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How Codon Usage Biases Affect Our Ability to Recover 
the Tree of Life

Abstract
Many common phylogenomic algorithms that were well-adapted to classify limited numbers of species have become increasingly intractable as large whole-genome 
sequencing datasets have emerged. Various novel approaches use characteristics of DNA sequences, including variations in codon usage biases, to establish the 
phylogenetic relatedness of species. Codon choice affects transcription and translational efficiencies, which can lead to differential protein expression and phenotypic 
variation that may be a target of selection. Several functional biases exist within genes, including the number of codons that are used, the position of the codons, and the 
overall nucleotide composition of the genome. Although recent algorithms capitalize on specific codon usage biases to improve phylogenetic tree inference, the phylogenies 
produced by these algorithms vary significantly and indicate different evolutionary histories. Therefore, we propose that gene-specific analyses of the phylogenetic signal of 
specific codon usage biases are required to best incorporate these biases in phylogenomic models. 
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The Continued Importance of Phyloge-
netic Systematics 

Phylogenetic systematics explores the historical and hierarchical 
relationships among genes, individuals, populations, and taxa. Phylogenies 
allow biologists to infer similar characteristics in closely related species 
and provide an evolutionary framework for analyzing biological patterns 
[1]. Furthermore, phylogenies are statements of homology and are used 
to organize shared structures or patterns between species [2]. Originally, 
phylogenies were recovered using only morphological data. However, with 
the increased availability of molecular data, a combined approach using 
morphology and genetic markers is typically used in phylogenetic analyses 
[3]. Although genetic data provide researchers with access to more species, 
the datasets typically require significant data cleaning (e.g., alignment and 
annotation) before they become useful. Some of the greatest difficulties 
in recovering phylogenetic trees from molecular data (e.g., multiple 
substitutions at the same position between ancient terminal branches or no 
substitutions in a gene between short internal tree branches) are explored by 
Philippe, Brinkmann [4]. These issues have recently become more pertinent 
as sequencing costs have decreased and genomic data now largely span 
the Tree of Life.

Codon Usage Biases Span the Tree of 
Life

Codon usage biases are present throughout molecular datasets. There are 
61 canonical codons plus three stop codons that indicate the incorporation 
of 20 amino acids and the stop signal [5]. Since there are more codons than 
amino acids, the term synonymous codon is used to describe how multiple 

codons encode the same amino acid and were presumably identical in 
function. However, an unequal distribution of synonymous codons occurs 
within genomes, and highly expressed genes have especially prominent 
biases that suggest synonymous codons might play different roles in 
species fitness [6]. Furthermore, an unequal distribution of tRNA anticodons 
directly coupling codons also varies between species, leading to the wobble 
hypothesis: tRNA anticodons do not need to latch onto all three codon 
nucleotides during translation [7]. Codon usage is highly associated with the 
most abundant tRNA present in the cell [8], and codon usage patterns affect 
gene expression [9]. Some phylogenetic differences in synonymous codon 
usage biases may be explained by non-random mutations or selection for 
phenotypic differences caused by differential gene expression. Although 
codon usages directly affect phenotypes by altering gene expression, 
common phylogenomic approaches typically ignore the subtle influences of 
codon usage biases when recovering a phylogeny. Common phylogenomic 
approaches are described below.

Overview of Common Phylogenomic 
Techniques that do not Utilize Codon 
Usage Biases

Homologous characters are often identified by aligning orthologous gene 
sequences and identifying character state changes of amino acid residues 
or nucleotides that are then used to recover a tree topology. This multi-step 
process is time-consuming and requires significant data preprocessing (e.g., 
orthologous gene annotations). Non-homologous sequence comparisons 
have also been explored in alignment-free methods and will subsequently 
be discussed.

Ortholog identification

Orthologs are genes within two or more species that usually share the same 
function because they are derived from the same ancestral gene in the 
most recent common ancestor [10]. In contrast, paralogs and xenologs may 
share the same function, but can arise from gene duplication or horizontal 
gene transfer. Paralogs may not be under the same evolutionary pressures 
and should not be compared in a direct positional alignment because these 
comparisons are often a poor indicator of phylogenetic relationships [10]. 
An in-depth evaluation of ortholog identification techniques is presented by 
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Tekaia [11]. Once an ortholog is identified, phylogenetic studies typically 
require a multiple sequence alignment to align homologous characters. 
Reviews of some common multiple sequence aligners such as T-coffee 
[12], MUSCLE [13], Clustal [14], Clustal Omega [15], and MAFFT [16] can 
be examined elsewhere [17,18].

Recovering the phylogenetic tree 

Maximum parsimony: Maximum parsimony assumes that each character 
is equally important and minimizes the number of character state changes 
to recover the relatedness of species. Proponents of parsimony point to its 
explanatory power and ability to minimize ad hoc hypotheses [19]. However, 
parsimony can be misleading if unequal evolutionary rates between 
lineages exist because longer evolutionary branches have a tendency to 
form monophyletic groups even if the species have different phylogenetic 
histories [20]. PAUP [21] and TNT [22] are two popular software packages 
to identify phylogenies based on parsimony. 

Maximum likelihood: Maximum likelihood requires specific models of 
evolution that show the probability of character state changes and can be 
used in the likelihood function. Maximum likelihood calculates the probability 
of obtaining the data given the model and tree topology. One of the main 
reasons that maximum likelihood estimates have gained traction is the 
mathematical property of consistency, which states that as more data (i.e., 
phylogenetically informative characters) are added, the likelihood function 
will converge to the correct tree, assuming the underlying model is correct 
[23,24]. Furthermore, maximum likelihood takes into account more complex 
modeling of datasets, and the modeling has become more computationally 
tractable through faster algorithmic design and faster computer processors 
[25]. However, in contrast to maximum parsimony, maximum likelihood is 
more likely to separate highly divergent species, leading to long branch 
repulsion [26]. MEGA X [27], RaxML [28], IQ-TREE [29] and PHYLIP [30] 
are commonly used to recover phylogenies using maximum likelihood.

Bayesian inference: Bayesian phylogenetic estimates use posterior 
probabilities of a distribution of trees calculated with Markov Chain Monte 
Carlo (MCMC) techniques to evaluate tree probabilities. Bayesian inference 
adds statistical support to phylogenies and produces more accurate trees 
in simulations. However, Bayesian inference is highly sensitive to prior 
probabilities [31]. How Bayesian techniques compare to other phylogenetic 
methods is addressed by Yang and Rannala [32], and popular Bayesian 
techniques are implemented in MrBayes [33,34] and BEAST2 [35].

Distance-based and alignment-free: Distance-based phylogenies use 
techniques such as neighbor-joining to quickly produce relatively good trees 
that are often used as a starting point for phylogenetic analyses using other 
methods. Neighbor-joining decomposes a star tree by taking the two closest 
taxa based on the number of character changes between them, pairing 
the taxa together to form a new node, recalculating weights based on the 

shortest distance between the new node and all other species (or nodes), 
and repeating this process until all taxa are paired. Although this technique 
is computationally fast, compressing the sequences into distances loses 
information and phylogenetic reliability is difficult to ascertain from highly 
divergent sequences [36]. However, distance-based methods are frequently 
used when sequence alignments are not available or in whole genome 
comparisons. Since genome assembly and multiple sequence alignments 
affect phylogenies more than the algorithm used to recover the phylogeny, 
alignment-free methods attempt to recover shared phylogenetic history 
without an alignment by comparing basic characteristics of genomes (i.e., 
GC content, k-mer counts, codon usages, etc.) [37]. Broadly, alignment-
free approaches can be classified into three main groups. The first group 
analyzes the frequency of words with a certain length (e.g., FFP [38, 39] 
and CV Tree [40]). The second group matches lengths of overlapping 
sequences (e.g., ACS [41], KMACS [42], and Kr [43]). The last group 
calculates informational content between sequences (e.g., Co-phylog [44], 
FSWM [45], andi [46], CAM [47], and codon pairing [48]). These techniques 
are still being developed, and new software packages are updated to 
recover more robust trees.

Assessing the phylogenetic tree: Bootstrapping is a common technique 
to assess the robustness of a phylogeny by randomly sampling characters 
with replacement and determining the extent to which the recovered 
phylogenetic tree changes. Proponents of bootstrapping point to its ability 
to uncover the phylogenetic signal under the noise of phylogenetically 
uninformative characters. Bootstrapping also has statistical properties that 
allow a confidence value to be placed on clades [49]. On the other hand, 
critics of bootstrapping (and phylogenomic algorithms in general) point to 
the statistical assumptions that are violated in DNA characters because DNA 
characters cannot be considered independently and identically distributed 
[49]. Furthermore, a bootstrap proportion is generally unbiased but highly 
imprecise, meaning the bootstrap number can give high confidence that the 
data support a clade even if the clade is not real [50].

Biological Construct of Codon Usage 
Bias

Phylogenomic studies have recently used codon usage biases to recover 
species relationships with or without ortholog annotations. Various codon 
usage biases appear to track speciation events and can cause gene 
expression to either increase or decrease [51]. Furthermore, codon usage 
biases affect protein and RNA folding, which impacts transcription and 
translational efficiency, as well as gene expression. Although genetic drift 
drives global codon usages, the majority of codon usage biases within 
individual genes is influenced by translational selection [52]. Figure 1 
outlines how codon biases affect protein levels.

Figure 1. How Codon Usage Biases Affect Protein Levels. Many types of codon usage biases directly affect DNA, RNA, and protein secondary structure. They also 
affect transcription and translational efficiency.  The mechanisms by which ramp sequences, codon pairing, tRNA competition, and the GC nucleotide composition 
affect protein levels are depicted.
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Codon usage metrics 

Originally, the Codon Adaptation Index was used to compare the relative 
codon usage of the most commonly used codons within highly expressed 
genes [6]. This metric was soon replaced by the effective number of 
codons, which quantified the difference in codon usage versus the expected 
usage if all synonymous codons were used equally [53]. Because of their 
simplicity, the effective number of codons and codon adaptation index 
are still widely used techniques. However, those methods oversimplify 
the dynamics of codon usage. The tRNA adaptation index (tAI) takes into 
account the complex relationship between tRNA and codons by using tRNA 
copy number, gene length, number of codons, and the preponderance of 
tRNA wobble to determine codon optimality [54,55]. Building on tAI, the 
normalized translational efficiency (nTE) measurement balances tRNA 
supply and demand on codon usage and considers cellular tRNA dynamics. 
A codon is considered "optimal" if the relative supply of its cognate tRNAs 
exceeds the codon's usage [56]. Unfortunately, tAI and nTE require data 
that are not always available in a species and can vary between individuals 
and cell types, limiting their use across the Tree of Life.

Biological implications of codon usage bias 

Selection toward decreased translational efficiency: Occasionally, 
suboptimal codons are beneficial to cells because they slow the ribosome 
(or polymerase) and allow for more precise, deliberate gene translation (or 
transcription). Codon usage biases affect mRNA secondary structure so 
strongly that local mRNA secondary structure can be used to predict codon 
usage in highly expressed genes [57]. Highly expressed genes also have a 
ramp of 30-50 slowly-translated, rare codons at the 5' end of most protein 
coding sequences [58] that serves to evenly space ribosomes [59] and 
reduce mRNA secondary structure [60] at translation initiation. These ramp 
sequences are population-specific and can also have disease implications 
[61]. A comprehensive analysis of ramp sequences from all domains of life, 
as well as a method to extract ramp sequences from individual genes is 
presented in Miller, Brase [62]. 

Additionally, the cell cycle impacts codon choice for suboptimal codons. 
Since tRNA expression levels are highest during the G2 phase, suboptimal 
codon usage for genes expressed during this phase is also highest. The G1 
phase has the lowest tRNA expression, and genes expressed during G1 
have a tendency toward optimal codon usage [63]. 

Codon usage biases in various bacteria are associated with species lifestyle 
[64,65]. For cyanobacteria (photosynthetic bacteria), selection toward sub-
optimal codon usage produces the circadian clock conditionality, where the 
circadian clock is expressed only under certain environmental conditions 
where cyanobacteria are not intrinsically robust [66]. Similarly, the 
pathogenicity and habitat of Actinobacteria (High GC gram positive bacteria 
important for soil systems) also influence codon usage, where aerobic 
species vary significantly from anaerobic species, and pathogenic species 
vary significantly from non-pathogenic species [67]. In each case, codon 
usage alone explains bacterial adaptation to their environment. 

Selection toward increased translational efficiency: Highly expressed 
genes tend to use more optimal codons after the ramp sequence to increase 
overall gene expression because once ribosomes (or polymerases) are 
evenly spaced; they can translate optimal codons more efficiently [51]. 
Faster translation is due to decreased wobble interactions, increased optimal 
tRNA composition, and decreased competition from synonymous codons 
within a gene [68]. Selective pressures for protein expression also act on 
mRNA sequences to optimize co-translational folding within polypeptides in 
over 90% of high expression genes and about 80% of low expression genes 
[56]. Furthermore, gene body methylation is strongly correlated with codon 
usage bias and appears to systematically replace CpG bearing codons, 
potentially influencing optimal codon establishment [69].

Recharging a tRNA while the ribosome is still attached to the mRNA strand 
is another strategy used to increase translational efficiency and decrease 
overall resource utilization. Co-tRNA codon pairing occurs when two non-
identical codons that encode the same amino acid are located in close 
proximity to each other in a gene. Identical codon pairing occurs when 
identical codons are located in close proximity in a gene sequence. Co-tRNA 
and identical codon pairing are mechanisms to reuse a tRNA by recharging 
the tRNA with an amino acid before it diffuses from the ribosome, increasing 
translational speed by approximately 30% [70]. Although co-tRNA codon 
pairing occurs more prominently in eukaryotes and identical codon pairing 
occurs prominently in bacteria [71] and archaea [72], both co-tRNA and 
identical codon pairing are phylogenetically conserved in all domains of life [48].

Other systematic biases also influence codon choice. Background 
dinucleotide substitution biases from GC to AT and AT to GC often coincide 
with shifts in optimal codons [73]. Even under sustained selective pressure, 
GC content at the third codon position is highly correlated with overall GC 
content in a gene, suggesting that optimal codons are affected by genomic 
GC content [73]. In an analysis of 65 eukaryotes and prokaryotes, GC 
content accounted for 76.7% of amino acid variation [74]. A summary of 
mechanisms that affect codon usage bias are shown in Table 1.

Codon Usage Bias in Phylogenetic 
Systematics

Codon usage biases are less likely to be affected by random mutations than 
expected based on genomic mutation rates because codons often reside 
in conserved genomic regions [76]. Therefore, random mutations appear 
to play less of a role in phenotypic variation caused by codon usage, and 
the extent to which codon usage can be used in phylogenomics is currently 
being explored. 

Codon usage in maximum likelihood

Limited codon substitution models have been used for decades in maximum 
likelihood estimates. However, until recently, a full 61 x 61 codon matrix 
was too computational intensive to apply to more than a few species and 

Name Location/ Domain Description
Ramp Sequence 30-50 nucleotides downstream of start 

codon
The ramp sequence consists of rare, slowly translated codons that increase ribosomal spacing, 

reduce mRNA secondary structure, and slow initial translation.
Co-tRNA Codon

Pairing
More prominent in eukaryotes. 

Phylogenetically conserved in all 
domains of life

tRNA are recharged with amino acids for synonymous codon translation when synonymous codons 
are in close proximity to each other. Recharging allows the tRNA to stay attached to the ribosome 

and significantly increases translation efficiency.
Identical Codon 

Pairing
All domains of life tRNA are recharged with amino acids for identical codon translation when identical codons are in 

close proximity to each other. Recharging allows the tRNA to stay attached to the ribosome and 
significantly increases translation efficiency.

tRNA competition Eukarya, bacteria, and archaea Cognate, near-cognate, and non-cognate tRNA may attempt to bind to an mRNA codon. If relatively 
few cognate tRNA are available, translation will slow because other tRNA attempt to bind to the 
same codon. This process is essential for translation elongation, efficiency, and accuracy [75].

GC Content All domains of life Overall GC content in a gene is highly correlated with GC content at the third codon position. GC 
content influences over two-thirds of codon variation.

Table 1. Mechanisms affecting codon usage biases.
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genes [77]. Somewhat surprisingly, after a 61 x 61 codon matrix became 
computationally viable, it was determined that the full matrix is not 
always optimal because models that use a fixed codon mutation rate for 
phylogenetic tree reconstruction fit the data better than a variable codon 
substitution rate. The apparent variation in codon substitution is actually 
caused by variable selection against amino acid substitutions in the regions 
used to develop the model, specifically mitochondria, chloroplast, and 
hemagglutinin proteins [78]. Maximum likelihood estimates that use codon 
models outperform a parsimony analysis only when codon usage is highly 
skewed and is not affected by asymmetry in substitution rates (approach 
validated using Drosophila) [79]. 

Because full codon models are computationally intensive and do not 
always elucidate more information than simpler models, common likelihood 
approaches use non synonymous to synonymous mutation rates per site (dN/
dS) instead of the complete codon model. If the codon usage bias is strongly 
conserved, then d S will decrease and dN/dS will increase within a population. 
The dN/dS ratio was used in Drosophila lineages, and helped determine that 
the Notch locus had evolved to include suboptimal codons [80]. Using 158 
orthologous genes, maximum likelihood also detected a strong shift from 
suboptimal to optimal codons in two lineages of Populus [81]. Detecting 
the cause of such shifts in codon usage is important for determining the 
biological significance of mutations. SCUMBLE (Synonymous Codon Usage 
Bias Maximum Likelihood Estimation) uses a model inspired by statistical 
physics to identify different sources of codon bias including selection and 
mutation [82]. SCUMBLE is also used as a filter to identify regions with 
insufficient information for analysis. This technique helped determine that 
natural selection shaped codon biases in Strongylocentrotus purpuratus 
(purple sea urchin) by limiting the analysis to only regions with sufficient 
support [83]. Shifts in mutation and selection rates allow the evolutionary 
history of species to be recovered using this method.

Violations of maximum likelihood statistical properties 
in a codon model

Many assumptions of the statistical properties in maximum likelihood 
are violated by a codon model. For instance, species are constrained to 
taxon-specific pools of tRNA, and triplets in coding sequences are not 
independent. Algorithms with statistical properties that require character 
independence, such as maximum likelihood, violate that rule for genetic 
data [84]. Furthermore, the codon model assumption of homogeneity of 
codon composition leads to seriously biased phylogenetic estimations when 
that assumption is violated [85]. 

Horizontal gene transfer is another important mechanism in evolution and 
complicates phylogenetic analyses in bacteria because 81±15% of genes 
have been laterally transferred among bacteria at some point in their 
evolutionary history [86]. Common transposable elements in eukaryotes 
also arose from horizontal gene transfer, with over 50% of some mammalian 
genomes originally arising from horizontal gene transfer [87]. Detecting 
horizontal gene transfer has been challenging, and codon bias is a poor 
indicator of horizontal transmission, normally underestimating the effects of 
lateral transfer [88-90]. However, codon composition is an excellent indicator 
of whether a gene will become fixed in a species after a lateral transfer event 
[90]. The concept of horizontal gene transfer not only complicates a general 
phylogenetic analysis, but suggests that a standard bifurcating tree might 
not be the best choice in analyses of bacteria or archaea [91]. Although it is 
known that codons (and DNA in general) do not strictly follow many of the 
assumptions of phylogenetic analyses, the bifurcating tree is still the most 
widely used phylogenetic representation, and generally depicts statements 
of homology even when some assumptions are violated.

Codon usage in viruses 

Phylogenies have also been used to predict the pathogenicity of viruses 
and viral interactions with their hosts. Bee-infecting viruses have strong 
correlations in their codon usages with their hosts, and the infected insects' 
codon usage similarity follows the insect phylogeny [92]. Furthermore, 
human-host viruses tend to share the same codon usages as proteins 

expressed in tissues that the viruses infect [93]. More specifically, the 
key determinant in codon patterns within herpes viruses were the overall 
GC content, GC content at the third codon position, and gene length 
[94]. In contrast, mutation played a larger role in Zika viruses, with higher 
frequencies of A-ending codons [95]. However, evidence of natural 
selection in Zika viruses also suggest that they evolved host- and vector-
specific codon usage patterns to successfully replicate in various hosts 
and vectors [96]. In hepatitis C, preferred codon usages did not always 
match the phylogenetic histories of the viruses as determined by sequence 
similarity, indicating that codon usage might provide additional information 
not identified by common phylogenomic approaches [97]. 

Successful implementations of codon 
usage bias in phylogenetics 

Beyond analyzing pathogenicity, phylogenetic inferences using codon 
usage biases from all domains of life have successfully uncovered several 
interesting biological principles. One study found compositional differences 
in codon usage between monocots (i.e., flowering plants whose seeds 
contain one embryonic leaf) and dicots (i.e., flowering plants whose 
seeds contains two embryonic leaves), where monocots had lower DNA 
background compositional bias, but higher codon usage bias than dicots 
[98]. Another technique used a distance-based clustering method of codon 
usage weighted by nucleotide base bias per position (i.e., the frequency 
of a codon over the product of the frequency of the nucleotide at the first, 
second, and third positions) to recover the phylogeny of closely related 
Ectocarpales (brown algae) [99]. The phylogenetic signal of codon usage 
was not limited to nuclear DNA, and mitochondrial synonymous codon 
usage in plants was associated with intron number that mirrored species 
evolution [100]. 

Creative attempts at analyzing codon usage have also proven fruitful. A 
binary representation of codon aversion (i.e., creating a character matrix 
based on codons which are not used in an ortholog) successfully recover 
the phylogeny of various tetrapods, showing that complete codon aversion 
is also conserved [101]. That study also found that stop codon usage had 
the highest phylogenetic signal [101], meaning a codon matrix of 64 x 64 
(the probability of all codons including the stop codons transitioning to all 
other codons) might be better than the traditional 61 x 61 codon matrix in a 
likelihood framework. Codon aversion has also been used in an alignment-
free context by comparing sets of codon tuples found in a genome, where 
each tuple is a list of codons not used in a gene [47]. A similar technique 
found that codon pairing (i.e., the same codon being used within a ribosomal 
window) is phylogenetically informative under both alignment-free and 
parsimony frameworks [48].

Other studies map codon usage in a particular gene across a reference 
phylogeny. This technique can produce meaningful representations of codon 
transitions across genes. Mapping the codon usage bias of a gene tree to 
a species tree revealed purifying selection among the actin-depolymerizing 
factor/cofilin (ADF/CFL) gene family [102]. This technique also showed that 
codon usage is significantly correlated with gene age within metazoan genomes 
[103]. Codon aversion in all domains of life was also mapped to the Open Tree 
of Life (OTL) [104] and showed that codon aversion follows established species 
relationships more closely than expected by random chance [105].

Contradictory Signals

At times, codon usage dynamics have contradictory signals that indicate 
different evolutionary histories. For instance, Miller, McKinnon [47], Miller, 
McKinnon [48], and Miller, McKinnon [105] used the same dataset to 
conclude that codon aversion can be used in an alignment-free algorithm, 
codon pairing can recover phylogenies using either parsimony or alignment-
free techniques, and codon aversion is largely conserved within orthologs 
across the Tree of Life. However, the reported trees from those three studies 
vary significantly from each other (Figure 2), indicating codon aversion and 
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codon pairing do not have the same evolutionary constraints. Even using 
the same codon usage bias, the model used to recover the phylogeny 
produced contradictory results, with recovered phylogenies differing by 10-
45%. Therefore, gene selection appears to play a pivotal role in recovering 
the species tree, and more work needs to be done to identify which genes 
have the highest phylogenetic signal under each codon model. Perhaps a 
combination of different codon usage biases, or using certain biases in only 
highly expressed genes, may more adequately track speciation.

Conclusion

Codon usage biases continue to be widely studied in a phylogenetic 
construct. However, their application in phylogenomics remains limited 
by their incorporation in current phylogenomic techniques. While some 
applications attempt to include codon usage biases either as a singular 
character state in parsimony or in combination with the overall maximum 
likelihood model, many key attributes of codon biases remain unexplored. 
For instance, the cause of differing phylogenetic signals between codon 
aversion and codon pairing has yet to be identified. Additionally, although 
it is known that tRNA supply and demand is correlated to codon usage, 
a model does not currently exist to assess tRNA supply and demand in 
a maximum likelihood framework. Future codon analyses will necessitate 
more complete datasets with accurate tRNA expression values in different 
tissues and species. A more robust dataset of tRNA expression values would 
also facilitate more precise codon modeling. Furthermore, since codons are 
used to regulate gene translational efficiency, codon models might require 
gene expression data in addition to the full (or reduced) codon matrix, and 
some codon usage biases may track speciation only within certain genes. 

Codon usage bias is an exciting biological principle that has not been fully 
utilized in phylogenetic systematics. Few likelihood methods incorporate 
specific codon usage biases in their models beyond nucleotide substitution 
rates, and many aspects of the ramp sequence, co-tRNA codon pairing, 
gene expression, and tRNA expression remain unknown. Although codon 
usage biases have been shown to be phylogenetically conserved, many of 
the biological principles surrounding codon usage bias have yet to be fully 
utilized in phylogenomics. Therefore, including specific codon usage biases 
in phylogenomic algorithms and identifying the gene-specific biological 
implications of each codon usage bias will enable future phylogenomic 
studies to identify more robust phylogenetic trees and aid in understanding 
nuanced phylogenetically conserved mechanisms affecting gene expression 
and overall species fitness.
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