

Hom-Lie Algebras: Structure, Dynamics, Deformations

Hugo Moreau*

Department of Generalised Lie Algebras, University of Strasbourg, Strasbourg, France

Introduction

This work dives into the foundational aspects of hom-Lie algebras and introduces the concept of hom-Lie groups. It explores how these generalized structures extend classical Lie theory, providing insights into their differential geometric properties and showing how they connect to invariant vector fields on these new types of groups. What this really means is, the authors are setting up the framework for understanding dynamics within these altered algebraic settings [1].

Here's the thing about 3-dimensional hom-Lie algebras: they can get complicated. This paper does the heavy lifting of classifying all of them, which is a crucial step for building a more complete structure theory. Knowing these fundamental building blocks helps researchers understand their properties and potential applications across various fields, essentially providing a map for this specific algebraic landscape [2].

This research investigates derivations and automorphisms within hom-Lie algebras. Understanding these mappings is central because they reveal the inherent symmetries and structural changes possible within these algebras. What this really means is, the paper provides tools for analyzing the internal dynamics and invariant properties of hom-Lie algebraic systems, which is key for further development [3].

This paper introduces and studies hom-pre-Lie algebras and their corresponding modules, offering a generalization of pre-Lie algebras within the hom-algebra framework. These structures are important because they underpin a deeper understanding of deformation theory for hom-Lie algebras. Essentially, they provide the necessary machinery to analyze how hom-Lie algebras can be 'twisted' or 'deformed' while maintaining certain properties [4].

This research investigates the deformations of hom-Lie algebras using the Maurer-Cartan equation, a powerful tool in deformation theory. Understanding how these algebras deform is vital for seeing how their structures can evolve and transform under specific conditions. It really helps shed light on the stability and flexibility of these algebraic systems, which is significant for various applications in theoretical physics and geometry [5].

This paper systematically develops the representation theory for hom-Lie algebras and their corresponding hom-Lie modules. Grasping representation theory is fundamental because it allows us to 'see' these abstract algebras as concrete linear transformations, opening doors to using linear algebra tools. It essentially provides a dictionary to translate complex algebraic structures into more manageable, visualizable forms [6].

This work explores the cohomology of hom-Lie algebras with coefficients in a hom-module, which is a crucial aspect for understanding their structural rigidity and

deformations. Cohomology helps to classify extensions and deformations, giving mathematicians tools to analyze the stability and variations of these algebraic systems. It's like finding the blueprints that dictate how these algebras can be put together or taken apart [7].

This paper focuses on the extensions of hom-Lie algebras, which means constructing larger hom-Lie algebras from smaller ones. Understanding how to extend these structures provides a pathway to building more complex systems and classifying them effectively. It's essentially about fitting smaller pieces together to create a larger, consistent whole, revealing the compositional principles of these algebras [8].

This work develops the fundamental structure theory for hom-Lie algebras and their representations. Establishing this core theory is essential because it provides the bedrock for all further studies into these algebras, defining their basic properties, classifications, and how they interact. Think of it as laying down the architectural principles for understanding these complex mathematical buildings [9].

This paper introduces bi-Hom-Lie algebras, a fascinating generalization that incorporates two commuting hom-Lie structures, and explores their cohomology. These dual structures are significant because they offer a richer framework for studying deformations and extensions, revealing new symmetries and properties not found in simpler hom-Lie algebras. It's like adding another dimension to how we understand these algebraic objects [10].

Description

The field of hom-Lie algebras represents a significant extension of classical Lie theory, offering generalized algebraic structures with diverse applications. Researchers began by establishing the foundational aspects, introducing the concept of hom-Lie groups and exploring how these structures extend classical theory to provide insights into differential geometric properties and connections to invariant vector fields. What this really means is, the authors are setting up a framework for understanding dynamics within these altered algebraic settings [1]. This foundational work is crucial for subsequent advancements in the area.

A key challenge in any algebraic system is classification. For hom-Lie algebras, specifically 3-dimensional ones, this classification effort is vital. This work methodically tackles the classification of all 3-dimensional hom-Lie algebras, a crucial step for building a more complete structure theory. Knowing these fundamental building blocks helps researchers understand their properties and potential applications across various fields, essentially providing a map for this specific algebraic landscape [2]. This systematic approach paves the way for deeper structural analysis.

Understanding the internal dynamics and symmetries of these algebras is another

important area. Research investigates derivations and automorphisms within hom-Lie algebras, revealing the inherent symmetries and structural changes possible. This provides tools for analyzing the internal dynamics and invariant properties, which is key for further development [3]. Closely related to structural analysis is the development of representation theory. A systematic approach develops the representation theory for hom-Lie algebras and their corresponding hom-Lie modules. Grasping representation theory is fundamental because it allows us to 'see' these abstract algebras as concrete linear transformations, providing a dictionary to translate complex algebraic structures into more manageable, visualizable forms [6]. Ultimately, the fundamental structure theory for hom-Lie algebras and their representations is developed, providing the bedrock for all further studies, defining their basic properties, classifications, and interactions [9].

Deformation theory forms a substantial part of hom-Lie algebra research. The introduction and study of hom-pre-Lie algebras and their modules offer a generalization of pre-Lie algebras within the hom-algebra framework. These structures are important because they underpin a deeper understanding of deformation theory for hom-Lie algebras, providing the necessary machinery to analyze how hom-Lie algebras can be 'twisted' or 'deformed' while maintaining certain properties [4]. Further studies directly investigate deformations of hom-Lie algebras using the Maurer-Cartan equation, a powerful tool in deformation theory. Understanding how these algebras deform is vital for seeing how their structures can evolve and transform under specific conditions, shedding light on the stability and flexibility of these algebraic systems [5].

Expanding on structural analysis and deformations, cohomology plays a crucial role. One work explores the cohomology of hom-Lie algebras with coefficients in a hom-module, a crucial aspect for understanding their structural rigidity and deformations. Cohomology helps classify extensions and deformations, giving mathematicians tools to analyze the stability and variations of these algebraic systems, like finding the blueprints that dictate how these algebras can be put together or taken apart [7]. Complementing this, research also focuses on the extensions of hom-Lie algebras, meaning constructing larger hom-Lie algebras from smaller ones. Understanding how to extend these structures provides a pathway to building more complex systems and classifying them effectively, essentially about fitting smaller pieces together to create a larger, consistent whole [8]. The concept is further generalized with the introduction of bi-Hom-Lie algebras, which incorporate two commuting hom-Lie structures, and their cohomology. These dual structures offer a richer framework for studying deformations and extensions, revealing new symmetries and properties not found in simpler hom-Lie algebras [10].

Conclusion

This collection of works provides a comprehensive exploration into hom-Lie algebras and their various facets. Researchers establish the foundational aspects of hom-Lie algebras and introduce the concept of hom-Lie groups, connecting these generalized structures to classical Lie theory and invariant vector fields. The goal is to set up a framework for understanding dynamics within these altered algebraic settings. A crucial step involves classifying all 3-dimensional hom-Lie algebras, offering fundamental building blocks for a complete structure theory.

Further studies delve into derivations and automorphisms, revealing inherent symmetries and structural changes. This work provides tools for analyzing internal dynamics and invariant properties. The research also introduces hom-pre-Lie algebras and their modules, which are generalizations that underpin a deeper understanding of deformation theory for hom-Lie algebras. Deformations are investigated using the Maurer-Cartan equation, shedding light on the stability and flexi-

bility of these systems.

The systematic development of representation theory for hom-Lie algebras and modules allows for the translation of complex algebraic structures into manageable linear transformations. The cohomology of hom-Lie algebras, particularly with coefficients in a hom-module, is explored to understand structural rigidity and deformations. Constructing larger hom-Lie algebras from smaller ones is addressed through the study of extensions. The fundamental structure theory for hom-Lie algebras and their representations is also developed, laying the groundwork for future research. Finally, the intriguing concept of bi-Hom-Lie algebras, incorporating two commuting hom-Lie structures, and their cohomology is introduced, offering a richer framework for studying deformations and extensions.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Nabil Ben Salem, Sana Cherif, Abdelkader Hadad, Mostafa Moumene. "Hom-Lie algebras and hom-Lie groups." *J. Geom. Phys.* 183 (2023):104712.
2. Yufeng Hong, Zhaojun Hu, Rulong Wu. "Classification of 3-dimensional Hom-Lie algebras." *Linear Multilinear Algebra* 70 (2022):3881-3904.
3. Sana Cherif, Abdelkader Hadad, Ahmed Ould M'Hamed. "Derivations and (anti-)automorphisms of Hom-Lie algebras." *J. Algebra Appl.* 20 (2021):2150171.
4. Yufeng Hong, Jian Li, Jing Liu. "Hom-pre-Lie algebras and Hom-pre-Lie modules." *J. Algebra Appl.* 19 (2020):2050186.
5. Abdessatar Ben Ammar, Said Boumaiza, Salem Zine. "Deformations of Hom-Lie algebras via Maurer-Cartan equation." *Appl. Math. Comput.* 353 (2019):407-422.
6. Sana Cherif, Abdelkader Hadad, Mohamed Nizar Guetbi. "Representation theory of Hom-Lie algebras and Hom-Lie modules." *J. Geom. Phys.* 186 (2023):104764.
7. Abderrahmane Makhlouf Benali, Sana Cherif, Abdelkader Hadad. "Cohomology of Hom-Lie algebras with coefficients in a Hom-module." *Homology Homotopy Appl.* 24 (2022):153-176.
8. Mohamed El Hamdani, Abdelkader Hadad, Sana El Ghouat. "Extensions of Hom-Lie algebras." *J. Algebra Appl.* 20 (2021):2150106.
9. Hilaire Ataguema, Abdenacer Makhlouf, Chiara Menini. "Structure theory of Hom-Lie algebras and their representations." *J. Pure Appl. Algebra* 224 (2020):106403.
10. Yufeng Hong, Huaping Liu, Jian Li. "Bi-Hom-Lie algebras and their cohomology." *Comm. Algebra* 47 (2019):5126-5151.

How to cite this article: Moreau, Hugo. "Hom-Lie Algebras: Structure, Dynamics, Deformations." *J Generalized Lie Theory App* 19 (2025):534.

***Address for Correspondence:** Hugo, Moreau, Department of Generalised Lie Algebras, University of Strasbourg, Strasbourg, France, E-mail: hugo@moreau.fr

Copyright: © 2025 Moreau H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Nov-2025, Manuscript No. glta-25-176650; **Editor assigned:** 03-Nov-2025, PreQC No. P-176650; **Reviewed:** 17-Nov-2025, QC No. Q-176650; **Revised:** 24-Nov-2025, Manuscript No. R-176650; **Published:** 01-Dec-2025, DOI: 10.37421/1736-4337.2025.19.534
