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Abstract
Novel HIV-1 eradication strategies have arisen due to a deeper understanding of the nature of HIV-1 persistence 

in patients taking highly active antiretroviral therapy (HAART). In this review we discuss current approaches and 
challenges to HIV-1 eradication in the HAART era, the limitations of HAART, characteristics of the latent reservoir 
and the rationale for research targeting HIV-1 eradication. 
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Why Look for a Cure?
The introduction of highly active antiretroviral therapy (HAART) 

represents a landmark achievement in the global effort to combat HIV-
1 infection. Durable blockade of viral replication by combinations of 
antiretroviral drugs transformed HIV-1 infection from an untreatable, 
highly morbid condition into a chronic, manageable medical problem 
for most patients with access to therapy. Unrelenting international 
efforts have helped foster the economic resources, infrastructure 
and political will necessary for widespread dissemination of these 
treatments to areas of the world most affected by the HIV-1 epidemic.

Despite these significant gains, the epidemic continues to spread. 
According to the Centers for Disease Control, at the end of 2008 an 
estimated 1.1 million persons over 13 years of age were living with HIV-
1 infection in the United States [1]. Overall, HIV incidence in the United 
States was stable from 2006 to 2009. However, among men who have 
sex with men(MSM) incidence rates increased [2]. According to the 
World Health Organization, 33.3 million people are living with HIV-1 
worldwide with 2.6 million new infections and 1.8 million deaths from 
AIDS in 2009 alone [3]. The provision of effective, lifelong treatment 
for a majority of infected individuals worldwide may yet prove to be an 
insurmountable goal.

Alongside the complexities inherent to global resource allocation 
and outreach to vulnerable populations, there is a growing recognition 
of the potential long-term toxicities of chronic HIV-1 infection [4] 
and of prolonged antiretroviral therapy itself [5]. Despite the success 
of HAART, normal life expectancy for people living with HIV has 
not been fully restored. This is particularly true in patients diagnosed 
or treated in later stages of the disease. In the United Kingdom 
Collaborative HIV Cohort Study, life expectancy for people treated for 
HIV-1 infection increased by over 15 years during 1996-2008 but was 
still 13 years less than the population at large [6]. Despite the potential 
for early diagnosis and treatment to close this gap, a majority of patients 
continue to present for care late in their illness [7-9].

The inability to curb the HIV-1 pandemic through preventative 
strategies, the daunting logistics of worldwide HAART rollout and the 
recognition of the long-term consequences of both HIV-1 infection 
and its current management have contributed to a growing consensus 
that the pursuit of a cure for HIV-1 represents a worthy scientific and 
humanitarian objective. A 2009 case report [10] and subsequent studies 
[11,12] describe viral eradication in an HIV-1 positive man treated for 
acute myeloblastic leukemia with stem cells impervious to HIV-1 entry 
have provided further support for research and clinical trials aimed at 

HIV-1 eradication. We present here an overview of the current concepts 
and future directions of translational research on HIV-1 eradication. 

What are the Limits of HAART?
The beginning of the HAART era conjured enthusiasm for the 

potential eradication of HIV-1 with novel combination treatments 
that reduced the viral load below the limit of detection [13-15]. All 
antiretroviral drugs target specific steps in viral replication. The 
logarithmic decay of viral RNA in the blood combined with the 
rebound of the circulating CD4+ T cell population, the primary cellular 
target of HIV-1, provided strong evidence that active replication was 
effectively blocked. However, descriptions of a pool of resting memory 
CD4+ T cells containing replication competent HIV-1 DNA in aviremic 
patients on HAART followed soon after the initial reports of the 
potency of antiretroviral combination therapy [16,17]. This discovery 
demonstrated that preventing active viral replication alone was not 
sufficient to cure HIV-1 infection [18].

Despite continuous viral suppression on HAART for years or even 
decades, patients who stop taking these drugs develop viremia within a 
matter of weeks and will eventually progress to overt immunodeficiency 
if not restarted on therapy. The source of this rebound viremia 
appears to be a minority of cells among the resting memory CD4+ T 
cell population that harbor unexpressed HIV-1 proviral DNA stably 
integrated into the cellular genome [19].

Characterization of these cells, known as the latent reservoir, 
followed soon after their discovery. Resting memory CD4+ T cells 
represent a fundamental pillar of adaptive immunity, allowing humans 
to recognize and respond appropriately to foreign antigens years after 
initial exposure. The qualities that allow these cells to function as our 
immunologic memory also promote environment conducive for viral 
persistence. These cells are among the longest-lived in the body and are 
not thought to be subject to immune clearance. They circulate between 
the peripheral blood and lymph nodes. Resting memory T cells are in 
a generally repressive state with regard to gene expression compared 
to activated T cells. Roughly one in one million circulating resting 
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memory CD4+ T cells harbor replication competent proviral HIV-1 
genomes [20]. This reservoir in patients on HAART has been shown 
to be stable over a period of many years [21]. These cells are thought 
to sporadically re-activate leading to derepression of silenced HIV-1 
proviral genes and the production of virions that are released into the 
plasma. This process likely gives rise to the low-level viremia observed 
in patients on HAART and is thought to be the source of productive 
infection and viral rebound in those who stop taking antiretrovirals 
[19,22].

A series of trials have examined the role of HAART initiation soon 
after HIV-1 diagnosis as well as the role of intensifying antiretroviral 
therapy beyond the standard three drug / two drug class regimens 
with respect to viral persistence and the latent reservoir. In several 
clinical trials administering HAART to patients early in the disease 
course appeared to result in smaller viral reservoirs by a variety of 
measurements compare to those who started later [23-25]. The clinical 
significance of these findings is unclear however, as HAART ‘early 
treatment’ trials that included treatment interruption have described 
viral rebound in patients who stopped therapy even among patients with 
very small or undetectable latent reservoirs [26,27]. The latent reservoir 
can be detected within months of primary HIV-1 infection [16,20] and 
expands exponentially upon treatment cessation. Therefore reduction, 
but not elimination, of this reservoir through early treatment would not 
be expected to lead to long-term control of viremia [24,27]. In contrast 
to these findings, a recent retrospective study of patients treated early 
after HIV-1 diagnosis demonstrated long-term virologic control in a 
minority of subjects after treatment cessation [28]. This phenomenon is 
being studied in an ongoing randomized controlled trial (ClinicalTrials.
gov NCT000908544). It remains to be seen whether a subset of patients 
can be identified who would benefit from immediate therapy. 

The opportunity to test the efficacy of intensifying HAART with 
additional agents has arisen with the advent of new, well-tolerated 
antiretroviral in novel drug classes in the last several years. Five separate 
trials have made use of raltegravir [29-33], a novel integrase inhibitor, 
as an intensifying agent in virally suppressed patients on stable HAART 
regimens. None of these trials demonstrated a decrease in low-level 
viremia. Other intensification trials using different antiretrovirals have 
reported the same results [34,35] supporting the conclusion that the 
limits of viral suppression have been reached with current antiretroviral 
combinations. Adding more drugs to currently recommended HAART 
appears to do little to address viral persistence. Rather, strategies that 
directly target or suppress the latent reservoir, perhaps in combination 
with HAART, will be necessary to eradicate HIV-1 infection. 

Engineering Immune Control: Gene Therapy
In 2007, a medical team in Berlin performed an allogeneic 

hematopoietic stem cell transplant in an HIV-1 infected patient 
with acute myeloid leukemia using stem cells from a donor who was 
homozygous for the C-C chemokine receptor 5 (CCR5) delta32 deletion 
[10]. An analysis of HIV-1 co-receptor phenotype prior to transplant 
revealed CCR5 tropism in this patient. CCR5 is one of two co-receptors 
that allows for HIV-1 entry into human cells after the virus binds to the 
CD4 receptor on the cell surface. A minority of healthy individuals who 
are homozygous for this naturally occurring 32 base pair deletion in the 
CCR5 gene will produce a defective gene product that makes CD4+ T 
cells non-permissive to HIV-1 infection [36]. The patient was taken off 
of all antiretrovirals prior to his conditioning regimen and subsequent 
transplant. At the time of the original report, HIV-1 had remained 
undetectable for 20 months. A follow up report described no detection 
of HIV-1 RNA or DNA in blood, cerebrospinal fluid or gut mucosal 

tissue three and a half years post-transplant [11] prompting many in 
the field to consider this patient the first to be cured of HIV-1 infection. 

As this patient underwent myeloablative chemotherapy and whole 
body irradiation prior to allogeneic stem cell transplant, it remains 
unclear which component ultimately led to long-term viral eradication. 
However, previous reports provide evidence that chemotherapy followed 
by stem cell transplant are not sufficient to suppress HIV-1 [37-42] 
and raise the distinct possibility that the re-population of this patient’s 
immune system with CCR5-deficient target cells played a major role in 
eradication. HIV-1 infected cells that survived chemotherapy, radiation 
and graft-versus-host mediated clearance would be unable to propagate 
infection due to lack of target cells, as the donor cells re-populating 
the immune system are inherently non-permissive to HIV-1 virion 
entry. In theory a latently infected stem cell that survived myeloablative 
therapy and stem cell transplant could re-populate the immune system 
with latently infected cells. Analysis of the Berlin patient’s bone marrow 
after therapy did not reveal any stem cells harboring HIV-1 proviral 
DNA [11]. Either such cells were eliminated, or were not a significant 
population prior to therapy. The role of hematopoietic stem cells as a 
long-lived HIV-1 reservoir remains a topic of much debate. Regardless, 
the results of this case report have given rise to a novel approach to viral 
eradication making use of gene therapy techniques. 

One such technique involves CCR5 gene knockout in T cells 
andhematopoietic stem cells using zinc finger nucleases (ZFN). 
These CCR5-deficient cells will effectively suppress the replication of 
CCR5-tropic HIV-1 in animal models [43]. Harvested CD4+ T cells or 
CD34+ stem cells from humans can be genetically engineered ex vivo 
to become CCR5-deficient through ZFN targeting of the CCR5 gene 
open reading frame [44]. The current clinical strategy is to harvest, 
genetically modify and re-infuse CD4+ T cells into HIV-1 infected 
individuals [45,46]. Three early phase clinical trials are in progress 
evaluating the safety of these genetically modified T cells in humans 
(NCT00842634, NCT01044654, NCT01252641; clinicaltrials.gov). 
These trials will also measure the persistence of these modified cells, 
their anatomic distribution and their effect on HIV-1 replication as 
determined by brief structured HAART interruption. Early results 
presented in February 2011 suggested that this is a well-tolerated 
intervention [47,48]. Concerns remain about the potential role of 
viruses that are not CCR5-tropic with regard to HIV persistence and 
the long-term safety of genetically altered stem cells in general. While 
this strategy in its current form is unlikely to be generalizable to the 
millions of HIV-1 infected individuals worldwide, it has potential to 
shed light on immune mechanisms of long-term endogenous HIV-1 
control [12]. 

Human Models of Functional Cure
Elite suppressors (ES) represent a distinct subset of HIV-1 infected 

patients who maintain stable CD4+ T cell counts and low-level viremia 
(<50 HIV-1 RNA copies / mL) without the use of antiretroviral drugs 
[49]. These patients maintain viral loads below the limit of detection of 
commercial assays [50,51] and do not manifest clinical signs of disease 
progression. Phylogenetic [52] and in vitro analyses [53] of virus from 
ES have demonstrated that these patients harbor pathogenic HIV-1, 
strongly suggesting that a host immune phenomenon is responsible 
for long-term viral suppression in ES rather than a consequence of 
defective or replication incompetent virus.

The mechanisms by which these patients control HIV-1 infection 
are incompletely understood [54]. Neutralizing antibodies do not seem 
to play an important role in viral control in ES [55]. Large genome-
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wide analyses have revealed specific HLA class I alleles, particularly 
B*57 and B*27, are highly associated with HIV-1 control [56]. This 
supports a central role for an efficient cytotoxic T lymphocyte (CTL) 
response in mediating elite suppression. In particular, lytic granule 
loading and granzyme B-mediated cytolysis by CD8+ T cells are both 
more efficient in ES than in HIV-1 progressors [57]. While ES remain 
HIV-1 infected, their ability to control viral replication and maintain 
health without medications or other interventions serve as a model of 
functional HIV-1 cure. Further studies into the mechanisms of HIV-1 
elite control are likely to inform vaccine efforts that can serve both as 
primary prevention and as a means of immune boosting for those who 
are chronically infected. 

Purging the Latent Reservoir
A promising area of research in HIV-1 eradication focuses on the 

mechanisms by which HIV-1 establishes and maintains latency in order 
to develop methods to induce viral gene expression. The goal of this 
strategy is a reduction in the size of the latent reservoir by converting 
latently infected cells into virus-producing cells that would presumably 
be cleared by the immune system or undergo apoptosis as a byproduct 
of active viral replication. In vitro, latently infected CD4+ T cells that 
undergo T cell activation will reliably begin to express HIV-1 genes and 
generate virus particles. An analogous process is thought to occur on a 
sporadic basis in vivo that contributes to low-level viremia. If a patient 
remains on HAART while latently infected cells become activated and 
produce virions, no new cycles of replication can occur due to the 
suppressive effects of antiretroviral therapy. Activated T cells have a 
half-life of one to two days, and therefore global T cell activation in 
combination with HAART would be expected to deplete the latent 
reservoir. This line of thinking led to early clinical trials in which 
patients were given agents known to induce global T cell activation 
[58,59]. Some of these agents proved toxic and have sparked the search 
for ways to induce viral gene expression without concomitant T cell 
activation. 

In vitro models of the latent reservoir have allowed for a better 
understanding of the mechanisms that contribute to induction and 
maintenance of HIV-1 proviral latency [60-62]. Regulation of HIV-1 
proviral gene expression is a complex process involving multiple host 
and virus interactions. Several potential targets have emerged from 
these in vitro models that may be exploited to potentially reverse 
latency [63]. In particular, the primary cellular transcription factors that 
govern HIV-1 gene expression have been identified and several cellular 
epigenetic processes that promote gene silencing including histone 
de-acetylation and methylation also appear to play important roles 
[62,64,65]. Several excellent reviews that provide further details on this 
topic have recently been published [66-68]. The recognition of the role 
of histone deacetylases (HDACs) in latency led to a pilot clinical trial 
administering the HDAC inhibitor valproic acid to a group of patients 
on HAART [68]. A modest decrease in HIV-1 DNA in resting CD4+ 
T cells was observed in this trial but not in a subsequent study [69]. 
Clinical trials with more potent HDAC inhibitors are currently under 
way. 

In vitro models of HIV-1 latency have also been used to perform 
screening assays of drug libraries to identify agents that are able to 
induce proviral gene expression without inducing T cell activation 
[61,70]. A variety of compounds appear capable of triggering HIV-1 
gene expression in vitro, leading to mechanistic studies as well as pilot 
clinical trials. Much of this work has focused on latently infected CD4+ 
T cells obtained from the peripheral blood of patients. The role played 
by latently infected cells in tissue reservoirs such as the gut-associated 

lymphoid tissue and the central nervous system is much less understood 
and are not entirely accounted for in current in vitro models. Given 
the complexity of the molecular mechanisms that govern latency as 
they are currently understood, a combination approach analogous to 
HAART may be necessary to purge the latent reservoir. 

Targeted Apoptosis of Latently Infected Cells
An anti-apoptotic phenotype is one of the defining characteristics 

of the latent reservoir. These cells persist despite undergoing HIV-1 
entry, reverse transcription and subsequent proviral integration into 
the cellular genome and appear to have a half-life of 44 months [21]. 
One conceptual approach to HIV-1 eradication is to consider this 
population of cells analogous to a tumor [71]. While HAART prompts 
a form of chronic remission, treatment interruption results in almost 
immediate relapse. The corresponding treatment strategy for these 
‘tumor’ cells follows along the cancer chemotherapy paradigm: to target 
this population for cell death as specifically as possible while inducing 
minimal damage to uninfected cells.

Chemotherapy is frequently designed to target abnormal or over 
expressed cell surface markers found on tumor cells but not healthy 
bystander cells. One of the challenges of applying this paradigm to 
HIV-1 persistence is the lack of defining cell surface characteristics 
that distinguish the latent reservoir from uninfected resting memory 
CD4+ T cells. Despite this limitation, promising in vitro work has 
demonstrated that targeted apoptosis of chronically infected cells may 
represent a feasible eradication strategy [72,73]. HIV-1 has been shown 
to manipulate cellular biochemical pathways that alter the apoptotic 
threshold of these cells [74,75]. Better understanding of these pathways 
may allow for specific targeting of latently infected cells despite their 
lack of unique cell surface markers.

This strategy may be of particular importance for reservoirs other 
than resting memory CD4+ T cells. Macrophages have been described 
to harbor replication competent HIV-1 despite HAART [76], and these 
cells may play an important role as tissue-based reservoirs of HIV-1 
particularly in the central nervous system and the gastrointestinal tract 
[77,78]. It is unclear whether HIV-1 infected macrophages undergo 
true latency or whether they continue low-level replication throughout 
their lifespan. The longevity of these cells is unknown, as is their relative 
contribution to long-term HIV-1 persistence in patients on HAART. 
Macrophages are resistant to the cytopathic effects of HIV-1, and in fact, 
may take on a pronounced anti-apoptotic phenotype upon infection 
[79]. A directed apoptosis strategy may prove to be useful in addressing 
non-T cell sources of HIV-1 persistence. 

Challenges and Future Directions
A significant number of challenges must be addressed in the 

course of pursuing HIV-1 eradication. Though the biology of latency 
is becoming better understood, it has proven to be a highly complex 
process that in vivo involves a small population of indistinguishable; 
quiescent cells circulating in the blood and less well characterized 
tissue-based reservoirs. While the gold-standard lab technique for 
quantification of the size of latent reservoir has been well described 
[80], it requires a large amount of blood from patients and significant 
resource allocation with regard to trained personnel and a specialized 
lab environment. Alternative latent reservoir measurements currently 
in use have not been fully standardized between laboratories and 
further work remains to ensure that these different measurements 
are comparable to one another. A recent review provides an excellent 
summary and comparison of these techniques [81]. Another crucial 
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AIDS 24: 2451-2460.

31. Gandhi RT, Zheng L, Bosch RJ, Chan ES, Margolis DM, et al. (2010) The 
effect of raltegravir intensification on low-level residual viremia in HIV-infected 
patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 7: 
e1000321.

32. McMahon D, Jones J, Wiegand A, Gange SJ, Kearney M, et al. (2010) Short-
course raltegravir intensification does not reduce persistent low-level viremia 
in patients with HIV-1 suppression during receipt of combination antiretroviral 
therapy. Clin Infect Dis 50: 912-919.

33. Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, et al. (2010) HIV-1 
replication and immune dynamics are affected by raltegravir intensification of 
HAART-suppressed subjects. Nat Med 16: 460-465.

34. Dinoso JB, Kim SY, Wiegand AM, Palmer SE, Gange SJ, et al. (2009) 
Treatment intensification does not reduce residual HIV-1 viremia in patients on 
highly active antiretroviral therapy. Proc Natl Acad Sci U S A 106: 9403-9408.

35. Gandhi RT, Bosch RJ, Aga E, Albrecht M, Demeter LM, et al. (2010) No 
evidence for decay of the latent reservoir in HIV-1-infected patients receiving 
intensive enfuvirtide-containing antiretroviral therapy. J Infect Dis 201: 293-296.
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defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed 
individuals to HIV-1 infection. Cell 86: 367-377.
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research priority is to develop a better understanding regarding 
the degree to which in vitro models recapitulate the nature of HIV 
persistence. This will be particularly important as discoveries in the lab 
are translated into clinical trials focused on HIV-1 eradication. 

Both the success and the limitations of HAART have led to a 
new frontier in HIV-1 research. The complexity of HIV-1 persistence 
continues to strain the boundaries of scientific understanding. While 
eradication of this virus presents a formidable challenge, it will be 
essential to maintain a global perspective. The early advances toward 
HIV-1 eradication presented here will represent truly revolutionary 
scientific and humanitarian achievements when their beneficiaries 
include all of those involved in this epidemic. 
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