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Abstract
Analytic solutions for cylindrical thermal waves in solid medium are given based on the nonlinear hyperbolic 

system of heat flux relaxation and energy conservation equations. The Fourier-Cattaneo phenomenological law 
is generalized where the relaxation time and heat propagation coefficient have a general power law temperature 
dependence. From such laws one cannot form a second order parabolic or telegraph-type equation.We consider the 
original non-linear hyperbolic system itself with the self-similar Ansatz for the temperature distribution and for the heat 
flux. As results continuous.

Keywords: Self-similar solution; Non-linear heat conduction; Shock
wave; Cattaneo heat conduction law

Introduction
Analytic solutions for cylindrical thermal waves in solid medium 

are given based on the nonlinear hyperbolic system of heat flux 
relaxation and energy conservation equations. The Fourier-Cattaneo 
phenomenological law is generalized where the relaxation time and 
heat propagation coefficient have a general power law temperature 
dependence. From such laws one cannot form a second order parabolic 
or telegraph-type equation. We consider the original non-linear 
hyperbolic system itself with the self-similar Ansatz for the temperature 
distribution and for the heat flux. As results continuous and shock-
wave solutions are presented. For physical establishment numerous 
materials with various temperature dependent heat conduction 
coefficients are mentioned.

44.90.+c, 02.30.Jr

In contemporary heat transport theory (ever since Maxwell’s paper 
[1]) it is widely accepted in the literature that only for stationary and 
weakly non-stationary temperature fields the constitutive equation 
assumes that a temperature gradient ∇T instantaneously produces heat 
flux q according to the Fourier law.

q(x,t)=-κ∇T(x,t)				                (1)

Combining this equation with the energy conservation law the 
usual parabolic heat conduction equation is given. Heat conduction 
mechanisms can be classified via the temperature dependence of the 
coefficient κ :Tv. There are three different cases of thermal conductivity, 
normal heat conduction which obeys the Fourier law (v=0), slow (v>0) 
and fast heat conduction -2<v<0.

In plasma physics if the temperature range is between 105K and 
108 K then the coefficient of the heat conductivity κ depends on 
the temperature and density of the material. It is usually assumed 
to have a power dependence κ=κ0T

vvµ
 where v=1/ρ is the specific 

volume the coefficient κ0 and the exponents v, µ depend on the heat 
conduction mechanism [2]. With radiation heat conduction one 
has 4 ≤ v≤ 6, 2mm1≤ µ ≤ 2; with electron heat conduction and fully 
ionized plasma v=5/2, 2mmµ=0. For magnetically confined non-
neutral plasma the classical heat conduction coefficient is the following 

[3] 3/21
2[ ]c ln c T

T
κ ≈ . Parabolic thermal wave theory is based on this 

approach [2,4]. In plasmas heat conduction is strongly coupled to 
flow properties which we will not consider in the following. The linear 

parabolic theory predicts infinite speed of propagation which is known 
as the "paradox of heat conduction" (PHC). The following two theories 
resolve this contradiction.

However, if the time scale of local temperature variation is very 
small, Eq. (1) is replaced by

q(x,t=τ)=-κ∇T(x,t)				   (2)

Where τ is called the thermal relaxation time. This is a 
thermodynamic property of the materials which was determined 
experimentally for large number of materials. Although τ turns out 
to be very small in many instances e.g. is of order of picoseconds for 
most metals, there are several materials where this is not the case, most 
notably sand (21 s), H acid (25 s), NaHCO3 (29 s), and biological tissue 
(1-100 s) [5].

Unlike the Fourier’s heat conduction law, this constitutive equation 
is non-local in time. The desired local character can be restored with 
the Taylor expansion of q by time which is usually truncated at the first 
order namely

( , )( , ) = ( , ).q x tq x t T x t
t

τ κ∂
+ − ∇

∂
			                (3)

This is the well-known Cattaneo heat conduction law [6] the 
second term on the left hand side is known as the "thermal intertia". 
Combining this constitutive equation with the energy conservation 
yields the hyperbolic telegraph heat conduction equation where τ and  
are constants. Hyperbolic equations usually ensure finite propagation 
velocity. Unfortunately, the usual telegraph equations has no self-
similar solutions which would be a desirable physical property. In 
the work of [7] a non-autonomous telegraph-type heat conduction 
equation is presented with self-similar non-oscillating compactly 
supported solutions. A review with a large number of physical models 
of heat waves can be found in [5,8]. A recent work on the speed of heat 
waves was published by [9].
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Our starting point is the following

= ,t r
qq Tκ
τ τ

− − 					                     (4)

0 = .t r
qc T q
r

− − 					                   (5)

The first equation of the system is the generalized Fourier-Cattaneo 
heat conduction law and the second one is the energy conservation 
condition for the radial coordinate. The heat flux q=q(r, t) and the 
temperature T=T(r, t) have radial coordinate and time dependence. 
The subscripts r and t denote the partial derivatives with respect to 
the radial coordinate and the time, respectively. (From now on we 
investigate the radial coordinate of a cylindrical symmetric problem as 
spatial dependence.) The parameter c0=ρc where ρ is the mass density 
and c is the specific heat. Second order effects such as compressibility 
are neglected (ρ and c are constants during the process).

In the following we shall suppose that the heat conduction 
coefficient and the thermal relaxation depend on temperature on the 
following way:

κ=κ0T
ω, 1cmτ=τ0T

-δ	        (6)

The κ0 and τ0 are real numbers with the proper physical dimensions. 
Now our dimensionless system reads:

qt=-Tεq-Tε+ωTr					                   (7)

= .t r
qT q
r

− − 					                     (8)

There are various phenomenological heat conduction laws available 
for all kind of solids, without completeness we mention some well-
known examples. For pure metals according to [10] (Page 275 Eq. 27.3) 
the Wiedemann-Franz law the thermal conductivity is proportional 
with the electrical conductivity times the temperature κ=σLT The 
proportionality constant L is the so called Lorentz number with the 
approximate numerical value of 2.44 × 10-8WΩK-2. For exact numerical 
data for various metals see [11]. The relaxation time τ is proportional 
to the heat conduction coefficient divided by the temperature. For 
metals with impurities the thermal resistivity (inverse of the thermal 
conductivity) is κ-1=AT2+BT-1 where A and B can be obtained from 
microscopic calculation based on quantum mechanics [10] (Page 297 
Eq. 40.11).

A hard-sphere model for dense fluids from [12] derives a relation 
where the heat flux q(x,t)=a∇T(x,t)+q2(x,t) which certainly means a non-
linear heat propagation process. For the heat conduction in nanofluid 
suspensions [13] derives the κ ≈ c /(T2-T1) law with additional time 
dependence. Another exotic and very promising new materials are the 
carbon nanotubes which have exotic heat conduction properties. Small 
et al. [14] performed heat conductivity measurements and found that 
at low temperatures there are two distinct regimes κ(T): T2.5(T<50K) 
and κ(t): T2(50<T<150K). Beyond this regime there is a deviance from 
this quadratic temperature dependence and the maximum κ value lies 
at 320 K. Above this value - at large temperatures - there is a κ(T): 
1/T dependence according to [15]. Additional nanoscale systems (like 
silicon films, or multiwall carbon nanotubes) have exotic temperature 
dependent heat conduction coefficients as well, for more see [16]. 
For encased graphene the heat conduction coefficient is κ : Tβ where 
1.5<β<2 at low temperature (T<150K) [17]. A recent review of thermal 
properties of graphene and nanostructured carbon materials can be 
found in [18].

Our model is presented to describe the heat conduction of any kind 
of solid state without additional restrictions, therefore room or even 

higher temperature can be considered with large negative ω exponents.

Even from these examples we can see that it has a need to investigate 
the general heat conduction problem, where the coefficients have 
general power law dependence.

We look for the solutions of (7,8) in the most general self-similar 
form.

T=t-αf(η), q=t-δg(η).				                  (9)

For a better transparency in the following we introduce a new 
variable = r

t β
η , where α, β, δ are all real numbers.

The similarity exponents α, δ and β are of primary physical 
importance since α, δ represents the rate of decay of the magnitude 
T or q, while β is the rate of spread (or contraction if <0 ) of the space 
distribution as time goes on. Self-similar solutions exclude the existence 
of any single time scale in the investigated system.

We substitute (9) into (7) and (8). It can be checked that
1 1 2 3= , 3 = , 3 = , 3 = 1.

1 2( 1) 2( 1)
mm mm mmα β δ ε ω

ω ω ω+ + +
  (10)

Then we can obtain the shape functions f and g the following 
ordinary differential equation (ODE) system

1 2 1= ,g g gf f fω ωδ βη + +′ ′+ + 			               (11)
2( ) = ( )g fη β η′ ′ 					                  (12)

where prime means derivation with respect to η.

The first lucky moment is that (12) relates f and g in a simple way

g=βηf	(13)

if the α=2β universality relation is fulfilled.

Note, that we can immediately read how the self-similar solutions 
of the temperature distribution T and the heat flux q depend on ω

2 31
2( 1)1

1 1
2( 1) 2( 1)

= , 8 = .r rT t f mmq t g
t t

ω
ωω

ω ω

+−
++

+ +

   
   
      
   

		               (14)

The parameter dependence of the complete heat conduction 
coefficient and relaxation time can be expressed via ω as well

1 11
0 01 1

2( 1) 2( 1)

= , = .r rt f t f
t t

ω
ω ωω

ω ω

κ κ τ κ
−

− ++

+ +

   
   
      
   

		                 (15)

Recall that  >-1. These are already very informative and useful 
relations to investigate the global properties of the solutions, note 
that such kind of analysis are available for large number of complex 
mechanical and flow problems [19].

Substituting these relations back to Eq. (11) after some algebra we 
arrive at the following non-linear first-order ODE

( )2 2 2 1 1
2 = [ (2 1)].

2
df ff f

d
ω ωββ η β

η
+ +− − + 		                 (16)

Put y=η2 and x=f. With this notation eq. (16) becomes linear for 
y(x) (this is the second lucky moment of investigation):

2 2 1

1
( ) 4( 1)= .
[( 1) 2]

dy y x x
dx x x

ω

ω

ω
ω ω

+

+

− +
+ − −

				                 (17)

Plainly, f  x is a solution to eq. (16). If y(x) the solution of eq. 
(17) is strictly monotonic then so is the inverse function f=x and no 
discontinuity. However if y(x) is not monotonic on some interval (x1, 
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x2) and has a turning point at x0ε(x1, x2) then the inverse (f=x) has sense 
on [0,y(x)] only. One sets f=0 for y> y(x0) and the discontinuity a y(x0) 
is apparent. The analytical investigation of the linear equation (17) is, 
in general easier than of eq (16). In some cases (for some ω s) one can 
have more explicit or almost explicit solutions.

There are two examples:

The first case is for ω=0,(α=1,β=1/2,δ=3/2,ε=1).

This example was studied by [20] in some details. The 
corresponding ODE (17) reads y’=(y-4x)/x(x-2) which has a solution 

1/2
1= 8 [( 2) / ] [ 8 ( 2)]y x x c ln x x+ − − + −  where c1 is a constant.

It is clear that must be x ≥ 2 and y(x) is monotonic for x>2 until 
x0 where y=0. This means that x(y) exists and monotonic on some 
interval [0,y0], x(y0)=2; for y ≥ y0 we have x(y)=0 so the discontinuity. 
For a better understanding Figure 1a presents the graph of solution of 
Eq. (17) through the point (3,0.5). The inverse of this function for x>2 
is shown on Figure 1b (the nonzero part). The solid line is a solution 
through the f(0)=10.8 point. Figure 2 presents the theoretical shock-
wave propagation of the temperature distribution T(r, t) for ω=0.

The second case is for ω=-1/2,(α=2,β=1,δ=2,ε=1/2).

Now Eq. (17) takes the form of = 2( 1) / [ ( 3)]dy y x x
dx

− − . It can 
be checked that y=c2x

-2/3(x1/2-3)4/3 is a solution for any c2>0. Take 
c2=0. The function y(x) is monotonic on (0,9), y(9)=0. Returning to 
original variables we have f=9/[(η2)3/4+1]2 (which is plainly less than 
9!) According to eq. (14) temperature and heat flux distributions are

3/2 3/2 2 3/2 3/2 2
9 9= , 2 = .

( ) ( )
t rT cmq

r t r t+ +
		                (18)

Figure 3 presents the time and the radial coordinate dependence 
of the temperature and the heat flux. These solutions are not 
discontinuous. Analytical and numerical calculus suggest that ω=-1/2 
is a critical exponent: for -1<ω ≤ -1/2 the solutions are continuous, for 
the shocks always appear ω>-1/2.

Summary
We presented a hyperbolic model for heat conduction in solids 

where the relaxation time and heat conduction coefficients are power 
law functions of time. There are basically two different regimes available 
for different power laws. For 1<ω ≤ -1/2 the solutions are continuous 
for all positive time and radial coordinate, for ω>-1/2 the solutions 
are only continuous on a finite and closed [0: η0] interval and have a 
finite jump at the the endpoint η0. As physical interpretation numerous 
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Figure 1: The direction field of (a) Eq. (17) for!=0 and (b) Eq. (16) for!=0 The solid line presents numerical solutions for a) y(3)=0:5 and for b) f (0)=10:8. 

Figure 1: The direction field of (a) Eq. (17) for !=0 and (b) Eq. (16) for!=0 The solid line presents numerical solutions for a) y (3)=0:5 and for b) f (0)=10:8.

 
 
 
 
 
 Figure 2: The shock-wave propagation of the temperature distribution of T (r; t) for !=0 Figure 2: The shock-wave propagation of the temperature distribution of T (r; t) for !=0
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materials and solid state systems were mentioned with temperature 
dependent heat conduction coefficients.
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