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Introduction
Hypoxia definition

Oxygen deprivation (hypoxia) occurs in tissues when O2 supply via 
the cardiovascular system fails to meet the demand of O2-consuming 
cells. Hypoxia occurs naturally in physiological settings (e.g. embryonic 
development and exercising muscle), as well as in pathophysiological 
conditions (e.g. myocardial infarction, inflammation, and solid tumor 
formation) [1]. 

Hypoxia, a common consequence of solid tumor growth in 
cancers, serves to propagate a cascade of molecular pathways which 
include angiogenesis that may be part of a self-regulated physiological 
protection mechanism preventing cell injury, especially under 
conditions of chronic ischemia [2]. 

Hypoxia is the main stimulus for angiogenesishence, hypoxic tumors 

are significantly more malignant, metastatic, radio and chemoresistant 
[3]. Hypoxia stimulates angiogenesis by signaling through Hypoxia-
inducible factors HIFs [4].

Structure of HIF-1

HIF-1 is a heterodimer composed of HIF-1α and HIF-1β subunits. 
Whereas HIF-1β is constitutively expressed, HIF-1α expression is 
induced in hypoxic cells with an exponential increase in expression 
as cells are exposed to O2 concentrations of less than 6%, which 
corresponds to a partial pressure (P) of O2 of approximately 40 mm 
Hg at sea level [5].

The amino-terminal half of HIF-1α (amino acids 1-390) is necessary 
and sufficient for dimerization with HIF-1β and for DNA binding. 
HIF-1α is ubiquitinated and subjected to proteasomal degradation in 
non-hypoxic cells Figure 1. Under hypoxic conditions, the fraction of 
HIF-1α that is ubiquitinated decreases dramatically, resulting in an 
accumulation of the protein. A Pro–Ser–Thr rich protein stabilization 
domain is located between amino acids 429 and 608 of HIF-1α [6], 
subunits are shown with the basic helix-loop-helix (bHLH) and PER-
ARNT-SIM (PAS) domains that are required for dimerization and 
DNA binding. Also shown for HIF-1α are the amino-terminal (N) and 
carboxyterminal (C) nuclear localization signal (NLS) and TAD; the 
Pro–Ser–Thr rich protein stabilization domain (PSTD; also known as 
the oxygen-dependent degradation domain); and sites of interaction 
with VHL, and p300 and CBP. The double-headed arrow indicates that 
reduction of Cys800, which is mediated by thioredoxin (TRX) and 
redox factor 1 (REF-1), is required for the interaction of TAD-C with 
cofactor p300 or CBP. The relevant amino acid residues are indicated 
numerically [7,8]. 

Stabilization of HIF-1

Among recent advances are the discoveries that reactive nitrogen 
species (RNS) and oxygen species (ROS) participate in stability 
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Abstract
The hypoxia-inducible factor-1 (HIF-1) is primarily involved in the sensing and adapting of cells to changes in 

the O2 level, which is essential for their viability. An increased activity is recognized in the majority of clinical relevant 
hypoxic/ischemic episodes and human cancers .HIF-1 is considered a central regulator of the adaptation response of 
cancer cells to hypoxia that makes it a therapeutic target in solid tumors. In this article, the biochemical pathways that 
are regulated by HIF-1 and the factors that regulate HIF-1 expression are briefly discussed .as targeting HIF-1, may 
selectively kill tumor cells that adapt to low O2 concentrations.
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Figure 1: Structure and function of HIF-1. The HIF-1α and HIF- 1β.
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Figure 2: Major mitochondrial changes in hypoxia.
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regulation of HIF-1alpha and HIF-1 transactivation during normoxia 
Figure 2. Exposure of various cells to chemically diverse NO donors or 
conditions of endogenous NO formation under normoxic conditions 
induced HIF-1alpha accumulation, HIF-1-DNA binding, and activation 
of downstream target gene expression [9].

Hypoxia could decrease electron-transport rate determining Δψm 
reduction, increased ROS generation, and enhanced NO synthase. One 
(or more) of these factors likely contributes to HIF stabilization, that in 
turn induces metabolic adaptation of both hypoxic cells and mitophagy. 
Solid lines indicate well established hypoxic changes in cells, whilst 
dotted lines indicate changes not yet stated. Inset, relationships between 
extracellular O2 concentration and oxygen tension [10].

HIF-1 and metabolism of carbohydrates in hypoxia: When oxygen 
becomes limiting, cells reduce mitochondrial respiration and increase 
ATP production through anaerobic fermentation of glucose Figure 3. 
Also, hypoxia regulates almost all the enzymes involved in glycogen 
metabolism in a coordinated fashion, leading to its accumulation as a 
cellular response to hypoxia [11].

Tumors are exposed to intermittent hypoxia that could induce 
glycogen accumulation that could contribute to the resistance to 
fluctuations in blood supply that is commonly observed in tumors [12].

By stimulating the expression of glucose transporters and glycolytic 
enzymes, HIF-1 promotes glycolysis to generate increased levels of 
pyruvate. In addition, HIF-1 promotes pyruvate reduction to lactate 

by activating lactate dehydrogenase (LDH). Pyruvate reduction 
to lactate regenerates NAD+, which permits continued glycolysis 
and ATP production by hypoxic cells. Furthermore, HIF-1 induces 
pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate 
dehydrogenase and blocks conversion of pyruvate to acetyl CoA, 
resulting in decreased flux through the tricarboxylic acid (TCA) cycle.

Decreased TCA cycle activity results in attenuation of oxidative 
phosphorylation and excessive mitochondrial reactive oxygen species 
(ROS) production. Because hypoxic cells already exhibit increased 
ROS, which have been shown to promote HIF-1 accumulation, the 
induction of PDK1 prevents the persistence of potentially harmful ROS 
levels [13]. HIF-1alpha is necessary to support gluconeogenesis during 
liver regeneration that is necessary for hepatic glucose homeostasis 
during the reparative process [14].

HIF-1 and metabolism of carbohydrates in cancer cell: “waves” 
of gene expression that promote metabolic changes occur during 
carcinogenesis, beginning with oncogene-mediated changes, followed 
by hypoxia-induced factor (HIF)-mediated gene expression, both 
resulting in the highly glycolytic “Warburg” phenotype and suppression 
of mitochondrial biogenesis. The third (second oncogene) “wave” 

Figure 3: Multiple hypoxia-induced cellular metabolic changes are regulated 
by HIF-1.
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Figure 4: Glycolysis up-regulation and Oxidative phosphorylation.
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Figure 5: HIF-1 stabilization is one of opportunities in treating cancer by target-
ing cancer energy metabolism and mitochondria.
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of adaptation stimulates glutaminolysis, that serves as an alternative 
pathway compensating for cellular ATP.

Together with anoxic glutaminolysis it provides pyruvate, lactate, 
and the NADPH pool (alternatively to pentose phosphate pathway). 
Retrograde signaling from revitalized mitochondria might constituent 
the fourth “wave” of gene reprogramming. thereby further promoting 
malignancy [15,16].

In cancer cells, HIF-1alpha induces over-expression and increased 
activity of several glycolytic protein isoforms that differ from those 
found in non-malignant cells, including transporters (GLUT1, 
GLUT3) and enzymes (HKI, HKII, PFK-L, ALD-A, ALD-C, PGK1, 
ENO-alpha, PYK-M2, LDH-A, PFKFB-3). The enhanced tumor 
glycolytic flux triggered by HIF-1alpha also involves changes in the 
kinetic patterns of expressed isoforms of key glycolytic enzymes [17]. 
Some of the HIF1alpha-induced glycolytic isoforms also participate in 
survival pathways, including transcriptional activation of H2B histone 
(by LDH-A), inhibition of apoptosis (by HKII) and promotion of cell 
migration (by ENO-alpha) [18].

HIF-1alpha action may also modulate mitochondrial function 
and oxygen consumption by inactivating the pyruvate dehydrogenase 
complex in some tumor types Figure 4, or by modulating cytochrome 
c oxidase subunit 4 expression to increase oxidative phosphorylation 
in other cancer cell lines [19] (OXPHOS) down-regulation in cancers. 
Up-regulating HIF target genes (indicated in red) increases glucose 
entry, glycolytic flux, and conversion of pyruvate to lactate. In addition, 
it accelerates lactate exit from the cell. In parallel, PDK1-induced 
phosphorylation of pyruvate dehydrogenase reduces production of 
acetyl Coenzyme A. This diminishes substrate provision to the Krebs 
cycle and therefore contributes to decrease the flux through Oxidative 
phosphorylation.

Glucose (but not pyruvate) deprivation induced significant increase 

in VEGF transcription and secretion, but a rapid reduction in VEGFR2 
protein synthesis and glycosylation, combined with a reduction in co-
receptor neuropilin-1 (NRP-1) protein levels [20].

Moreover, Oxidative phosphorylation can produce ROS that can 
in turn attack mitochondrial proteins, lipids or DNA and thus further 
decrease Oxidative phosphorylation. Mutations in genes (indicated 
in blue) (fumarase, SDH) have been shown to be the cause of specific 
cancers. Invalidation of p53, very frequent in cancers, decreases the 
expression of SCO2, involved in cytochrome c oxidase assembly [21]. 
Cancer energy metabolism and mitochondria play a crucial role in 
tumor development. Increased glycolysis is a hallmark of most cancer 
cells. Various factors contribute to the phenomenon of the Warburg 
effect seen in tumors. Oncogenic alterations (PI3K/Akt) and HIF-1 
stabilization result in increased expression of glucose transporters and 
glycolytic enzymes. Moreover, glycolysis aids in increasing the cellular 
anabolic processes by shunting intermediates to the pentose phosphate 
pathway [22], Figure 5.

HIF is a central station for cancer growth: Multiple signals affect 
transcription, translation or posttranslational modification of HIF-1α. 
These multiple signals, exemplified for macrophages, affect the protein 
amount of HIF-1α, the activity of HIF-1 and concomitant target gene 
expression [23], Figure 6.

Pathways blocking PHD activity are marked in red. Signaling 
pathways leading to an active HIF-1β/HIF-1α heterodimer formation 
are given in blue→stimulation; ┤inhibition.

HIF-1is linker between inflammation and angiogenesis: Hypoxia 

promotes tumor progression by modulating gene expression. In 

colorectal tumor cells, COX-2 is transcriptionally induced by hypoxia 
via HIF-1, and it’s up-regulation contributes to maintaining tumor 
survival and potentially promoting angiogenesis Figure 7. Thus, 

COX-2 overexpression can be regarded as a critical adaptive response 
to hypoxia, which mediates both short-(survival) and long-term 
adaptation (angiogenesis) [24]. 

Mutations in Wnt and Ras signaling pathways can induce COX-2 
in normoxic a condition, resulting in increased levels of PGE2, which 
promotes tumor cell growth/survival and stimulates angiogenesis 
then activates the MAPK pathway and enhances HIF-1 transcriptional 
activity, resulting in a potential positive feedback loop that may act to 
maintain high COX-2 levels under hypoxic conditions [25]. In fast-
growing tumors, HIF-1alpha is involved in the activation of numerous 
cellular processes including resistance against apoptosis, over-
expression of drug efflux membrane pumps, vascular remodeling and 
angiogenesis as it induces a number of genes integral to angiogenesis, 
e.g. Vascular endothelial growth factor (VEGF) [26] , Figure 8. VEGF 
can function on various types of cells, such as endothelial cells, hepatic 
stellate cells, endothelial progenitor cells and hemangiocytes, to induce 
vascular changes in HCC [27,28]. Endothelial cells (Ecs) proliferate 
in response to the hypoxia-induced VEGF and other growth factors 
secreted by the ECs or surrounding cell types, including hepatic 
stellate cells (HSC, considered liverresident pericytes), leukocytes, 
hepatocytes and Kupffer cells [29]. VEGF family members Increase 
vascular permeability; induce EC proliferation; leukocyte adhesion; 
regulate neovessel lumen diameter. Interaction of the VEGF with the 
receptor activates signaling pathways, e.g. PI3K/ Akt, Ras/Raf-MEK/
Erk, eNOS/NO, and IP3/Ca2+ [30]. VEGF-B specifically controlled 
endothelial uptake of fatty acids via transcriptional regulation of 
vascular fatty acid transport proteins that support the renergy requires 
for metastasis and development of cancer [31]. Irrespective of the 
trigger for the development both intrinsic (driven by genetic alteration) 

Figure 7: Model for COX-2 regulation and its role in colorectal tumorigenesis.
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and extrinsic (driven by inflammatory cells and mediators) pathways 
result in inflammation and neoplasia. The transcription factors NF-kB, 
HIF-1a and STAT-3 are keymodulators of the inflammatory response 
that promotes cancer development [32], Figure 9. The presence of 
inflammatory components in the microenvironment of most neoplastic 
tissue most frequently results in enhanced angiogenesis, resistance 
to hormones (in hormonedependent tumours) and inhibition of 
adaptive anti-tumour immunity. Tumor cells survival, proliferation and 
eventually invasion and metastasis are all regulated by inflammatory 
mediators present at the tumor site [33], Figure 10. 

The protein kinase D1 (PKD1), a newly described calcium/
calmodulin-dependent serine/threonine kinase, has been implicated 
in cell migration, proliferation and membrane trafficking. Increasing 
evidence suggests critical roles for PKD1-mediated signaling pathways 
in endothelial cells, particularly in the regulation of VEGF-induced 
angiogenesis [34], Figure 11. Phosphorylation is required for VEGF-
induced microvessel sprouting in mouse aorta ring assay [35,36]. 
Angiogenesis plays a major role in chronic inflammation and may 
have prognostic value in disease progression [37]. The growth of new 
blood vessels is a dynamic yet highly regulated process that depends 
on coordinated signaling by growth factor and cell adhesion receptors 
[38]. 

Genes induced by HIF-1 in cancer cells

HIF-1 induces the genes of glucose transporters, enzymes of 

anaerobic glycolysis, factors and enzymes included in both angiogenesis 
and metastassis Figure 12. 

ADM, adrenomedullin; ALDA, aldolase A; ALDC, aldolase 
C; AMF, autocrine motility factor; CATHD, cathepsin D; c-MET, 
hepatocyte growth-factor receptor 1; EG-VEGF, endocrine-gland-
derived VEGF; ENG, endoglin; ENO1, enolase 1; EPO, erythropoietin; 
ET1, endothelin-1; FN1, fibronectin 1; GLUT1, glucose transporter 1; 
GLUT3, glucose transporter 3; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; HK1, hexokinase 1; HK2, hexokinase 2; IGF-2, 
insulin-like growth-factor 2; KRT14, keratin 14; KRT18, keratin 
18; KRT19, keratin 19; LDHA, lactate dehydrogenase A; LEP, leptin; 
MMP2, matrix metalloproteinase 2; NOS2, nitric oxide synthase 2; 
TGFA, transforming growth-factor a; PFKL, phosphofructokinase L; 
PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; 
PKM, pyruvate kinase M; PGK1, phosphoglycerate kinase 1; TGF-b3, 
transforming growth-factor b3; TPI, triosephosphate isomerase; UPAR, 
urokinase plasminogen activator receptor; VEGFR2, VEGF receptor 2; 
VIM, vimentin [39]. 

Regulation of HIF-1

HIF-1a possesses bHLH and PAS domains which are involved 
in dimerization with HIF-1b and DNA binding. The HIF-1a subunit 
contains two TAD, the N- and the C- TADs. The N-TAD lies within the 
ODDD. The ODDD regulates the stability of HIF-1a via recognition, by 
the von Hippel-Lindau E3 ubiquitin ligase (pVHL), of the hydroxylation 
state of Pro402 and/or Pro564 residues. This hydroxylation is catalyzed 
by the enzyme PHD (prolyl hydroxylase domain protein). Acetylation 

Figure 9: Cytokines, chemokines, and growth factors play the lead role in the 
crosstalk between tumor cells, blood vessel and infiltrating leukocytes.
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of the Lys532 residue by the ARD1 acetyltransferase also favors 
interaction with pVHL. The hydroxylation state of the Asn803 residue, 
by the enzyme FIH-1 (factor inhibiting HIF-1) inhibits binding of p300/
CBP, a HIF-1a co-activator. S-nitrosation of Cys800, in the C-TAD, also 
promotes HIF-1 transcriptional activity Figure 13. Three consensus 
sequences at Lys-391, -477, and -532 may be modified by SUMO. The 
domain from 531 to 826 has been shown to be phosphorylated [40].

In the presence of oxygen HIFα undergoes prolyl hydroxylation 
at conserved residues, catalysed by a family of iron(II) (Fe2+) and 

2-oxoglutarate (2-OG) dependent prolyl hydroxylase domain (PHD) 
enzymes leading to recognition by the von Hippel-Lindau (VHL) 
protein which catalyses ubiquitination, targeting HIFα for proteasomal 
degradation. In addition, a conserved asparagine residue undergoes 
hydroxylation, by Factor Inhibiting HIF (FIH), which blocks activation 
of HIF target genes, as well as having other functions. In hypoxic 
conditions, HIFα translocates to the nucleus, binds to HIFα and 
additional co-transactivators to activate transcription of target genes 
which, in turn, modulate a wide variety of cellular processes [41], Figure 
14. HIF-1-targete genes related to blood supply, energy production, 
growth, metastasis of cancer growth Figure 15. 

Abbreviations: ADM, adrenomedullin; AK-3, adenylate kinase 3; 
AMF, autocrine motility factor; ANP, atrial natriuretic peptide; a1B-
AR, a1B-adrenergic receptor; CA-9, carbonic anhydrase 9; DEC1 and 
2, differentiated embryo-chondrocyte expressed gene 1 and 2; ENG, 
endoglin; EPO, erythropoietin; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; GLUT-1 and -3, glucose transporter 1 and 3; HK-1 
and 2, hexokinase 1 and 2; HO-1, heme oxygenase 1; IGF-2, insulin-
like growth factor 2; IGFBP-1, -2 and -3, IGF-binding protein 1, 2 
and 3; LDH-A, lactate dehydrogenase A; LRP1, LDL-receptor-related 
protein 1; MMP-2, matrix metalloproteinase 2; NOS-2, nitric oxide 
synthase 2; P-gp, P-glycoprotein multidrug resistance transporter; PAI-
1, plasminogen activator inhibitor 1; PGK-1, phosphoglycerate kinase 
1; PK-M, pyruvate kinase M; TGF-, transforming growth factor; TPI, 
triosphosphate isomerase; uPAR, urokinase plasminogen activator 
receptor; VEGF-R, VEGF receptor; VEGF [42]. Truncated PAS-
containing proteins are translated from the alternative splicing of HIF-
1a or HIF-3a mRNA, and bind to the endogenous wild-types of HIF-1a 
or ARNT, thus competing with HIF-1a/ARNT dimerization. Hence, 
Inhibition of HIF-1 dimerization [42] Figure 16.

Conclusion
HIF-1a is the real play maker in the world of hypoxia, it is a cross 

link between carbohydrate metabolic cycles, inflammatory pathways 
and angiogenesis. It provides provided a therapeutic target and maybe 
even a clinical biochemical marker for diagnosis of cancer.
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Figure 13: Domain structure of HIF-1a and targeted residues involved in its regu-
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Figure 15: HIF-1-targeted genes related with tumor promotion.

Figure 16: Inhibition of HIF-1 dimerization by HIF-1a and HIF-3a isoforms. Ab-
breviations: O2, normoxic conditions; _O2, hypoxic conditions.
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