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Background
Taeniasis is the infection caused by the TS in the intestinal tube, 

where the worm develops into the adult form; whereas, cysticercosis 
is the infection due to immature stages of TS in extra intestinal tissues. 

Metacestodes encompasses developmental stages before the adult 
form [1]. Metacestodes can penetrate the intestinal mucosa and via 
bloodstream reach several organs: CNS, eyes, muscle, and skin. Within 
host’s tissues, they grow into fluid-filled bladder worms or cysticerci. 
Human infection happens by ingesting eggs or metacestodes that can 
contaminate food or water. 

Means of prevention include sanitation, hygiene and inspection of 
food and water origin.

NCC is a pleomorphic disease because of the diversity of psychiatric 
and neurologic features, which vary according to the number, size, stage 
of cysts and parasite-host immunological interaction. They encompass 
epilepsy, headache, hydrocephalus, intracranial hypertension, 
motor and sensory deficits, depression, cognitive impairment, and 
other manifestations. Therapeutics is guided to antiparasitic drugs 
(e.g. Albendazole, Praziquantel), anti-inflammatories, treatment of 
associated conditions (e.g. seizures, intracranial hypertension), and 
some cases require surgery to extirpate the parasite [2].

Diagnosis is based in Epidemiology, clinical presentation and brain 
imaging. Immunologic assays (Enzyme Linked Immunosorbent Assay, 
Western blot) are not specific to infection in the CNS [3].

Biopsy of lesions are reserved for times when surgery is necessary 
(e.g. ocular, spinal cord, 4th ventricle locations); in subcutaneous 
lesions; or exceptionally, in the brain to conduct differential diagnosis 
(e.g., suspicion of tumors, abscess, mycosis and tuberculosis).

In the brain, histological alterations are centered on the metacestodes 
or to the neuronal surrounding tissue. Pathological features related to 
metacestodes stages emphasize four morphological changes [4]. 

1) The vesicular stage – in which inflammatory reactions in
adjacent tissues are considered absent or imperceptible. The embryo 
is protected by a thin and translucent membrane that attains the fluid 
inside the cyst. 2) The vesicular colloidal stage – in which inflammatory 
reactions start. Vesicular fluid becomes turbid and surrounding tissue 
edematous. 3) The granular nodular stage – parasite is dead, the capsule 
and fluid begins to degenerate. 4) The nodular calcified stage – the 
capsule and the parasite are retracted and calcified. In the literature, 
consequences of the parasite in the nervous tissue are summarized in 
pathologic processes such as inflammation, gliosis, fibrosis, necrosis, 
and interstitial deposits [5]. 

This work details that, in the cerebral tissue of the host, the 
inflammatory and immune responses promote four phase of defensive 
reaction against the parasite.

Phase I

Edema and inflammatory infiltrate surrounds blood vessels in 
the vicinity of the parasite, the site becomes rich with defensive cells 
responsive to antigens and bioactive molecules. 

Phase II
Gliosis presents near to the metacestode. Cell proliferation occurs in 

microglia derived from mesodermal tissue that can become phagocytic, 
in neuroglia cells as astrocytes, and in oligodendrocytes that form the 
myelin sheath. Glial and neuronal cells together support surrounding 
inflammation.
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Phase III

Inflammation elicits cells from connective tissue to develop fibrosis 
(which are rich in collagen and fibroblasts) and recruits immunological 
cells to form granulomas (which are composed by giant cells and 
epithelioid cells) as protective barriers to neural tissue. 

Phase IV 

Granuloma and fibrosis remains, furthermore necrosis and 
interstitial deposits are formed in the lesion (necrotic material can be 
calcified). Vascular changes can develop.

Cells involved in the defensive processes against the metacestodes 
can be folded in mesenchymal immunological subgroup (lymphocytes 
T, lymphocytes B, plasma cells, macrophages and eosinophils); 
mesenchymal epidermal-like subgroup (fibroblast, giant and epithelioid 
cells); and mesenchymal neuronal subgroup (microglia).

Methodology
The brain tissue of a patient was processed to produce histologic 

sections of the Cysticerco cellulosae and of the surrounding brain tissue. 
Samples were preserved at formaldehyde 12%, embedded in paraffin, 
and cut into microtome with a thickness of 5 micron. Serial brain 
sections were stained with hematoxylin and eosin. Masson’s trichrome 
staining was used to study fibrosis. Cellular infiltrates (lymphocytes, 
plasmocytes) and cellular proliferation in the tissue surrounding the 
cyst (macrophages, epithelioid and giant cells) were differentiated by 
immunohistochemistry directed to CD3, CD20, CD68 and nervous 
tissue was marked by glial fibrillary acid protein. Using a microscope 
at diverse magnifications, the pathologic alterations, and parasite were 
documented by photography.

Results
Nervous tissue interfaces parasite and perivascular spaces. Debris 

of the parasite and foreign particles that do not pass the tight junctions 
between the endothelial cells at the level of blood-brain-barrier can 
be phagocytized in the perivascular spaces. Fibroblasts and plasma 
cells proliferate in perivascular space (Figure 1). The beginning of 
defensive processes, as edema and antibody formation, is identified in 
the perivascular space. In the interface between parasite and nervous 
tissue predominates final processes, as granulomatosis, fibrosis, and 
calcification.

Edema

Edema is a major sign of inflammations. Vasogenic edema results 
from increasing permeability of vessels wall; while, in cytotoxic edema 
the sodium and potassium pump of the cell membrane is impaired, 
leading to cellular retention of water.

In neurocysticercosis, vasoactive substances released by host’s cells 
are an origin of edema; another possible cause of edema is substances 
from the cyst, which can have vasoactive or cytotoxic properties.

Gliosis

Gliosis stands for changes of glial cells in response to damage of 
CNS, when the number of astrocytes increases abnormally due to death 
of neurons it are called astrogliosis. Astrocytes are the main component 
of the gliosis in the brain tissue near to neurocysticercosis lesions. 
Astrogliosis is determined by the expression of glial fibrillary acid 
protein (GFAP) [6]. GFAP has been identified in astrocytes and their 
cytoplasmic processes that encompass capillaries. Phagocytosis has 

been attributed to the astrocytes function; they clean debris, absorbing 
and digesting it. Microglia cells are present within the lesions; they 
have also function of phagocytosis. The astrocytes form a matrix 
with their membrane that fills the surrounding damaged region near 
to the parasite. Another feature in gliosis is the heterogeneity of cell 
morphology: astrocytes vary in shape and size (Figures 2 and 3).

Perivascular infiltrate

Perivascular infiltrate is a set of cells between vessels and tissue. The 
cells found in the specimens of NCC’s lesion and located in perivascular 
spaces are T-cells CD3, B-cells CD20, plasma cells expressing light 
chains Kappa and Lambda, macrophages CD68.

Lymphocyte T CD3

T lymphocytes are a class of white blood cells originating from 
thymus, and they have in their membrane the cluster of differentiation 
(CD) 3 in almost all stages of development. CD3 is required for T-cell 
activation and consists of a protein complex that contains four distinct 
chains. These chains associate with the T-cell receptor to generate an 
activation signal in T lymphocytes [7]. CD3 can be used to distinguish 
T-cells from B-cells and myeloid neoplasms (lymphomas and 
leukaemias) [8]. Antigens released by the metacestode activate T-cells 
CD3. T-cells secrete cytokines as answer to antigens. Cytokines grow 
more T-cells, attract macrophages, neutrophils and support T-cells to 
mature and differentiate in T cell helpers or cytotoxic cells. Lymphocytes 
T CD3 and Lymphocytes B CD20 occur in the perivascular infiltrate 
near the parasite (Figure 4).

Lymphocyte B CD20

Lymphocytes B are white blood cells, which in mammals mature 
in the bone marrow. B cells bind to a specific antigen using their B 
cell receptors on their membrane. The antigen either can be free or 
introduced by macrophages or dendritic cells. B cells differentiate into a 
plasma cell that secretes large amounts of antibodies or memory B cells 
for persistent protection [9]. CD20 is a component of the cell surface that 
regulates calcium transport across the plasma membrane [10,11]. In B 
cells, the engagement of CD20 molecules initiates a signal transduction 
cascade via tyrosine kinases involved in cell adhesion, proliferation, 
and survival [12-15]. CD20 is a membrane phosphoprotein present on 
B cells, it is expressed in lymphocytes precursor and mature B cells, 
but it is not expressed on plasma cells (Figure 5A) [16]. Human CD20 
deficiency results in decreased antibody levels against polysaccharides 
after vaccination, therefore some authors suggest that CD20 enables 
lymphocyte B activation independent of T-cells. Antigens that 
activate B cells with the help of T-cells are known as T cell- dependent 
antigens and include foreign proteins [13]. Antibody production via 

Figure 1: A and D Perivascular space in NCC (H&E, X100). B Fibroblasts 
and Macrophages close to the vessels (H&E X400). C Plasma cell with 
Russell bodies close to NCC lesion (H&E, X400). D Perivascular infiltrate.
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Figure 2: Gliosis in NCC. A Astrocyte expressing GFAP with cytoplasmic 
process encircling a vessel (X400). B Astrocyte expressing GFAP (X400). 
C Vessels surrounded by GFAP positive astrocytic processes (X400). D 
Astrocytes (X100). 

Figure 3: Barriers in NCC. A Gliosis with astrocytes expressing GFAP close to 
neurons (X400). B Fibrosis colored in blue by Masson’s trichrome and epithelioid 
cells in pink (X400). C Gliosis under the layer of fibrosis colored in brown by GFAP 
immunohistochemistry (X400). D Gliosis in the center, fibrosis in the middle, and 
epithelioid cells in the interphase with the parasite (GFAP, X100).

T cell- independent antigens may be an alternative route to combat 
neurocysticercosis, considering that Taenia solium has mechanisms of 
evasion from the immune system, for instance it can inhibit mitogen-
induced proliferation of spleen cells [17].

Plasma cells

Plasma cells secrete antibodies; they are also called plasmocytes 
and originate from the bone marrow and B cells. After leaving the bone 
marrow, the B cells internalize an antigen, process it and externalize its 
fractions to present it to T cell helpers. These T cells bind to the antigen site 
and cause activation of the B cell [18]. Plasma cells typically result from T 
cell-dependent activation of B cells; however, they can also result from T 
cell-independent activation. Independent antigens (e.g. olygosaccharides 
of the worm) could activate B cells to form plasma cells as an alternative 
course, once olygosaccharides may participate in the antigenicity of NCC 
[19]. An evidence of the responsiveness of plasma cells in human brain to 
antigens of T.S. is the identification of Russel bodies. When a plasmocyte 
undergoes excess of antibodies it distends endoplasmic reticulum and 
forms a corpuscle called Russel body [20,21].

Russel bodies, which are eosinophilic inclusions of immunoglobulin, 
were found in plasmocytes close to the brain lesion of NCC (Figure 1C). 
Plasma cells with Russel bodies have been reported in the literature, 
in chronic inflammation and in multiple myeloma [22]. In NCC, their 
presence suggests that metacestodes of Taenia solium induce a large 
production of antibodies.

In comparison to malignant plasma cells, which produces 
monoclonal antibodies, lymphocytes surrounding neurocysticercosis 
lesions clearly do not have a monoclonal lineage; as demonstrated, 
they express two types of light chains kappa and lambda (Figures 5B 
and 5C). Light chains are small polypeptide sub-units; typically an 
immunoglobulin is composed of two heavy chains and two light chains 
(kappa and lambda). Monoclonal lineage (e.g., multiple myeloma) has 
predominantly one type of light chains [23].

Parasite debris elicits a large and prolonged production of 
antibodies. The massive and continuous production of antibody 
(presence of Russel bodies within plasmocytes), the intense phagocytic 
activity (presence of macrophages and giant cells), and the scar 
formation (coexistence of fibroblasts and epithelioid cells) characterize 
chronic inflammation, in NCC. Macrophages, epithelioid cells and 
giant cells Monoblasts originate monocytes, in the bone marrow. 
Monocytes circulate in the bloodstream for about one to three days 
and then go into tissues where they differentiate in macrophages [24]. 
Macrophages main functions are phagocytosis, antigen presentation, 
and cytokine production. The cells close to the parasite expressing CD 
68 were identified as macrophages or their derived cells (giant cells and 
epithelioid cells). Giant cells were characterized by a mass formed by the 
union of diverse cells, composed of more than one nucleus per cell, and 
nuclei are randomly ordinated. Epithelioid cells were detailed by their 
morphology similar to epithelial cells; they have a pale eosinophilic 

Figure 4: Perivascular infiltrate in NCC. A B lymphocytes expressing 
CD 20 surrounding vessel (endothelial cells and erythrocytes) (X400). 
B and C CD20 positive B lymphocytes (X100). D CD3 positive T 
lymphocytes (X100). 

Figure 5: Immunological cells in NCC. A B lymphocyte express CD 20, while 
plasma cells do not express CD 20 (X400). B Plasma cells expressing kappa 
light chains (X400).  C Plasma cells expressing lambda light chains (X400). 
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cytoplasm and central, ovoid or elongated nuclei (Figure 6). CD68 is a 
member of the lysosome associated membrane protein that is expressed 
in macrophage in response to the macrophage-colony stimulating 
factor (MCF) [25,26]. CD68 is considered a receptor member of 
the scavenger family. Scavengers clear cellular debris, promote 
phagocytosis and mediate activation and recruitment of macrophages 
[27,28]. CD68 is present in lysosomes and endosomes with a smaller 
proportion in the cell surface of macrophages. The receptor internalizes 
molecules for enzymatic metabolism [29]. The granulomatous lesions 
in neurocysticercosis were characterized by the presence of giant 
cells, epithelioid cells and macrophages. Granulomas have a function 
of modulators because they control immune response, limit neuronal 
damage and remove foreign substances. Eosinophils generally are 
placed between the parasite and the granulomas [30]. Eosinophils 
have bilobed nuclei and intracytoplasmic granules with affinity for acid 
dyes. The content of granules mediates parasite defence reactions and is 
constituted by proteins (major basic protein), lipids (leucotrienes) and 
cytokines (interleukins and tumour necrosis fator). They come from 
the linage of the eosinophil colony-forming units which derive from 
CD34 cells in the bone marrow. They grow and survive after cytokine 
stimulation (granulocytic-macrophage colony-stimulating factor and 
interleukins-3 and -5). Interleukin-5 was reported as one of the major 
cytokines present in cerebrospinal fluid (CSF) of patients with active 
NCC. The eosinophilia present in the CSF of patients with active NCC 
was understood as being, at least in part, mediated by the interleukin-5 
produced by the host [31]. Eosinophils function as mediators because 
release by degranulation chemical messengers (such as histamines, 
lipase, peroxidase, ribo and desoxyribonucleases) that are toxic to both 
parasite and host tissues [32-34].

Fibroblastic barrier

Fibroblastic cells and collagen fibrils are found in the vicinity 
of NCC lesions. Fibrosis fills gaps in the tissue which are previously 
displaced or harmed by the mass effect of the cyst (Figure 3).

The origin of fibroblastic cells is potentially in the subarachnoid 
trabeculae. In normal histology of the brain, the subarachnoid 
trableculae contein groups of fibroblastic cells arranged together with 
collagen fibrils [35]. By perforating the arachnoid involving the vessels, 
the larva will also displace fibroblastic cells towards the nervous tissue. 
Once in the nervous tissue, fibroblastic cells remain among collagen 

fibers, and proliferate by stimuli of chemical messengers (e.g. fibroblast 
growth factor). At the capillary diameter, endothelial cells interact with 
astrocyte cell projections and the blood brain-barrier is established 
without the presence of fibroblastic cells [36]. Considering dimensions, 
the larva would reach nervous tissue by disrupting blood vessel walls 
before the level of small arteries (19 micrometers) [37]; small arteries 
are surrounded by arachnoid fibroblasts [38]. It should be recalled that 
the capillary size, averaged from various geometrically different zones in 
human cerebral cortex, was estimated at 6.47 micrometers in diameter 
[39], whereas Taenia solium oncospheres measured 32 micrometers, 
before hatching the embryo [40]. Such physical magnitudes reinforce 
the idea that the parasite disrupts vessels recovered by subarachnoid 
trableculae and carries fibroblastic cells into the nervous tissue. In 
addition, fibroblastic cells migrate to the site of chronic inflammation 
by chemical attraction. 

Calcifications
Calcifications relate to the death of cyst cell components. There are 

two main groups of cell components; one encompasses tissues of the 
parasite body, and the other tissues of the capsule (Figure 7). Cells from 
the capsule can grow even if the parasite is dead. Cysticercus cellulosae 
is the living larva of Taenia solium, it is composed by a capsule that 
protects the head of the parasite (scolex) which shows hooklets and 
adhesive structures (suckers). Cysticercus racemous is the dead larva of 
Taenia solium, with active proliferation of the capsule. The presence of 
calcifications and loss of the typical microvilli in the cell surface indicate 
capsule degeneration. Calcifications are the main characteristic of the 
parasitic lesions in the final stage (Figure 8). However, inflammation 
around calcifications may be reactivated either by remaining debris or 
living cells of the capsule [41].

Vascular alteration: arteritis and angiogenesis

The literature broadly refers to arteritis in patients with 
neurocysticercosis [42-45]. The creation of new blood vessels is 
angiogenesis, which was described in rat models of NCC close to fibrotic 
tissue and its neuronal interface [46]. Evidence of an increasing number of 
blood vessels was also found in pig models of NCC [47]. Angiogenesis was 
related to the active glial scar formation and collagen deposition, in human 
nervous tissue close to granulomas of NCC, according to the literature 
[48]. It is know that endothelial cells and fibroblasts stimulate angiogenesis 
in animal models of spinal injury [49]; and that glial scar stimulates 
revascularization [50]; those findings support that angiogenesis may follow 

Figure 6: Granuloma in NCC (X400). A Giant cells and epithelioid cells 
expressing CD68. B and C Giant cells contain numerous nuclei in a random 
distribution (H&E). D Macrophage-derived cells do not express CD20. 

Figure 7: A Scolex of cysticercus cellulosae with rostellum and muscular 
structure for adhesion (sucker) (H&E X10). B Rostellum with hooks (H&E X40). 
C Capsule: external surface with microvilli and areolar layer with canaliculli 
and calcification. (H&E X100) D Glycocalyx covering external surface of 
capsule (H&E X400) E External surface of capsule with microvilli and osmotic 
canaliculli (H&E X400). 



Citation: Dametto E (2016) Histopathology of the Human Brain in Neurocysticercosis. J Mol Histol Med Physiol 1: 106

Page 5 of 7

Volume 1 • Issue 1 • 1000106J Mol Histol Med Physiol, an open access journal

gliosis and fibrosis in human NCC. 

Discussion
The bioactive messengers produced by the host are determinants of 

histological alterations; however, the substances from the parasite elicit 
and may exacerbate those messengers. 

Glial fibrillary acidic protein 

The glial fibrillary acidic protein (GFAP) allows astrocytes 
to produce cytoskeletal structures and project pseudopodia [51]. 
Enhancement of GFAP in astrocytes and their cytoplasmic processes 
were observed in areas of gliosis close to the metacestode (Figure 2). 
Sustaining histological findings, literature documents that GFAP 
protein was detected in cerebrospinal fluid of patients with NCC [52]. 

Interferon gamma

Lymphocytes and granulomas are present in NCC alterations 
(Figures 4 and 6); they produce interferon gamma (IFG) which can 
trigger astrocytes proliferation and gliosis.

The following experiments together suggest that IFG elicits gliosis 
due to NCC.

Human IFG was a potent mitogen for human astrocytes cultivated 
in vitro, and IFG induced gliosis in mouse brain [53]. Furthermore, IFG 
was present in NCC granulomas prepared in mice, in high frequency 
(11 of 12 granulomas) [54]. 

Tumor necrosis factor alpha

Although tumor necrosis factor alpha (TNF-a) occurs in the 
cerebrospinal fluid of NCC patients, its amount did not differ from 
controls [55], and was detected infrequently [56]. It is produced 
primarily by macrophages, as well as by fibroblasts, neurons, lymphoid 
and endothelial cells [57]. A possible role of TNF-a in gliosis due to 
NCC must be considered; because, TNF-a can stimulate cytotoxicity 
and increase inflammation in nervous tissue [58]; and TNF-a activates 
glial cells and promotes gliosis [59].  

Eotaxin and interleukins

Histological specimens of this study illustrated the antibody-
producing cells and their precursor B cells being attracted to and 
maturating in the site of the lesion (Figure 5). Several mediators 
are elevated in the CSF of NCC patients, e.g. eotaxin, interleukin-5 
and interleukin-6; the first is an eosinophil chemotactic protein; 
interleukin-5 stimulates B cells to grow and secrete immunoglobulin 
[59]. Interleukine-6 induces the maturation of B cells into plasma cells 

[60]; reactive gliosis is a consequence of interleukin-6 expression in 
the brain of transgenic mice [61]. Those mediators interact to perform 
perivascular infiltrate and may produce gliosis in NCC lesions. 

Antigen-antibody complex

The variability of immunoglobulin synthesis supports the concept 
of multiple antigens from the parasite interacting with diverse 
antibodies from the host, this is indicated in the histological finding 
by plasmocytes kappa and lambda positive (Figure 5). Additionally, in 
animal experiments, the complex light chain and the corresponding 
antigen increased intracellular calcium on murine dorsal root ganglion 
[62]; this suggests that not only the entire antibody-antigen complex 
can interfere with neuronal tissue surrounding the neurocysticercosis 
lesions, but also that the complex light chain and antigen can do the 
same.

Collagen

Collagen is an abundant component of the extracellular matrix that 
blocks cysticercosis invasion into neighboring brain tissue (Figure 3). 
In cultures of murine astrocytes, collagen did not proliferate astrocytes 
[63], supporting the concept of fibrosis as a protective barrier in favor of 
the neuronal tissue, which would form gliosis secondary to a permissive 
interaction between parasite and immunological cells.

Fibroblast Growth Factors

Fibroblasts among collagen fibers proliferate in a protective layer 
of fibrosis against the parasite, and are found close to vessels (Figures 
1 and 3).

Basic Fibroblast Growth Factor (BFGF) is a potent mitogen and 
chemotactic factor for endothelial cells and fibroblasts, it increases 
after neuronal damage [64,65]. BFGF also regulates neuronal cells’ 
proliferation and differentiation during brain maturation [66]. 
Fibroblast Growth Factors (acid or basic) are more potent angiogenic 
factors than the vascular endothelial growth factor (VEGF) or the 
platelet-derived growth factor [67]. Considering that fibroblast growth 
factors are involved in angiogenesis, wound healing, and embryonic 
development, they may repair damages of the infection, once BFGF is 
associated with endothelial cells adjacent to cysticerci [48]. 

Vascular Endothelial Growth Factor

Vascular Endothelial Growth Factor is a protein whose function 
is to create new blood vessels during the embryonic development 
(vasculogenesis) or new blood vessels after injury (angiogenesis).

Levels of VEGF were detected higher than controls in sera from 
untreated patients with neurocysticercosis [68]. Hypoxia is considered 
an inductor of VEGF which stimulates angiogenesis [69], as well as 
axonal growth [70]. Macrophages and neutrophils have been implicated 
in angiogenesis. Macrophages may induce the development of a vascular 
circuit in tumors via several angiogenic growth factors including VEGF 
[71]. Neutrophils would promote angiogenesis in dysplasias and tumors 
via VEGF activation [72]. Suggesting that NCC lesions could demand 
supplementary blood vessels, considering that the density of cells near 
to the granulomas (Figure 6) could produce an environment similar to 
those in tumors, in terms of cell agglomerate and hypoxia. 

Conclusions
The main histological alterations in neurocysticercosis are edema, 

perivascular infiltrate, gliosis, fibrosis, granulomatosis and calcification. 
In order to protect neurons, defenses recruit mesenchymal cells from 

Figure 8: Calcifications in NCC (H&E, X400). 
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blood (neutrophils, eosinophils, lymphocytes, plasma cells), in the 
interstitium (macrophages, ephitelioid cells, fibroblasts), and in the 
nervous tissue (microglia, astrocytes). A long presence of parasitic 
debris leads to an environment with a high density of cellular elements 
(perivascular infiltrate and granulomas), where anoxia and angiogenesis 
may occur. A trans-regulation among cells and parasitic aggressors is 
mediated by chemical messengers such as GFAP, IFG, TNF-a, eotaxin, 
interleukins, antigen-antibody complex and collagen, BFGF, MCF, and 
VEGF. Granulomatous lesions and fibrosis signal chronic inflammatory 
reaction in NCC.Calcifications typically represent the final stage of 
NCC; however, the presence of calcium deposits does not mean the 
absence of host-parasite interaction. 
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