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Introduction
Mimetic finite differences method have been experiencing a great 

deal of development in the last 10 years [1-5] and many applications of 
these methods have been reported in the literature. High order mimetic 
finite differences can be traced back to the work of Kreiss and Scherer 
[1], where they presented the Summation by Parts method (SBP). From 
their work, it is known that the order of accuracy at the boundary 
cannot be increased, with standard inner products, on nodal grids. They 
constructed a high order SBP operator, increasing the order of accuracy 
at the boundary [6-15], with a weighted inner product, on nodal grids. 
This operator was two orders less accurate at the boundary than the 
interior of the domain, on a nodal grid, with a diagonal weight matrix 
norm. In 2003, Castillo and Grone [7] using weighted inner products 
and staggered grids, constructed high-order divergence and gradient 
mimetic finite differences operators with the same order of accuracy in 
the interior as well as the boundary. These operators (CG) have been 
extended to higher dimensions and have been used very successfully 
in several applications [16-25]. However, these discrete operators have 
a set of free parameters and not necessarily the optimum bandwidth. 
In this paper, we construct high-order mimetic finite differences 
operators’ divergence and gradient, on staggered grids, with diagonal 
weight matrix norms, no free parameters and optimal bandwidth. 
Some examples comparing the CG operators with the ones presented, 
exhibit results clearly showing that the new operators produce better 
results than that of the CG ones and in the worst case they produce the 
same ones.

This paper is organized as follows: We give a brief description of 
mimetic operators along with their properties, and the staggered grids 
along with a 3-D cell for illustration. We show how to construct the 
one dimensional second order mimetic gradient operator and show 
the gradient and divergence for the fourth order case. Note that for 
the second order case these operators are the same as the CG ones, 
but this only happens for the second order case, for fourth order and 
higher the new operators are different from the CG ones. We describe 
how to compute the weights for the inner products for the fourth order 
gradient and divergence mimetic finite difference operators. We show 
how to construct the operators in higher dimensions using Kronecker 
products as well as a mimetic finite difference Laplacian in one, two and 
three dimensions as well and the mimetic finite difference curl operator. 

We show how these operators can be implemented in a compact form, 
minimizing the size of the stencils. We present examples that clearly 
demonstrate the new operators produce better results that the CG ones.

Mimetic Operators
Mimetic finite difference operators, divergence (D), gradient (G), 

curl (C) and laplacian (L) are discrete analogs of their corresponding 
continuum operators. These mimetic finite difference operators satisfy 
in the discrete sense the vector identities that the continuum ones do 
making them more faithful to the physics.

Basic properties

Mimetic operators (G≡∇, D≡∇, C≡∇×and L≡∇2) fulfill the 
following:

Gfconst=0,                    (1)

Dνconst=0,                  (2)

CGf=0,                   (3)

DCν=0,                   (4)

DGf=Lf.                   (5)

In addition, while providing a uniform order of accuracy, CG 
operators satisfy:

〈Dν,f〉Q+〈Gf,ν〉P=〈Bν,f〉                   (6)

which is a discrete analogue of the extended Gauss divergence 
theorem [8], here B is called the mimetic boundary operator. From eqn. 
(6) we obtain:

〈QDν〉f+〈PGf,ν〉=〈Bν,f〉,
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High order mimetic finite difference operators that satisfy a discrete extended Gauss Divergence theorem 

are presented. These operators have the same order of accuracy in the interior as well as the boundary, no free 
parameters and optimal bandwidth. They are constructed on staggered grids, using weighted inner products with 
a diagonal norm. We present several examples to demonstrate that mimetic finite difference schemes using these 
operators produce excellent results.
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〈QDν 〉+GTPν,f〉=〈Bν,f〉,

QDν+GTPν=Bν,

QD+GTP=B.                     (7)

Staggered grids 

CG mimetic operators are defined over staggered grids. In this 
type of grids, scalar variables are stored at the centers of the cells; while 
vector components are placed at the edges (or faces, in 3D). In the 
following figures, m, n and o represent the number of cells along the x-, 
y- and z-axes, respectively (Figures 1-4).

1D Operators
This section is focused on the construction of one-dimensional 

mimetic gradient and divergence operators. One-dimensional 
operators can be visualized as follows:

In Figure 5, A and A′ are sub matrices that approximate the 
derivatives at the left, and at the right boundary, respectively. 
Dim(A)=Dim(A′), and A′ is a permutation of A. M is a banded matrix 
of width k (order of accuracy) that approximates the derivatives at the 

inner cells. The dimensions of A depend on the type of operator and the 
desired order of accuracy.

Gradient

To construct a kth-order mimetic gradient operator we need at 
least 2k cells (m ≥ 2k) so that there is no overlapping between A and A′.

A and A′ will have dimensions 1
2
k by k + . We proceed to construct a 

Vandermonde matrix from the stencil (Figure 6), then, our “generator” 
vector is:

1 30
2 2

 
  

                    (8)

and the corresponding Vandermonde matrix,
1 90
4 4
1 30
2 2

1 1 1

 
 
 
 
 
 
 
  

                     (9).

Finally, we construct a right-hand side vector that only contains 
a ‘1’ aligned to the second to last row of the matrix, producing the 
following system of linear equations:

1

2

3

1 90
4 4 0
1 30 1
2 2

01 1 1

x
x
x

 
 

    
     =    
        

  

                   (10)

Figure 1: One-dimensional, uniform staggered grid. m=4.

Figure 2: Two-dimensional, uniform staggered grid. m=4 and n=3.

Figure 3: Three-dimensional, uniform staggered grid. m=4, n=3 and o=2.

Figure 4: A 3D cell. u, v and w are the vector components used to compute 
the divergence. In case of the curl, we use the components that are 
tangential to the faces of the cell.

Figure 5: Taxonomy of 1D operator.
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The methodology to construct a mimetic divergence is the same 
used to construct the mimetic gradient; except that A and A0 will 

have dimensions
2
k -1 by k+1.As before, we first exhibit the 2nd-order 

operator,

( ) ( )2 , 1

0
1 1

1

1 1
0,

m m

D
x

+ +

 
 − 
 =

∆  
− 

  



 



                (15).

Notice that the first and last rows of eqn. (15) are zero, this is 
because on one hand, the divergence does not have a physical meaning 
at the boundary nodes, and on the other hand, formula in eqn. (6) needs 
D and G to me compatible matrices under addition, and Gt is (m+2) by 
(m+1), while D without “augmentation”, is m by (m+1). Our resulting 
divergence operators differ from CG when k ≥ 4. Here is our 4th-order D:

( ) ( )2 , 1

0
11 17 3 5 1 0

1 12 24 8 24 24
1 9 9 1 0
24 8 8 24
0 m m

D
x

+ +

 
 − − 
 =  − −∆  
 
  







 

               (16)

again, in eqn. (16), we present only the set of rows necessary to illustrate 
the overall structure of the matrix.

Weight Matrix P 
The diagonal weight matrix P (in eqn. (6)) is obtained by:

GTp=bm+2                    (17)

where p is the main diagonal of P, and bm+2 is the desired column sum 
[−1 ··· 0 ··· 1]T.

For a 2nd-order G, the solution is 3 9 9 3... 1...
2 8 8 8 8

Tk p  =   
. System in 

eqn. (17) is over determined but consistent. For our 4th-order G (and 
m=20), we get:

227 941 811 1373 1401 36343 943491 1 ...
641 766 903 1348 1400 36342 943490

Tp  =   
                 (18)

Weight matrix Q

The same procedure is applied to get matrix Q (also from in eqn. (6),

DTq=bm+1,                    (19)

System in eqn. (19) is also overdetermined but consistent, and has 
solution  1q =



 for a 2nd-order D. In case of our 4th-order D (and 
m=20), we get:

2186 1992 1993 649 699 18170 4717441 1 ...
1943 26511715 674 674 18171 471745

Tq  =   
                (20)

2D and 3D Operators
In this section we explain how to construct higher dimensional 

operators using the ones from and Kronecker products.

To construct a two-dimensional gradient:

,
x

x y
y

S
G

S
 

=  
 

                  (21)

and from the solution [ ]1 2 3
8 1, , 3

3 3
x x x − − =   

, we obtain the first row of 

our matrix A. To obtain the successive rows of A we just need to “shift” 
the stencil to the right

2
k -1 time and is computed as follows:

A0=−PpAPq,                  (11)

where, Pp and Pq are permutation matrices with dimensions 
2
k  by

2
k

 and k+1 by k+1, respectively. To construct the sub matrix M we use 
a centered stencil (Figure 7), which produces the following system

1

2

1 1 1
2 2

01 1

x
x

−       =         

                  (12)

and from the solution [x1,x2]=[−1 1], we obtain the rows of M. Putting 
all together we get:

( )(m 1) 2

8 13
3 3

1 1
1

1 1
1 83
3 3 m

G
x

+ +

− − 
 
 

− 
 =  ∆

− 
 
 −
  

 

             (13).

The 2nd-order one-dimensional mimetic gradient. For higher 
orders, our resulting gradient operators differ from CG. Here we 
present our 4th-order G:

(m 1)(m 2)

352 35 35 21 5 0
105 8 24 40 56
16 31 29 3 1 01
105 24 24 40 168

1 9 9 10 0
24 8 8 24
0

G
x

+ +

− − − 
 
 

− − 
 =
 ∆ − − 
 
 
 







    

              (14).

In eqn. (14) we show only the set of rows necessary to illustrate the 
overall structure of the matrix.

Divergence

To construct a kth-order mimetic divergence operator we need at 
least 2k+1 cells (m ≥ 2k +1) so that there is no overlapping between A 
and A′.

Figure 6: Stencil to compute a 2nd-order mimetic gradient at the left boundary. 
The segmented rectangle on the left represents the location of the value being 
calculated.

Figure 7: Inner stencil for 2nd-order mimetic gradient. Again, the segmented 
rectangle represents the location of the value being calculated
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where,

, T
n xSx I= ⊗G


                    (22)

,T
y mSy G I= ⊗



                    (23)

Gx, Gy are the one-dimensional mimetic gradient operators for x 
and y, respectively. Iˆ

m denotes an “augmented” identity matrix (first 
and last rows are zero),

( )2 ,

0
1

1
0

m

m m

I

+

 
 
 
 =
 
 
  









                                  (24)

To construct a three-dimensional gradient:

,  
x

x y y

z

S
G S

S

 
 =  
  

                                    (25),

where,

,  T T
x o n xS I I= ⊗ ⊗G
 

                       (26)

 ,  T T
y o y mS I I= ⊗ ⊗G
 

                  (27)
.T T

z z n mS G I I= ⊗ ⊗
 

                   (28).

Here, Gx,Gy,Gz are the one-dimensional mimetic gradient operators 
for x,y and z, respectively.

To construct a two-dimensional divergence:

Dx,y=[Sx,Sy]                     (29)

where,

,x n xS I D= ⊗
                  (30)

,y y nS D I= ⊗
                     (31).

Dx, Dy are the one-dimensional mimetic divergence operators for x 
and y, respectively.

To construct a three-dimensional divergence:

where,

Dxyz=[Sx,Sy,Sz],                   (32)

0 ,x n xS I I D= ⊗ ⊗
                     (33)

0 ,y y mS I D I= ⊗ ⊗
 

                   (34)

.z z n mS D I I= ⊗ ⊗
                     (35)

Dx,Dy,Dz are the one-dimensional mimetic divergence operators 
for x,y and z, respectively.

One-, two- and three-dimensional laplacian operators are obtained by:

Lx=DxGx,                        (36)

Lxy=DxyGxy,                  (37)

Lxyz=DxyzGxyz.                   (38)

Given a three-dimensional vector field:

F=Ui+V j+Wk,                    (39)

the curl is defined as,

,

i j k
W V U W V Ui j k

x y z y z z x x y
U V W

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∆× = = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
F   (40)

we can express in eqn. (40) as,

( ) ( ) ( )* * *= ,yz zx xyi j k∇× ∇ ⋅ + ∇ ⋅ + ∇ ⋅F F F F                  (41),

where,
* ,yz Wj Vk= −F                    (42)
* ,zx Uk Wi= −F                     (43)
* .xy Vi Uj= −F                    (44).

Therefore,

( ) ( ) ( )* * *Cxy xy yz zx zx xy xyi j k+ +F = D F D F D F                   (45)

( ) ( ) ( )* * *Cxyz yz yz zx zx xy xyi j k+ +F = D F D F D F                   (46)

are the two- and three-dimensional mimetic curls, respectively.

Compact Operators
High-order (m≥4) mimetic operators can be represented in a 

“compact way” by factorizing the original matrices [25]. By doing this, 
we can attain higher orders of accuracy using only the smallest stencil,

.Dkth=D2ndRkth,                  (47)

where Rkth denotes the right factor matrix that when multiplied by the 
2nd-order divergence produces a kth-order D operator. The same can 
be done for the gradient,

Gkth=LkthG2nd                              (48)

the reason why we factorize the divergence from the right and the 
gradient from the left is because in this way we can express the laplacian 
operator as follows:

Lkth=D2ndRkthLkthG2nd.                    (49)

Lkth is our kth-order mimetic laplacian, and RkthLkth is called the “star” 
operator (S). S can be seen as a tensor that contains properties that are 
inherent to each problem. The authors used compact representation of 
the CG operators to solve problems of acoustic wave propagation [6].

Accuracy Tests
We performed several accuracy tests to compare our fourth order 

operators with those defined [7]. In this section we show two of those 
tests in Figure 8,

F(x)=logx+cosx                        (50)

The following tables show the magnitude of the error obtained with 
each method (Castillo-Grone and Corbino-Castillo) (Table 1).

Testing the laplacians with an elliptic problem (Table 2)

∇2f(x)=ex,                    (51)

Subject to: 

( ) ( )0  – 0   0,f fα β ′ =                   (52)

( ) ( )1  1   2f f eα β ′+ =                    (53)

with α=1 and β=1. We obtained the following results.

As shown on Table 3 and Figure 9, the new mimetic laplacian 
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operator is also considerably more precise than its CG counterpart (in 
some cases for up to two orders of magnitude).

Figure 8: Comparison between continuous and discrete solutions. Visually, 
both discrete solutions are identical.

Figure 9: Solution to equation (51). Both approximations look identical.

Gradient
m CG||E||2 CG||E||2 (∆x)4

10 0.0915 0.0204 0.6561
20 0.0066 0.0047 0.0410
40 0.0019 8.7e-4 0.0026
80 2.6e-4 1.0e-4 1.6e-4

Table 1: Comparing divergences.

Gradient
m CG||E||2 CG||E||2 (∆x)4

10 0.0166 0.0174 0.6561
20 0.0018 0.0018 0.0410
40 4.4e-4 4.5e-4 0.0026
80 5.8e-5 5.9e-5 1.6e-4

Table 2: Testing the laplacians with an elliptic problem.

These tests have been done using the Mimetic Operators Library 
Enhanced (MOLE) [24].

Conclusions
High order mimetic finite difference operators that satisfy a 

discrete extended Gauss-Divergence theorem have been presented. 
These operators have the same order of accuracy in the interior as well 
as the boundary, no free parameters and optimal bandwidth. They are 
constructed on staggered grids, using weighted inner products with 
a diagonal norm. Their construction using linear algebra illustrate 
the clarity of their formulation. A compact formulation, which uses 
the minimum second order stencils, has also been presented. These 
operators have been implemented in the open source mathematical 
library MOLE. Mimetic finite difference schemes using this operator 
produce excellent results on our test cases.
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