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Abstract

Hopf algebras of functions and operators are utilized to develop a mathematical construc-
tion scheme for building algebraic random walks. The main construction treats systems of
covariance formed by translation operator and its associated operator valued measures on
e.g. the circle and the line, and derives an algebraic quantum random walk by means of
completely positive trace preserving maps. Asymptotic limit of the action of such maps is
shown to lead to quantum master equations of Lindblad type.
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1 Introduction

Sets of objects such as functions or operators endowed with the structure of a Hopf algebra
have extensively been utilized to construct algebraically motivated random walks and associ-
ated stochastic equations of various types [13]–[16]. It is a fruitful interface of Hopf algebras (in
the form of e.g. discrete groups, Lie groups, quantum groups), with the so called open systems,
namely systems that are not closed systems, and so they involve no Hamiltonian (conservative)
structure. Cases of quantum random walks e.g. on the canonical algebra of quantum mechan-
ics, or on braided algebras (smash line algebras), and their associated diffusion limit evolution
equations have been constructed, and their solutions have been investigated c.f [3]–[6], and also
[7].

In the present work we take up the problem of constructing evolution equations or quantum
master equations; a problem of central important in the theory of open quantum systems[1].
Our approach is to start with a system of covariance [2], on a measurable space Ω, made of a
one parameter group in e.g. circle or real line, and a covariant to it positive operator valued
measure (POVM), for a chosen Hilbert space (see below). Then we consider the POVM as a
function of Ω, which is endowed with the structure of a Hopf algebra of functions, and define
on it an appropriate positive functional, in order to formulate an algebraic classical random
walk. At the level of POVM one step of this classical walk manifests itself with the action of a
completely positive trace preserving map i.e. as a quantum walk [3]–[7]. Namely we obtain a
classically induced quantum random walk. The asymptotic diffusion limit is shown to lead to
a quantum master equation for the density operator of the underlying quantum system. This
equation is of the Kossakowski-Lindblad (KL) form [9, 10].

To pave the way for the classically induced quantum walk (section 4), in the next two chapters
we recall two exemplary constructions of walks with classical (section 2), and quantum Hopf
algebra (section 3).

1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,
Sweden, October 11–13, 2007.
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2 Classical algebraic random walks and diffusion equations

Denote by H ≡ R[[X]](µ,∆, u, ε) the real line Hopf algebra with the multiplication map µ(Xm⊗
Xn) = Xm+n, comultiplication map ∆(X) = X ⊗ 1 + 1 ⊗ X ≡ X1 + X2, unit map c ∈ R,
u(c) = c1, and co-unit map ε(X) = 0, ε(1) = 1. Its elements are the coordinate functions
Xm(x) = xm,m = 0, 1, 2, . . . their comultiplication of which is the sum of two one-variable
functions

∆(X)(x, y) = (X ⊗ 1 + 1⊗X)(x, y) = x+ y

Similarly the n-fold comultiplication ∆n(X) = X1 + ... + Xn leads to a sum of n one-variable
coordinate functions which in the context of algebraic random walks are identified as sum of n
independent identically distributed random variables. Also we introduce the star map ∗ : H →
H, and the state map φ : H → C on H, which is positive definite i.e. φ(XX∗) ≥ 0 for any
X ∈ H, and normalized φ(1) = 1. On any formal power series f(X) ∈ H we act with the state
φ to obtain

φ(f) ≡ 〈f〉φ = 〈φ, f〉 =
∫
ρf

where the result is re-expressed by means of formal integral involving the probability density
function ρ ∈ H, with properties ρ > 0,

∫
ρ = 1. Further the convolution product between two

states is defined by (φ ∗ ψ)(f) = (φ ⊗ ψ) ◦∆(f). The Markov transition operator Tφ : H → H
, is defined from state φ, by Tφ = (φ ⊗ id) ◦∆,and leads to that state by ε ◦ Tφ = φ. Also the
state convolution product leads to product of transition operators by ψ ∗ φ = ε ◦ TψTφ.

As example we obtain from this set up the random walk on the line and its diffusion equation
limit [13]. Really, choices φ ≡ δ1 and δ1(Xn) = δn1 lead to Markov operator Tδ1 ≡ d

dx , and in
order to deal with random walk with step a ∈ R+, and stepping probability p on the line, we
choose the state φ(f) = pf(a) + (1 − p)f(−a), which invokes the density ρ(X) = pδ(X − a) +
(1− p)δ(X −a). To derive the continuous limit for the state φt(f) ≡ limn→∞ φ∗n(f) ≡ ∫

ρtf , or
dually for the transition operator Tt(f) ≡ limn→∞ Tn(f), we need to introduce continuous time
t, as well as the drift c and diffusion γ coefficients, by the respective definitions 2a(p−1/2) = ct

n ,

and a2/2 = γt
n . Then the resulting density function ρt, obeys the diffusion equation

∂tρt =
(−c∂x + γ∂2

x

)
ρt (2.1)

Similar constructions for other Hopf and bialgebras such as the anyonic (or braided) line Hopf
algebra H ≡ R[ξ], and the so called smash line Hopf algebra (real and anyonic braided line)
H ≡ R[[X, ξ]], have shown to lead to generalized diffusion equations for the corresponding
density functions [4, 5].

3 Quantum algebraic random walks and master equations

Let the canonical or Heisenberg-Weyl algebra hw≡ {a, a†,1}, generated by creation, annihilation
and unit operator respectively. Let N = a†a be the number operator. We aim to construct an
algebraic quantum random walk along the lines of the previous classical walk, but now starting
with an operator Hopf algebra. To this end we proceed by introducing appropriate Hopf algebra
structure in the enveloping algebra of hw, denoted by U(hw) [13, 3]. Choose a state φ which acts
on U(hw), and is determined by eigenvectors of annihilation operator, and is also parameterized
by the probability p, as a measure of asymmetry of the walk, and by the random step size a.
In the diffusion limit these parameters lead to drift and diffusion parameters, as in the case
of classical walk discussed above. The diffusion limit of this quantum walk is expressed by its
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associated master equation that is satisfied by density operator ρt of the underlying quantum
system. It reads [3]

·
ρt = [ca† − c∗a, ρt] + γ(a2ρt + ρta

2 − 2aρta)− γ∗(a†2ρt + ρta
†2 − 2a†ρta†)

− |γ|2((2N + 1)ρt + ρt(2N + 1)− 2a†ρta− 2aρta†)

This equation leads to conservative (Hamiltonian) dynamics (see first commutation in rhs), and
to dissipative dynamics, determined by the strength of diffusion coefficient γ. The solution is
given in terms of operator valued Appell polynomials (see for further discussion [3].

4 Quantum algebraic random walks, POVMs and master
equations

Let Ω be an non empty set, F the σ-algebra of subsets of Ω, (Ω,F) a measurable space. Also
let a quantum system with Hilbert space H, and L(H) its set of bounded operators. Further
let the set of density operators or states D(H)= {ρ ∈ L(H)|ρ ≥ 0, tr (ρ) = 1. As special cases
of density operators we have the pure states ρ = |Ψ〉〈Ψ|, for any normalized vector |Ψ〉 ∈ H,
with the projectivity property ρ2 = ρ. Then D(H) is the convex hull of pure states. Dually
we consider quantum observables (including vonNeumann projectors and generalizations) in the
form of positive operator valued probability measure (POVM) M : F → L(H), with properties
M(X) ≥ 0, M(Ω) = 1, M(∪iXi) =

∑
iM(Xi), valid for X/s taken as disjoint sets in F .

Special case of these generalized observables are the rank-1 projectors M(X)2 = M(X). Given
a quantum system in state ρ, the probability measure corresponding to an interval X ∈ F in
association with a POVM M(X) is defined (c.f [2]) as follows: pMρ : F → [0, 1], X 7→ pMρ (X) =
tr (ρM(X)) We next need to introduce an operator N ∈ L(H) with the property to form with
POVM M(X) a covariant pair i.e eiaNM(X)e−iaN = M(X + a). Construction of such a
covariant pair for some given Ω and Hilbert space H requires a mathematical investigation that
has been carried out for some interesting cases elsewhere c.f [11, 12, 15]. Here we only recall e.g
the case of H =l2(N); the POVM M(X), named covariant phase observable , has the general
form

M(X) =
∞∑

mn=0

cnm inm(X)|n〉〈m|

where inm(X) =
∫
X e

i(n−m)ϕdϕ, and c = (cnm) is the phase matrix, i.e a positive definite
(complex) matrix with elements cnn = 1, n ∈ N. In the following we choose c = 1. Also for
concreteness we consider examples of the definitions given above: (Ω,F) ≡ (Rk,Borel(Rk))
e.g k = 1, with POVMs associated to canonical observables of position and momentum; k =
2, associated to phase space POVMs; and (Ω,F) ≡ ([0, 2π),Borel([0, 2π)) associated to POVMs
related to angular momentum and spin observables. Let us also give some concrete examples of
Hilbert spaces that will be involved in the general construction. In terms of the groups SU(2),
ISO(2), and HW, we adopt the corresponding index set J := {−j, ..., j} (j is integer and half
integer) Z, N, and the three respective Hilbert spaces H = l2(J) = span({|n〉}, n ∈ J), that
become the modules of their irreducible representations. Also we introduce the generic number
operator N =

∑
n∈J n|n〉〈n| and the phase state vector |ϕ〉 =

∑
n∈J e

inϕ|n〉, 0 ≤ ϕ < 2π, and
proceed to construct an algebraic random walk over the circle Ω ≡ [0, 2π). To this end we
introduce the unsharp covariant phase observable, which is a POVM defined on any interval X
of the circle,

M(X) =
∑

mn∈J

∫

X
ei(n−m)ϕdϕ|n〉〈m| =

∫

X
dϕ|ϕ〉〈ϕ|
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On this POVM seen as an operator valued function of variable ϕ, we now introduce the functional

φ(f) = pf(ϕ = a) + (1− p)f(ϕ = −a)

with parameters p ∈ [0, 2π], and a ∈ R+. The associated Markov operator acts on the POVM as

Tφ(M(X)) = (φ⊗ id) ◦∆(M(X)) = pM(X + a) + (1− p)M(X − a)

Above X + a = {a′+ a (mod2π) |a′ ∈ X} is a rigid translation by a of the interval X. By means
of the covariance property shared by (N, M) operators and the definition of group adjoint action
Ad(F )(β) = FβF ∗ and of algebra adjoint action ad(F ) = [F, β], the action of Markov operator
on the POVM is expressed as Tφ(M(X)) =

[
pAd(eiaN ) + (1− p)Ad(e−iaN )

]
M(X). From this

we deduce the form of Markov transition operator

Tφ ≡ peia ad(N) + (1− p)e−ia ad(N)

Next we seek the asymptotic form of transition operator defined as

Tt(M(X)) ≡ lim
n→∞T

n
φ (M(X))

and its associated generator limt→0
dTt
dt = L. To derive the (weak) limit we work in the eigen-

basis of number operator in which Tφ is a diagonal matrix, for the matrix elements of which
the numerical limit is evaluated by means of the time parameter and the drift and diffusion
coefficients as defined above equation (2.1). The resulting generator reads

lim
t→0

dTt
dt

= L ≡ c ad(N) + γ ad(N)ad(N)

The time dependent expectation value of POVM is evaluated according to quantum mechanical
standards. The cyclic property of trace allows to either have a time evolved (state) density
operator (Schroedinger picture), or a time evolved (observable) POVM i.e.

〈M(X)〉t ≡ Tr(ρTt(M(X))) = Tr(T−t(ρ)M(X))

Then the time evolution equation for an initial density operator under the Markov operator flow
ρt ≡ T−t(ρ), is

dρt
dt

= L(ρt) = c[N, ρt] + γ[N [N, ρt]]

This in its more familiar form is the quantum master equation

dρt
dt

= c[N, ρt] + γ(N2ρt + ρtN
2 − 2NρtN) (4.1)

Remarks 4.1. 1) Interpretation of quantum random walk: POVMM(X) provides a probability
measure for obtaining a measurement result in interval X, for a system in state ρ. A noisy
jittering of the position of window X might be due to imperfections of measuring device, and so
this classical noise, formulated as classical algebraic walk, we have shown to induce a quantum
walk in POVMs and states. 2) The commutator part of quantum master equation is related to
the drift coefficient and can be attributed to the Hamiltonian component of the evolution. The
term proportional to diffusion coefficient represents the irreversible part of dynamics. A density
matrix initially chosen diagonal in the number operator eigenbasis develops no off-diagonal
elements in its evolution as described by the quantum master equation, so its solution is easily
obtained. 3) The quantum master equation is the evolution equation of a quantum system
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immersed in Markovian bath, and it generates a dynamical semigroup, which is a completely
positive trace preserving one parameter linear map acting on the density matrix. The generator L
of this semigroup is of the KL form[1]. 4) If we work with Ω = R, and a POVM constructed from
the spectral measures of position or momentum canonical operators i.e. M(X) =

∫
X ds|s〉〈s|,

for s = q, p, then a similar construction of algebraic walk leads to the respective quantum master
equations; both these equations are of the KL form,

.
ρt = c[P, ρt] + γ(P 2ρt + ρtP

2 − 2PρtP ),
.
ρt = c[Q, ρt] + γ(Q2ρt + ρtQ

2 − 2QρtQ)

Special case: let the group SU(2) and its fundamental irrep j = 1/2, then the master equation
(4.1) becomes an evolution equation for the density matrix of a quantum spin in contact with a
heat bath and reads in terms of Pauli sigma matrices as dρt

dt = c[σ3, ρt] + 2γ(ρt−σ3ρtσ3).
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