number of candidate results 
is less than a threshold. 

For example, an inverted 

word Document ID
W1 D1
W2 D0,D2,D3, 
W3 D0,D2,D4
W4 D0,D2

The query is {W1,W3,W4}. If we search W1 first, R(“W1”)={D1}, 
Then for R(“W3”)={ D0,D2,D4}, their union:

(" 1") (" 3")
{ 1} ( 0, 2, 4) {}
R R W R W
D D D D

= =
=





So we could only use {D1} as the candidate result. 

But if we rank the query according to their Document frequency: 
{W3,W4,W1}. Then for R(“W3”)={ D0,D2,D4}, R(“W4”)={ D0,D2,D4}, 
their union:

(" 3") (" 4")
{ 0, 2, 4} ( 0, 2) { 0, 2}
R R W R W
D D D D D D D

= =
=





Although there also no result for:

(" 3") (" 4") (" 1") {}R R W R W R W= = 

But we could use the result in the previous step “{D0,D2}” as the 
search results. Obviously, this result is better than “{D1}”, which only 
match one word. 

A detailed example 

Here we also give simple example to show this algorithm. We select 
the full genome of Arabidopsis as the targeted sequence. 

(1) This sequence is preprocessed as followed:Divide the 
sequence into document. This process divide the genome into no-
overlap 500 bp length sequences, each sequence is a “document”. For 
example, two documents:

DocID 1

>ref|NC_003070.9|:1-500 Arabidopsis thaliana chromosome 1, 
complete sequence 

AAACCCTAAACCCTAAACCCTAAACCTCTGAATCCT-
TAATCCCTAAATCCCTAAATCTTTAAATCCTACATCCAT-
GAATCCCTAAATACCTAATTCCCTA…………..

DocID 2
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>ref|NC_003070.9|:501-1000 Arabidopsis thaliana chromosome 1, 
complete sequence

GTTGTTGTTACGCTTGTCATCTCATCTCTCAATGATAT-
GGGATGGTCCTTTAGCATTTATTCTGAAGTTCTTCTGCTT-
GATGATTTTATCCTTAGCCAAAAGGA…………..

(2) Segment each document. Here we 12-grams segment the 
documents. For “DocID 1” and “DocID 2”,  their segment:

DocID 1

CCCTAAACCCTA  /  CCTAAACCCTAA  /  CTAAACCCTAAA  
/  AAACCCTAAACC / …………..

DocID 2

GTTGTTGTTACG  /  TTGTTGTTACGC /  TGTTGTTACGCT /  
GTTGTTACGCTT  / …………..

(3) build the forward index for each document. For “DocID 1” 
and “DocID 2”, the inverted files:

CCCTAAACCCTA DocID 1

CCTAAACCCTAA DocID 1

CTAAACCCTAAA DocID 1

AAACCCTAAACC DocID 1 …………..

GTTGTTGTTACG DocID 2

TTGTTGTTACGC DocID 2 …………..

Because there are many documents, the final inverted files is the 
correspondence of one “words” to many documents containing this 
“words” like:

CCCTAAACCCTA  DocID 1  DocID 100   DocID 
999  …………..

CCTAAACCCTAA  DocID 1  DocID 999   DocID 
1021  …………..…………..

Till now, we build the inverted file for DNA sequence. It’s the ker-
nel for our method.

In search process, for example, we want to search “CCCTA-
AACCCTAA”. it’s first 12-ngrams divided into two “words” : “CCCTA-
AACCCTA”  “CCTAAACCCTAA”. Then we merge the DocID corre-
sponding to these “words” successively. 

For words “CCCTAAACCCTA”, its corresponding DocID:

DocID 1  DocID 100   DocID 999  …………..

Then for words “CCTAAACCCTAA”, the corresponding DocID:

DocID 1  DocID 999   DocID 1021  …………..

The merge of two DocID lists or their intersection set:

DocID 1 DocID 999 …………..

This is the search result of query “CCCTAAACCCTAA”. 

Here we also give a actual query and its search results in genome 
of Arabidopsis:

The query sequence:

C C C T A A A C C C T A A A C C C T A A A C C C T A A A C C T C T -
GAATCCTTAATCCCTAAATCCCTAAATCTTTAAATCCTA-
CATCCATGAATCCCTAAATACCTAATTCCCTAAACCC-
GAAACCGG

This sequence is the first part of the first chromosome of Arabi-
dopsis:

First, this query is segmented into “CCCTAAACCCTA / CCTA-
AACCCTAA  /  CTAAACCCTAAA  …………..” .

Then we sort this words according to the frequency they appear in 
genome of Arabidopsis. This frequency list is pre-calculated. Here get a 
sorted word list “TAAACCCTAAAC”, “AAACCCTAAACC”, “CTA-
AACCCTAAA”   …………..

Then we merge the DocID list according to these words succes-
sively. 

For word “TAAACCCTAAAC”, we get 742 DocID.

For word “AAACCCTAAACC”, we get 805 DocID, merged with 
DocID list of previous step, we get 657 DocID. It’s the search results 
till this step.

For word “CTAAACCCTAAA ”, we get 749 DocID, merged with 
result DocID list of previous step, we get 597 DocID. It’s the search 
result till this step.…………..

For word “CTAAACCCTAAA ”, we get 130 DocID, merged with 
result DocID list of previous step, we get 12 DocID. (which is selected 
as the final search results)

For word “TAAATCTTTAAA ”, we get 114 DocID, merged with 
result DocID list of previous step, we get 1 DocID.

In the following steps, there will no search results. So we use that 
12 docID search results as the final results, which is shown in (Figure 
1) (in web [8]):

But when we search this query sequence in Arabidopsis by BLAST 
(we use the blast web interface of NCBI [] ). There is no search results, 
although this query sequence is selected from Arabidopsis.

Only when we extend the query to 140 letter, we could the search 
results in BLAST (Figure 2)

The first results is the query sequence itself. It also appear in our 
methods. 

For the next search results “TTCTCTGGTTGAAAATCTTT” in 
blast, it doesn’t appear in the top 12 results in our methods. 

We select the first search results of our method and execute the two 
sequence blast (blast2seq) with query sequence, the results- (Figure 3)

We find this search result is better than the second results of blast. 
But it doesn’t appear in the search result list of blast. 

Compare with BLAST

Normally, there are two steps in current fast alignment algorithms 
like BLAST [9]. First, “the search stage”, the program quickly detects 
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Figure 1: Search results in genome of Arabidopsis (shown in web).

sequences which are likely to be homologous with query sequence. For 
example, BLAST segments the query into 11 length “words” and then 
finds the target sequences matching at least one “word” as candidate 
sequence. Second, “the local alignment stage”, program examines the 
candidate sequence in more detail and produces alignments for the se-
quences which are indeed homologous according to some criteria. For 
BLAST, it applies S-W method to rank the candidate sequences and get 
the final “search results”.

But for our system, there is only one step, “the search stage”. Our 
programs also 12-segment the query and find the sequence matching 
one word as candidate sequence. But in the next step, we continue to 
find sequence matching more words in candidate sequences of previ-
ous step. This process is repeated until the number of candidate se-
quence is less than a threshold or the exact match sequences are found. 
We finally get a results list sorted by TF scores.

The TF score is a different similarity definition. This scoring meth-
od and its improvement like TF*IDF are all designed based on Statisti-
cal Language Models. It’s difficult to compare the search engine meth-
ods and BLAST in theory in a short paper. So we only describe their 
differences in using.

For genome of Arabidopsis thaliana, many short queries only re-
turn the “No significant similarity found” (blast(n) in NCBI). But our 
system could give the search results for almost all queries. Half a loaf 
is better than no bread. For the matching sequence of BLAST most of 
them also appear in the in top the result list of our system, especially 
for the results with few gaps. But few results obtain very low ranking 
scores in our system. 

The main advantage of DNA search engine is that it could provide 
much faster search speed than BLAST. Only for our theory proof sys-
tem, it could provide 10 query/second search service and return the 
results in <200ms for full genome of Arabidopsis thaliana. This ser-
vice run in an AWS micro instance(1 cpu, 600M memory). Based on 
the mature search system like Lucene, we could easily index billions of 
DNA sequence and provide >100 search services per-second by a single 
common server. So this system may be a good choice for the prelimi-
nary search of a DNA sequence.

Further improvements 

Although the 2-grams segment is also applied in some simple Chi-
nese search system, most large Chinese search engine all use the “vo-
cabulary based segment”. We could use a simple example to show the 
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Figure 2: The search results in blast.

advantages of “vocabulary based segment”.

For example:

A document D1=“ABIGAPPLE”; its 3-grams segments: {ABI, BIG, 
GAP, GPI,APP,PPL,PLE}

For query Q=“AAPPLE”, its 3-grams segments:{AAP,APP,PPL,PLE}. 
The D1 will not return as the search results of Q.

But if we use the “vocabulary based segment”. For D1, its segments 
{A, BIG, APPLE}, for Q, {A,APPLE}. So the D1 will return as the search 
result of Q. 

Moreover, the words {ABI, IGP, GPI…} are not a real meaningful 
“word”, we needn’t index them. We only need index {A, BIG, APPLE}. 
This could reduce the size of inverted files. It’s very important to in 
building the large scale search system. 
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Figure 3: Two sequence blast results(query sequence and our first search results).

To apply the “vocabulary based segment” method, we should build 
a “DNA vocabulary” containing different length “words”, and then seg-
ment the DNA sequence properly. In fact, there have been many re-
searches for these two topic in Chinese search engine and n-grams lan-
guages model research area. An interesting result is that the “2-grams” 
has similar search effects to “vocabulary based segment” in Chinese 
search engine. So we will discuss the “vocabulary of DNA” in another 
paper. 

Conclusions
This paper gives a solution to build a large scale DNA search en-

gine. It could provide the quickly search service for DNA sequence. 
This method could also be easily extended to search protein sequence. 
Now search engine has become a very mature technology. Based on 
the method in this paper, almost all the other search engine technolo-
gies like distributed search methods could be directly applied in DNA 
analyzing. 
References 

1. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence com-
parison. Proc Natl Acad Sci 85: 2444−2448.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local align-
ment search tool. J Mol Biol 215: 403−410.

3. Kent WJ (2002) BLAT—The BLAST-Like Alignment Tool. Genome Res 12: 
656-664.

4. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA 

databases. Genome Res 11: 1725-1729.

5. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O et al. (1999). Align-
ment of whole genomes. Nucleic Acids Res 27: 2369-2376.

6. Gusfield D (1997) Algorithms on Strings, Trees, and Sequences: Computer 
Science and Computational Biology. 

7. Chowdhury GG (2003) Introduction to modern information retrieval.

8. Demo for DNA search engine. 

9. BLAST of NCBI

http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.ncbi.nlm.nih.gov/pubmed/11591649
http://www.ncbi.nlm.nih.gov/pubmed/11591649
http://www.ncbi.nlm.nih.gov/pubmed/11591649
http://www.ncbi.nlm.nih.gov/pubmed/10325427
http://www.ncbi.nlm.nih.gov/pubmed/10325427
http://www.ncbi.nlm.nih.gov/pubmed/10325427
http://books.google.co.in/books?hl=en&lr=&id=Ofw5w1yuD8kC&oi=fnd&pg=PP1&dq=D.+Gusfield,+Algorithms+on+Strings,+Trees,+and+Sequences:+Computer+Science+and+Computational+Biology+%28Cambridge+University+Press,+1997%29.&ots=k1jwHAngxd&sig=7-ikOaltV_TXAMtx4k1g-
http://books.google.co.in/books?hl=en&lr=&id=Ofw5w1yuD8kC&oi=fnd&pg=PP1&dq=D.+Gusfield,+Algorithms+on+Strings,+Trees,+and+Sequences:+Computer+Science+and+Computational+Biology+%28Cambridge+University+Press,+1997%29.&ots=k1jwHAngxd&sig=7-ikOaltV_TXAMtx4k1g-
http://books.google.co.in/books?hl=en&lr=&id=Ofw5w1yuD8kC&oi=fnd&pg=PP1&dq=D.+Gusfield,+Algorithms+on+Strings,+Trees,+and+Sequences:+Computer+Science+and+Computational+Biology+%28Cambridge+University+Press,+1997%29.&ots=k1jwHAngxd&sig=7-ikOaltV_TXAMtx4k1g-
http://www.dnasoso.com
http://www.dnasoso.com

	Title
	Corresponding author
	Abstract
	Introduction
	DNA search engine design
	DNA document
	DNA words and segment
	DNA search process
	A detailed example 
	Compare with BLAST
	Further improvements 

	Conclusions
	References 
	Figure 1
	Figure 2
	Figure 3

