
Volume 3 • Issue 3 • 1000123

Open AccessResearch Article

Dossis, Adv Robot Autom 2014, 3:3
DOI: 10.4172/2168-9695.1000123

Keywords: High level synthesis; Automation

Introduction
Digital microelectronics found in embedded, high-performance

and portable computing systems have highly complex components,
design hierarchy and interconnections. This design complexity
cannot be dealt anymore with conventional methods such as RTL
coding, which suffer from prolonged development times, so often
products miss the market windows. During the last couple of decades,
commercial and academic organisations have invested in High-Level
Synthesis (HLS) and optimisation techniques, so as to achieve design
automation, quality of implementations and short specification-to-
product times [1,2].

HLS Tools and Practical Problems
Research in High-Level Synthesis started in the 80s and the first

robust linear processing HLS tools appeared in the academic and
industrial labs, in the early 90s. Important problems that researchers
of HLS were called to handle included the allocation, scheduling
and binding problems. The most difficult of these three tasks is the
building of a reliable scheduler [3]. It is well known that when the
system complexity increases linearly, the complexity of the scheduler
algorithm increases exponentialy and for some applications, scheduling
is NP-complete. This problem became even more critical and difficult
in practice when input code with complex module and control flow
hierarchy (e.g. nested while and for loops) is to be processed by the
HLS tool [4-7].

Existing HLS tools are still not widely accepted by the engineering
community because of their poor results, especially for large
applications with complex module and control-flow hierarchy. Very
often, the programming style of the source code has a severe impact
on the quality of the synthesized implementation. For large-scale
applications, the complexity of the synthesis transformations (front-
end compilation, algorithmic transformations, optimizing scheduling,
allocation and binding), increases exponentially, when the design size
increases linearly [3], [4,5], leading to suboptimal solutions when
synthesis heuristics are employed to cut down the long processing
times.

Many existing HLS tools impose proprietary extensions or
restrictions (e.g. exclusion of while loops) on the programming model
of the specifications that they accept as input, and various heuristics

on the HLS transformations that they utilize (e.g. guards, speculation,
loop shifting, trailblazing) [2]. Most of them are suitable for only linear,
and dataflow dominated (e.g. stream-based) designs, such as pipelined
DSP, image processing and video/sound streaming.

The most important commercial existing HLS tools include the
Catapult-C from Calypto (previously developed by Mentor Graphics),
and Cynthesizer from Forte Design Systems. They both accept as
input a small subset of System-C and C++. Both of these tools are too
complicated for the average system developer and they are the most
expensive of their class since they are licensed for something less than
300K dollars per year. Therefore, these E-CAD products are very
difficult to access for many small ASIC/FPGA design SMEs.

Other commercial or industrial HLS tools are the Symfony C
compiler from Synopsys, the Impulse-C from Impulse Accelerated
Technologies, the Cyber Work Bench from NEC, the C-to-silicon from
Cadence, and the free web-based tool C-to-verilog from an Israel-
based group. Most of these tools are either used internally by the owner
company, or they are not well-established amongst the engineering
community for reasons that were explained above.

Amongst the academic or research-based HLS tools are the SPARK
tool [2] which accepts as input a small subset of the ANSI-C language
(e.g. while loops are not accepted), and a conditional guard based
optimization method [7] which set the basis for processing conditional
code in the beginning of the previous decade.

Requirement for Formal Techniques
It concludes that what is needed from a HLS toolset is the

incorporation of intelligent and formal techniques in order to apply the
source-to-implementation optimizing transformations, and thus turn

*Corresponding author: Michael Dossis, Department of Informatics Engineering,
TEI of Western Macedonia, Kastoria Campus, Fourka Area, Kastoria, GR 52 100,
Greece, Tel: 44-777-838-92; E-mail: mdossis@yahoo.gr

Received June 09, 2014; Accepted June 25, 2014; Published June 27, 2014

Citation: Dossis M (2014) High-Level Synthesis: A Practical Perspective. Adv
Robot Autom 3: 123. doi: 10.4172/2168-9695.1000123

Copyright: © 2014 Dossis M. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
The current complexity of custom and embedded core or IP integrated electronics demand for a new generation

of automated system design and development methods. High-Level Synthesis plays a critical part of such automated
methods. However, existing HLS tools are not widely accepted by the engineering community for a number of
practical reasons. This article is a practical perspective of such issues, and it analyses the reasons for this. Morever,
the article is a useful introduction to the system engineer that wants to consider HLS as part of his everyday system
design practice. An alternative HLS toolset is presented that the author has developed and which is based on
formal methods, thus it guarandees the correctness of the synthesized hardware and system. The paper completes
with conclussions and a number of suggestions about the future directions of HLS technology and what is actually
needed by the engineering community.

High-Level Synthesis: A Practical Perspective
Michael Dossis*
Department of Informatics Engineering, TEI of Western Macedonia, Kastoria Campus, Fourka Area, Kastoria, GR 52 100, Greece

Advances in Robotics
& AutomationAd

va
nc

es
 in

Robotics &Autom
ation

ISSN: 2168-9695

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) High-Level Synthesis: A Practical Perspective. Adv Robot Autom 3: 123. doi: 10.4172/2168-9695.1000123

Page 2 of 3

Volume 3 • Issue 3 • 1000123

the produced hardware implementations to correct-by-construction. In
this way, only top behavioral level verification (e.g. with rapid compile
and execute of the specs) is required, without spending weeks and
months, on lengthy RTL or annotated gate simulations. Constraints
and other options can be applied by the user on the automatic HLS
transformation, such as the number of available resources, the length of
the desired schedule, the type of the micro-architecture, the generated
HDL code as well as the inclusion of custom (e.g. arithmetic) logic
functions throughout the HLS compilation.

The C-Cubed EDA HLS Framework
The author has designed and developed an intelligent HLS compiler

[4] that includes a scheduler of operations into control steps, achieving
the maximum functional parallelism in the synthesized implementation
[5]. It employs an advanced HLS scheduler called PARCS, which utilizes
formal techniques such as logic programming [6] and RDF subject-
predicate-object relations [7], to formally achieve the maximum
possible parallelism of operations. In this way, the functionality of the
delivered implementations is correct-by-construction.

A detailed description of the above intelligent approach of the
prototype optimising CCC synthesizer can be found in [4]. The CCC
tool employs advanced techniques such as formal predicate logic [6],
RDF relations and XML schema validation to improve the quality of
the synthesis results. The usability and correctness of the C-Cubed HLS
toolset were evaluated with a large number of benchmarks. The CCC
design flow is shown in Figure 1.

The C-cubed ADA HLS design and verification flow, includes the
front-end and back-end HLS tools, and the GNU ADA integrated
compiler, development and verification environment. The full standard
programming construct set of the ADA and ANSI-C language sets are
accepted by the CCC synthesizer. The front-end compiler is a compiler-
generator parsing and syntax processing system with all the standard

software compiler optimizations. The back-end compiler is based on
logic programming inference engine rules and it includes the formal
PARCS scheduler and optimizer. PARCS attempts always to parallelise
as many as possible operations in the same control step, as far as there
are no dependency violations. However, the tool can be driven by
external module and operator specific resource constraints (Table 1).

Experimental Results
Arbitrary and general input ADA or ANSI-C code is synthesized

into functionally-equivalent RTL VHDL/Verilog hardware
implementation. Many applications were synthesized with the C-Cubed
toolset [4]. In any case, the functionality of the produced hardware
accelerators (coprocessors) matched that of the input subprograms.

After the tests were coded and verified in ADA they were
synthesized into VHDL/Verilog RTL. Since the C-cubed tools are based
on formal techniques there is no need to simulate the generated RTL.
Nevertheless for proving this argument in practice we have simulated
all the generated RTL tests to ensure that they feature an equivalent to
that of the source code behaviour. A RTL simulation of a computer
graphics benchmark generated HDL code is shown in Figure 2. It is
shown clearly in this figure that the generated hardware FSM completes
its function with the synchronized done/results_read signal event, as
well as all the external memory transactions after the completion point,
which writes the result into the external memory.

Table 1 shows the state reduction, using the PARCS optimizer for
two benchmarks, the line drawing algorithm and the MPEG engine. It
is important to mention that in some cases of complex control flow, the
state reduction rate reaches up to 41 per cent.

Many benchmarks and tests were synthesized with CCC tools so far.
They include a DSP FIR filter, an MPEG engine, and a cryptographic
RSA processor. The state reduction for these benchmarks is shown
graphically in Figure 3. All the tests were compiled with CCC in less
than 10 minutes. The MPEG engine comprises of a FSM with more
than 400 states! Such designs are practically impossible to design and
verify directly in RTL. Therefore the contribution of the C-cubed
technology is invaluable.

Prospects of HLS and the Future
What about the future? What are current and future directions

of industrial interest in HLS? More input programming languages
(e.g. C++, System-C, UML, Fortran, Delphi-Pascal, Java) and a more
globalized use of formal techniques throughout the flow of the HLS
toolset are needed in order to bring practical results with acceptable
HLS outcomes. Also, HLS methodologies need to be more adaptable to
the needs of different engineering environments and many established
industrial backend flows.Figure 1: C-cubed HLS design and verification flow.

ADA code system

model

specification

Generated

provably-correct

VHDL/

Verilog hardware

RTL model

Front-end &

back-end CCC

tools GNU ADA

compiler and

develo-

pment tools

Rapid

verification at

the abstract

ADA level

Table 1: State reduction optimization using PARCS.

Module name Initial schedule
states

PARCS parallel
states State reduction

line-drawing design 17 10 41%
MPEG 1st routine 88 56 36%
MPEG 2nd routine 88 56 36%
MPEG 3rd routine 37 25 32%

MPEG top routine (with
embedded memory) 326 223 32%

MPEG top routine (with
external memory) 462 343 26%

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) High-Level Synthesis: A Practical Perspective. Adv Robot Autom 3: 123. doi: 10.4172/2168-9695.1000123

Page 3 of 3

Volume 3 • Issue 3 • 1000123

Another important role that HLS can bring in the engineering
practice is the re-use of existing hardware and software IP. To
achieve this a wide compatibility of HLS input/output with languages
and formats is required to use HLS in practical every-day system
engineering, as well as rapid prototyping capability to the future
electronics product development. Moreover, arbitrary and complex
module and control flow in the designer’s set of system models need to
be transformed with ease, speed and quality into the required software
and hardware implementations.

Conclusions and Future Work
Sometimes the assumptions that many existing HLS tools make

about targeted technology attributes such as timing and power
consumption, produce disappointing synthesis results, since there
is still no established methodology for feeding target technology
characteristics back into the core of the HLS transformation process
(although some academic attempts to model this problem have been
made). In many cases these target implementation characteristics
need to be fed into the synthesis flow and guide the complex synthesis
transformations of the HLS tool.

The C-Cubed synthesizer is making an important step towards
the above requirements and a number of related projects are under-
way to deliver better synthesis results with readable RTL code and
better visibility of the design’s attributes and algorithmic features. Of
course it is not the only attempt to deal with the complexities of the
HLS transformations and there a number of research projects that
target a better engineering environment to alleviate the frustrations
of industries about dealing with development results that are just too
late to hit the market window for many electronics products. Future
work for the C-cubed tools include the inclusion of a number of input
language formats such as ANSI-C, C++, SystemC and OpenCL, and
a number of output formats for quick verification like SystemC and
cycle-accurate C. Also, a number of source code optimizations such
as dynamic loop-unrolling and code motion are under development.

References

1. Gal BL, Casseau E, Huet S (2008) Dynamic Memory Access Management
for High-Performance DSP Applications Using High-Level Synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
16: 1454-1464.

2. Gupta S, Rajesh KG, Dutt ND, Nikolau A (2004) Coordinated Parallelizing
Compiler Optimizations and High-Level Synthesis. ACM Transactions on
Design Automation of Electronic Systems 9: 441-470.

3. Walker RA, Chaudhuri S (1995) Introduction to the scheduling problem. IEEE
Design & Test of Computers 12: 60-69.

4.	 Dossis MF (2011) A Formal Design Framework to Generate Coprocessors with
Implementation Options. International Journal of Research and Reviews in
Computer Science (IJRRCS) 2: 929-936.

5.	 Paulin PG, Knight JP (1989) Force-directed scheduling for the behavioral
synthesis of ASICs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 8: 661-679.

6. Nilsson U, Maluszynski J (1995) Logic Programming and Prolog.

7. Kountouris AA, Wolinski C (2002) Efficient Scheduling of Conditional Behaviors
for High-Level Synthesis. ACM Transactions on Design Automation of
Electronic Systems 7: 380-412.

Figure 2: A graphics line drawing line benchmark simulation

0

50

100

150

200

250

300

350

FIR RSA MPEG

initial # of states
optimised states

Figure 3: State reduction rates in graphical way.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=386007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel1%2F54%2F8746%2F00386007
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=386007&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel1%2F54%2F8746%2F00386007
http://pdc-connection.ebscohost.com/c/articles/67467586/formal-design-framework-generate-coprocessors-implementation-options
http://pdc-connection.ebscohost.com/c/articles/67467586/formal-design-framework-generate-coprocessors-implementation-options
http://pdc-connection.ebscohost.com/c/articles/67467586/formal-design-framework-generate-coprocessors-implementation-options
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=31522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D31522
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=31522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D31522
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=31522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D31522
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=364639193&CFTOKEN=39567020
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=364639193&CFTOKEN=39567020
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=364639193&CFTOKEN=39567020

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	HLS Tools and Practical Problems
	Requirement for Formal Techniques
	The C-Cubed EDA HLS Framework
	Prospects of HLS and the Future
	Conclusions and Future Work
	Figure 1
	Figure 2
	Figure 3
	Table 1
	References

