
Volume 4(5): 081-086 (2011) - 081
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Research Article Open Access

Liang and Bo, J Comput Sci Syst Biol 2011, 4:5
DOI: 10.4172/jcsb.1000080

Research Article Open Access

Introduction
The exponentially increasing of biological data poses new challenges

for bioinformatics in the post-genome era. Now if you want to search a
DNA sequence in all of current DNA databases, you will find it’s a very
tough mission. But if you want to search a word sequence in billions
of documents in Internet, you only need several ms using Google.
So could we build a DNA search engine like Google? This paper just
discusses this “simple” question.

Now most DNA search and comparing methods are similar to
BLAST/FASTA algorithm, which compares one sequence with the
other sequences on by one [1,2]. Faster hash-table based heuristic
methods like BLAT [3] and SSAHA [4] are also proposed. More
recently, suffix tree based methods are also used to align large genomic
sequences [5].These methods are popular because of their potentially
fast search speed, but suffer from huge memory overheads, affecting
their scalability. Although many heuristic and pre-index methods could
greatly reduce the search time, it’s still difficult to meet the challenge in
this DNA information explosion period. Many researchers agree that
high performance search algorithm is demanding in current research
of bioinformatics.

We may find some tips from the history of text information
retrieval. If we need search a word sequence in several documents,
we could scan each document by some string matching algorithms
like KMP. But if there are millions of documents, the search time will
become intolerable. So many pre-process methods like Tree based
methods are proposed. Many of them are also applied in DNA analysis
[6]. But for mass data like Internet information, the inverted index
based search systems are almost the only choice [7]. We could use a
simple example to show the inverted index methods:

Three documents:

D0= “a big apple”;

D1= “a apple I love apple”;

D2 = “big pig eat apple”;

The “inverted index” is an index data structure storing a mapping
from content, such as words or numbers, to its locations in a database
file, or in a document or a set of documents. In search engine, the
inverted index is normally the mapping from “word” to “document”:

word Document ID
a D0,D1
big D0,D2,

apple D0,D1,D1,D2
I D1
pig D2
love D1

If we want to search “a apple”, we first search the words “a”
in word column and obtain its corresponding Document ID list:
R(“a”)={D0,D1,D2}. Then for “apple”, R(“apple”)={D0,D1,D1,D2}.
The search results is the intersection set of R(“a”) and R(“apple”):

(" ") (" ")
{ 0, 1} (0, 1, 1, 2) { 0, 1}
R R a R apple
D D D D D D D D

= =
=

The search result is D0 and D1. Normally, a scoring method
is designed to rank the results. The simplest method is TF (term
frequency) score, which is defined as the same words amount between
query and result sequence. Here the score of D0 is 2, D1 is 3. So D1 will
rank first and D0 in second.

The common string matching method need scan each target
document. Its time complexity is more than O (n), in which n is the
number of documents. In some heuristic method, we only need scan
some “seeds” of all documents. But its complexity is still related to the
number of target documents. But for inverted index system, its time
complexity mainly depends on the number of words in query (m). The
proper set merging algorithm could ensure the search time complexity
is O (NP(m)). Normally the document is billion level, which is much
more than O(NP(m)). It’s just the “secret” of Google to provide the ms
level search service for mass WWW documents.

DNA search engine design

Brief idea: The inverted index could be used to index any symbol
sequence and provide the quick search service, no matter it’s music,
noise etc. We only need solve two problems. First, how to divide or
segment the sequence into “words”. Second, we should ensure the
word set or vocabulary is not too long. In addition. For DNA sequence

*Corresponding author: Wang Liang, Huazhong University of Science and Technology,
Tencent, SOSO, 430074, P.R. China, E-mail: wangliang.f@gmail.com

Received October 10, 2011; Accepted December 02, 2011; Published December
06, 2011

Citation: Liang W, Bo F (2011) How to Build a DNA Search Engine like Google? J
Comput Sci Syst Biol 4: 081-086. doi:10.4172/jcsb.1000080

Copyright: © 2011 Liang W, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License,which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
This paper proposed a new method to build the large scale DNA sequences search system based on web

search engine technology. We give a very brief introduction for the methods used in search engine first. Then how to
build a DNA search system like Google is illustrated in detail. Since there is no local alignment process, this system
is able to provide the ms level search services for billions of DNA sequences in a typical server.

How to Build a DNA Search Engine like Google?
Wang Liang* and Fang Bo

Department of Science and Technology, Huazhong University of Science and Technology, Tencent, SOSO, P.R. China

Journal of

Computer Science & Systems BiologyJo
ur

na
l o

f C
om

pu
ter Science & System

s Biology

ISSN: 0974-7230

Citation: Liang W, Bo F (2011) How to Build a DNA Search Engine like Google? J Comput Sci Syst Biol 4: 081-086. doi:10.4172/jcsb.1000080

Volume 4(5): 081-086 (2011) - 082
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

like full genome, we should also divide the long sequence into short
“document” to directly apply the mature technology in search engine.
The following parts just discuss these questions.

DNA document

In this paper, we use the full genome as experiment data. We
could index the position of words, but we need revise many available
search methods. So we divide long sequence into short sequences, just
like dividing a long book into short paragraphs. There is no a strict
standard to determine the proper length of “document”. Normally, this
length should be a multiple of the length of most queries. Here assume
a common DNA query is about 100 bps. So we use 500 as the length
of DNA “document”. This length could be adjusted according to the
search requirement.

The advantages of “document” could be easily explained. For query
“I love apple”, the “I really love apple” could be regarded as a matching
sequence. But for “I + (1000 words) + love+ (10000 words) + apple” is
obviously not a matching sequence. The “document ID” list merging
in search process will be much easier than merging operation based
on position.

Here the genome of Arabidopsis is successively divided into 500 bps
length documents. There are about 272,336 documents. Each is marked
by their position in genome, which is as same as the description of
FASTA format. We also give a unique document ID to each document
to identify them.

DNA words and segment

For some language like English, the sequence could be easily
segmented into words according to space and punctuation. But for
DNA sequence, there is no space and punctuation. This problem can
be solved considering some languages with no natural delimiters like
Chinese. The simplest method to index Chinese is using n-grams
methods to (normally, 2-grams) segment the sentence. To obtain
the n-grams segment, one shifts progressively by one base a “reading
window” of length n along the sequence. For example, a sentence:

T=“ABCDE”;

The 1-gram segment divided the T into {A, B, C, D, E};

The 2-grams segment divided the T into {AB, BC, CD, DE}

For a query “ABC”, it’s divided into “A”+”B”+”C” (1-gram) or
“AB”+”BC” (2-grams) and search them in related inverted files.

Obviously, we could also use the n-grams segments to divide the
DNA sequences. The only question is to determine a proper “word”
length to ensure the “vocabulary” is not too big. If we select 1 as the
length of DNA word, there are only 4 words {A, T, C, G}. The DNA
sequences corresponding to one word will too many to process the
union operation. According to the practice, the word in vocabulary
should not more than 10 million level. So the proper word length of
DNA could be 7 to 12. Here we could select length 12 (412 =16,777,216).

After 12-ngrams segmenting the DNA sequence, we could easily
apply the current search engine technology to create inverted index
and build a DNA search engine. We write a simple DNA search system
based on a tutorial search system [8].

DNA search process

We use the genome of Arabidopsis as experiment data and build a
search system. But we find there is no search result for most queries. It’s
mainly because there is almost no exact match “Document” for query
sequence. To deal with this problem, we only need adjust the search
process.

First, we sort the query word by the Document Frequency of word.
Document Frequency of a word is defined as number of documents
containing this word. Then we merge the document list according to
this sorted query list successively, until the number of candidate results
is less than a threshold.

For example, an inverted

word Document ID
W1 D1
W2 D0,D2,D3,
W3 D0,D2,D4
W4 D0,D2

The query is {W1,W3,W4}. If we search W1 first, R(“W1”)={D1},
Then for R(“W3”)={ D0,D2,D4}, their union:

(" 1") (" 3")
{ 1} (0, 2, 4) {}
R R W R W
D D D D

= =
=

So we could only use {D1} as the candidate result.

But if we rank the query according to their Document frequency:
{W3,W4,W1}. Then for R(“W3”)={ D0,D2,D4}, R(“W4”)={ D0,D2,D4},
their union:

(" 3") (" 4")
{ 0, 2, 4} (0, 2) { 0, 2}
R R W R W
D D D D D D D

= =
=

Although there also no result for:

(" 3") (" 4") (" 1") {}R R W R W R W= =

But we could use the result in the previous step “{D0,D2}” as the
search results. Obviously, this result is better than “{D1}”, which only
match one word.

A detailed example

Here we also give simple example to show this algorithm. We select
the full genome of Arabidopsis as the targeted sequence.

(1) This sequence is preprocessed as followed:Divide the
sequence into document. This process divide the genome into no-
overlap 500 bp length sequences, each sequence is a “document”. For
example, two documents:

DocID 1

>ref|NC_003070.9|:1-500 Arabidopsis thaliana chromosome 1,
complete sequence

AAACCCTAAACCCTAAACCCTAAACCTCTGAATCCT-
TAATCCCTAAATCCCTAAATCTTTAAATCCTACATCCAT-
GAATCCCTAAATACCTAATTCCCTA…………..

DocID 2

Citation: Liang W, Bo F (2011) How to Build a DNA Search Engine like Google? J Comput Sci Syst Biol 4: 081-086. doi:10.4172/jcsb.1000080

Volume 4(5): 081-086 (2011) - 083
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

>ref|NC_003070.9|:501-1000 Arabidopsis thaliana chromosome 1,
complete sequence

GTTGTTGTTACGCTTGTCATCTCATCTCTCAATGATAT-
GGGATGGTCCTTTAGCATTTATTCTGAAGTTCTTCTGCTT-
GATGATTTTATCCTTAGCCAAAAGGA…………..

(2) Segment each document. Here we 12-grams segment the
documents. For “DocID 1” and “DocID 2”, their segment:

DocID 1

CCCTAAACCCTA / CCTAAACCCTAA / CTAAACCCTAAA
/ AAACCCTAAACC / …………..

DocID 2

GTTGTTGTTACG / TTGTTGTTACGC / TGTTGTTACGCT /
GTTGTTACGCTT / …………..

(3) build the forward index for each document. For “DocID 1”
and “DocID 2”, the inverted files:

CCCTAAACCCTA DocID 1

CCTAAACCCTAA DocID 1

CTAAACCCTAAA DocID 1

AAACCCTAAACC DocID 1 …………..

GTTGTTGTTACG DocID 2

TTGTTGTTACGC DocID 2 …………..

Because there are many documents, the final inverted files is the
correspondence of one “words” to many documents containing this
“words” like:

CCCTAAACCCTA DocID 1 DocID 100 DocID
999 …………..

CCTAAACCCTAA DocID 1 DocID 999 DocID
1021 …………..…………..

Till now, we build the inverted file for DNA sequence. It’s the ker-
nel for our method.

In search process, for example, we want to search “CCCTA-
AACCCTAA”. it’s first 12-ngrams divided into two “words” : “CCCTA-
AACCCTA” “CCTAAACCCTAA”. Then we merge the DocID corre-
sponding to these “words” successively.

For words “CCCTAAACCCTA”, its corresponding DocID:

DocID 1 DocID 100 DocID 999 …………..

Then for words “CCTAAACCCTAA”, the corresponding DocID:

DocID 1 DocID 999 DocID 1021 …………..

The merge of two DocID lists or their intersection set:

DocID 1 DocID 999 …………..

This is the search result of query “CCCTAAACCCTAA”.

Here we also give a actual query and its search results in genome
of Arabidopsis:

The query sequence:

C C C T A A A C C C T A A A C C C T A A A C C C T A A A C C T C T -
GAATCCTTAATCCCTAAATCCCTAAATCTTTAAATCCTA-
CATCCATGAATCCCTAAATACCTAATTCCCTAAACCC-
GAAACCGG

This sequence is the first part of the first chromosome of Arabi-
dopsis:

First, this query is segmented into “CCCTAAACCCTA / CCTA-
AACCCTAA / CTAAACCCTAAA …………..” .

Then we sort this words according to the frequency they appear in
genome of Arabidopsis. This frequency list is pre-calculated. Here get a
sorted word list “TAAACCCTAAAC”, “AAACCCTAAACC”, “CTA-
AACCCTAAA” …………..

Then we merge the DocID list according to these words succes-
sively.

For word “TAAACCCTAAAC”, we get 742 DocID.

For word “AAACCCTAAACC”, we get 805 DocID, merged with
DocID list of previous step, we get 657 DocID. It’s the search results
till this step.

For word “CTAAACCCTAAA ”, we get 749 DocID, merged with
result DocID list of previous step, we get 597 DocID. It’s the search
result till this step.…………..

For word “CTAAACCCTAAA ”, we get 130 DocID, merged with
result DocID list of previous step, we get 12 DocID. (which is selected
as the final search results)

For word “TAAATCTTTAAA ”, we get 114 DocID, merged with
result DocID list of previous step, we get 1 DocID.

In the following steps, there will no search results. So we use that
12 docID search results as the final results, which is shown in (Figure
1) (in web [8]):

But when we search this query sequence in Arabidopsis by BLAST
(we use the blast web interface of NCBI []). There is no search results,
although this query sequence is selected from Arabidopsis.

Only when we extend the query to 140 letter, we could the search
results in BLAST (Figure 2)

The first results is the query sequence itself. It also appear in our
methods.

For the next search results “TTCTCTGGTTGAAAATCTTT” in
blast, it doesn’t appear in the top 12 results in our methods.

We select the first search results of our method and execute the two
sequence blast (blast2seq) with query sequence, the results- (Figure 3)

We find this search result is better than the second results of blast.
But it doesn’t appear in the search result list of blast.

Compare with BLAST

Normally, there are two steps in current fast alignment algorithms
like BLAST [9]. First, “the search stage”, the program quickly detects

Citation: Liang W, Bo F (2011) How to Build a DNA Search Engine like Google? J Comput Sci Syst Biol 4: 081-086. doi:10.4172/jcsb.1000080

Volume 4(5): 081-086 (2011) - 084
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Figure 1: Search results in genome of Arabidopsis (shown in web).

sequences which are likely to be homologous with query sequence. For
example, BLAST segments the query into 11 length “words” and then
finds the target sequences matching at least one “word” as candidate
sequence. Second, “the local alignment stage”, program examines the
candidate sequence in more detail and produces alignments for the se-
quences which are indeed homologous according to some criteria. For
BLAST, it applies S-W method to rank the candidate sequences and get
the final “search results”.

But for our system, there is only one step, “the search stage”. Our
programs also 12-segment the query and find the sequence matching
one word as candidate sequence. But in the next step, we continue to
find sequence matching more words in candidate sequences of previ-
ous step. This process is repeated until the number of candidate se-
quence is less than a threshold or the exact match sequences are found.
We finally get a results list sorted by TF scores.

The TF score is a different similarity definition. This scoring meth-
od and its improvement like TF*IDF are all designed based on Statisti-
cal Language Models. It’s difficult to compare the search engine meth-
ods and BLAST in theory in a short paper. So we only describe their
differences in using.

For genome of Arabidopsis thaliana, many short queries only re-
turn the “No significant similarity found” (blast(n) in NCBI). But our
system could give the search results for almost all queries. Half a loaf
is better than no bread. For the matching sequence of BLAST most of
them also appear in the in top the result list of our system, especially
for the results with few gaps. But few results obtain very low ranking
scores in our system.

The main advantage of DNA search engine is that it could provide
much faster search speed than BLAST. Only for our theory proof sys-
tem, it could provide 10 query/second search service and return the
results in <200ms for full genome of Arabidopsis thaliana. This ser-
vice run in an AWS micro instance(1 cpu, 600M memory). Based on
the mature search system like Lucene, we could easily index billions of
DNA sequence and provide >100 search services per-second by a single
common server. So this system may be a good choice for the prelimi-
nary search of a DNA sequence.

Further improvements

Although the 2-grams segment is also applied in some simple Chi-
nese search system, most large Chinese search engine all use the “vo-
cabulary based segment”. We could use a simple example to show the

Citation: Liang W, Bo F (2011) How to Build a DNA Search Engine like Google? J Comput Sci Syst Biol 4: 081-086. doi:10.4172/jcsb.1000080

Volume 4(5): 081-086 (2011) - 085
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Figure 2: The search results in blast.

advantages of “vocabulary based segment”.

For example:

A document D1=“ABIGAPPLE”; its 3-grams segments: {ABI, BIG,
GAP, GPI,APP,PPL,PLE}

For query Q=“AAPPLE”, its 3-grams segments:{AAP,APP,PPL,PLE}.
The D1 will not return as the search results of Q.

But if we use the “vocabulary based segment”. For D1, its segments
{A, BIG, APPLE}, for Q, {A,APPLE}. So the D1 will return as the search
result of Q.

Moreover, the words {ABI, IGP, GPI…} are not a real meaningful
“word”, we needn’t index them. We only need index {A, BIG, APPLE}.
This could reduce the size of inverted files. It’s very important to in
building the large scale search system.

Citation: Liang W, Bo F (2011) How to Build a DNA Search Engine like Google? J Comput Sci Syst Biol 4: 081-086. doi:10.4172/jcsb.1000080

Volume 4(5): 081-086 (2011) - 086
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Figure 3: Two sequence blast results(query sequence and our first search results).

To apply the “vocabulary based segment” method, we should build
a “DNA vocabulary” containing different length “words”, and then seg-
ment the DNA sequence properly. In fact, there have been many re-
searches for these two topic in Chinese search engine and n-grams lan-
guages model research area. An interesting result is that the “2-grams”
has similar search effects to “vocabulary based segment” in Chinese
search engine. So we will discuss the “vocabulary of DNA” in another
paper.

Conclusions
This paper gives a solution to build a large scale DNA search en-

gine. It could provide the quickly search service for DNA sequence.
This method could also be easily extended to search protein sequence.
Now search engine has become a very mature technology. Based on
the method in this paper, almost all the other search engine technolo-
gies like distributed search methods could be directly applied in DNA
analyzing.
References

1. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence com-
parison. Proc Natl Acad Sci 85: 2444−2448.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local align-
ment search tool. J Mol Biol 215: 403−410.

3. Kent WJ (2002) BLAT—The BLAST-Like Alignment Tool. Genome Res 12:
656-664.

4. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA

databases. Genome Res 11: 1725-1729.

5. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O et al. (1999). Align-
ment of whole genomes. Nucleic Acids Res 27: 2369-2376.

6. Gusfield D (1997) Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology.

7. Chowdhury GG (2003) Introduction to modern information retrieval.

8. Demo for DNA search engine.

9. BLAST of NCBI

http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.ncbi.nlm.nih.gov/pubmed/11591649
http://www.ncbi.nlm.nih.gov/pubmed/11591649
http://www.ncbi.nlm.nih.gov/pubmed/11591649
http://www.ncbi.nlm.nih.gov/pubmed/10325427
http://www.ncbi.nlm.nih.gov/pubmed/10325427
http://www.ncbi.nlm.nih.gov/pubmed/10325427
http://books.google.co.in/books?hl=en&lr=&id=Ofw5w1yuD8kC&oi=fnd&pg=PP1&dq=D.+Gusfield,+Algorithms+on+Strings,+Trees,+and+Sequences:+Computer+Science+and+Computational+Biology+%28Cambridge+University+Press,+1997%29.&ots=k1jwHAngxd&sig=7-ikOaltV_TXAMtx4k1g-
http://books.google.co.in/books?hl=en&lr=&id=Ofw5w1yuD8kC&oi=fnd&pg=PP1&dq=D.+Gusfield,+Algorithms+on+Strings,+Trees,+and+Sequences:+Computer+Science+and+Computational+Biology+%28Cambridge+University+Press,+1997%29.&ots=k1jwHAngxd&sig=7-ikOaltV_TXAMtx4k1g-
http://books.google.co.in/books?hl=en&lr=&id=Ofw5w1yuD8kC&oi=fnd&pg=PP1&dq=D.+Gusfield,+Algorithms+on+Strings,+Trees,+and+Sequences:+Computer+Science+and+Computational+Biology+%28Cambridge+University+Press,+1997%29.&ots=k1jwHAngxd&sig=7-ikOaltV_TXAMtx4k1g-
http://www.dnasoso.com
http://www.dnasoso.com

	Title
	Corresponding author
	Abstract
	Introduction
	DNA search engine design
	DNA document
	DNA words and segment
	DNA search process
	A detailed example
	Compare with BLAST
	Further improvements

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3

