ISSN: 2684-4591 Open Access

HCM: Advancements in Diagnosis, Treatment and Future

Isabelle Dupont*

Department of Cardiology, Hôpital Pitié-Salpêtrière, Sorbonne University, Paris, France

Introduction

These guidelines represent a significant update for managing hypertrophic cardiomyopathy, emphasizing a patient-centered approach to diagnosis, risk stratification, and treatment strategies, including pharmacologic, interventional, and surgical options. They incorporate the latest evidence to help clinicians navigate the complexities of HCM care effectively [1].

This review highlights the evolving landscape of hypertrophic cardiomyopathy, focusing on current diagnostic challenges, advanced imaging techniques, and emerging therapeutic approaches. It covers genetic insights and the need for individualized management strategies to improve patient outcomes and quality of life [2].

This comprehensive review delves into the complex strategies for assessing sudden cardiac death risk in hypertrophic cardiomyopathy patients. It discusses the utility of various clinical and imaging parameters, along with the role of implantable cardioverter-defibrillators (ICDs) for primary prevention, emphasizing the importance of a nuanced, patient-specific approach [3].

This article explores the journey of mavacamten, a novel cardiac myosin inhibitor, from its development in clinical trials to its current application in managing symptomatic obstructive hypertrophic cardiomyopathy. It covers the efficacy, safety, and practical considerations for integrating mavacamten into clinical practice, marking a significant advancement in therapeutic options [4].

This review discusses the unique challenges and considerations in managing hypertrophic cardiomyopathy in pediatric populations. It covers diagnostic approaches, risk stratification for sudden cardiac death in children, and current treatment modalities, including both medical and interventional therapies, while also looking ahead at future therapeutic developments [5].

This article reviews the significant advancements in cardiac magnetic resonance (CMR) imaging for diagnosing and managing hypertrophic cardiomyopathy. It highlights how CMR provides detailed morphological and functional assessments, aiding in accurate diagnosis, risk stratification, and guiding therapeutic decisions by visualizing myocardial fibrosis and structural abnormalities [6].

This paper challenges traditional exercise restrictions in hypertrophic cardiomyopathy patients, advocating for a more personalized approach. It discusses new evidence suggesting that carefully prescribed, moderate-intensity exercise might be safe and even beneficial for some patients, emphasizing the need for shared decision-making and individualized risk assessment [7].

This review provides an in-depth look at the evolving therapeutic landscape for hypertrophic cardiomyopathy, discussing both established and novel pharmacologi-

cal agents, including myosin inhibitors, and highlighting the growing understanding of disease pathogenesis. It emphasizes the shift towards targeted therapies that address the underlying molecular defects of HCM [8].

This article explores the promising advancements in gene therapies for hypertrophic cardiomyopathy, including gene editing techniques like CRISPR and gene silencing approaches. It discusses how these novel strategies aim to correct or mitigate the genetic defects underlying HCM, potentially offering curative options and a paradigm shift in treatment [9].

This review provides a detailed overview of advanced imaging techniques crucial for the diagnosis, risk stratification, and management of hypertrophic cardiomy-opathy. It covers the roles of echocardiography, cardiac MRI, and nuclear imaging in characterizing myocardial abnormalities, identifying risk markers, and guiding therapeutic interventions [10].

Description

Hypertrophic Cardiomyopathy, or HCM, demands a sophisticated and patient-centered management strategy, encompassing accurate diagnosis, thorough risk stratification, and a range of treatment options. Recent comprehensive guidelines provide significant updates, detailing pharmacologic, interventional, and surgical choices based on the latest evidence to navigate this complex condition effectively [1]. These guidelines, alongside ongoing research, highlight the continually evolving landscape of HCM care, addressing current diagnostic challenges and emphasizing the need for individualized management strategies that leverage genetic insights to improve patient outcomes and quality of life [2]. The shift towards a more personalized approach is central to modern HCM care.

A primary and critical concern in HCM is the assessment of sudden cardiac death (SCD) risk. Comprehensive reviews delve into intricate strategies for evaluating this risk, considering various clinical and advanced imaging parameters. The crucial role of implantable cardioverter-defibrillators (ICDs) for primary prevention is meticulously discussed, advocating for a nuanced, patient-specific approach to ensure optimal care and proactive intervention [3]. This essential risk assessment framework is further complicated when managing HCM in pediatric populations, where unique diagnostic approaches and specific risk stratification methods are not only required but also continually refined for children, alongside appropriate medical and interventional therapies tailored for their specific needs [5].

Significant strides have been made in the therapeutic landscape for HCM, offering new hope for patients. Mavacamten, a novel cardiac myosin inhibitor, exemplifies this progress, having successfully transitioned from rigorous clinical trials to practical application in managing symptomatic obstructive HCM. This develop-

Dupont I. J Biomed Pharm Sci, Volume 9:2, 2025

ment represents a key advancement, enhancing therapeutic options while carefully considering both efficacy and patient safety [4]. More broadly, the overall therapeutic landscape is rapidly evolving, now including a wider spectrum of established pharmacological agents alongside innovative new ones, such as other myosin inhibitors. This expansion reflects a deeper and more precise understanding of disease pathogenesis, propelling the field towards targeted therapies that directly address the underlying molecular defects of HCM [8].

Advanced imaging techniques are now indispensable tools in the precise diagnosis and ongoing management of HCM. Cardiac Magnetic Resonance (CMR) imaging, in particular, has seen notable advancements, offering highly detailed morphological and functional assessments of the heart. CMR proves invaluable for accurate diagnosis, effective risk stratification, and critically, for guiding therapeutic decisions by clearly visualizing myocardial fibrosis and other structural abnormalities inherent to the condition [6]. Complementing CMR, other advanced imaging modalities like echocardiography, which remains a cornerstone, and nuclear imaging play equally crucial roles in comprehensively characterizing myocardial abnormalities, identifying specific risk markers, and guiding therapeutic interventions, thereby providing a holistic and detailed diagnostic picture for each patient [10].

Looking ahead, the future of HCM treatment is incredibly promising, with advancements in gene therapies taking center stage. Emerging techniques such as CRISPR and various gene silencing approaches aim to fundamentally correct or mitigate the specific genetic defects that cause HCM. These novel strategies hold the profound potential for curative options, signifying a revolutionary paradigm shift in treatment modalities [9]. Furthermore, even long-standing clinical recommendations, like those concerning exercise, are undergoing re-evaluation. Traditional exercise restrictions are actively being challenged by new evidence. This research suggests that carefully prescribed, moderate-intensity exercise might indeed be safe and even beneficial for some HCM patients, thereby calling for shared decision-making and highly individualized risk assessments to redefine patient activity guidelines and improve quality of life [7]. These ongoing and diverse developments collectively underscore a dynamic and hopeful future for all aspects of HCM patient care.

Conclusion

Hypertrophic Cardiomyopathy (HCM) management has seen significant advancements, shifting towards a patient-centered approach. Current guidelines emphasize comprehensive diagnosis, risk stratification, and diverse treatment strategies, including pharmacologic, interventional, and surgical options. Research also highlights ongoing diagnostic challenges and the growing role of advanced imaging techniques like Cardiac Magnetic Resonance (CMR) in providing detailed morphological and functional assessments, aiding in precise diagnosis and risk stratification. A critical area of focus is assessing sudden cardiac death (SCD) risk, with discussions around clinical parameters, imaging, and the role of implantable cardioverter-defibrillators (ICDs).

Therapeutic options are expanding, exemplified by the introduction of mavacamten, a novel cardiac myosin inhibitor, which has moved from clinical trials into practice for symptomatic obstructive HCM. The broader therapeutic landscape for HCM is evolving, with both established and new pharmacological agents, alongside a deeper understanding of disease pathogenesis driving targeted therapies. Beyond adults, specific considerations for managing HCM in pediatric populations are crucial, covering diagnostic approaches, SCD risk stratification in children, and current treatment modalities. Interestingly, traditional exercise restrictions are being challenged, with new evidence suggesting personalized, moderate-intensity exercise might be safe and beneficial for some patients. Looking ahead, emerging gene therapies, including CRISPR and gene silencing, show promise in correcting underlying genetic defects, representing a potential paradigm shift in curative options for HCM. This collective body of work underscores the dynamic nature of HCM care, driven by innovation in diagnostics and treatment.

Acknowledgement

None.

Conflict of Interest

None.

References

- Sara Saberi, Anjali T. Owens, James L. Januzzi Jr.. "2023 AHA/ACC/ASE/HGVS/ISCM/SCMR/SAEM/SCAI/SIR/STS/SVS Guideline for the Management of Patients With Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines." Circ Res 133 (2023):849-851.
- Martin S. Maron, Jonathan L. Hellawell, Barry J. Maron. "Hypertrophic Cardiomyopathy: Current Challenges and Future Directions." JACC Cardiovasc Imaging 14 (2021):866-874.
- Ronan P. O'Connell, Iacopo Olivotto, Evaristo Biagini. "Risk stratification and primary prevention of sudden cardiac death in hypertrophic cardiomyopathy: a review." Eur Heart J 43 (2022):4530-4543.
- Iacopo Olivotto, Christopher Semsarian, Philipp Bahrmann. "Mavacamten in Hypertrophic Cardiomyopathy: From Clinical Trials to Clinical Practice." J Clin Med 11 (2022):4954.
- Giuseppe Limongelli, Filomena Formisano, Martina Di Fraia. "Hypertrophic Cardiomyopathy in Children: Current Management and Future Perspectives." J Clin Med 10 (2021):4197.
- Takehiro Koga, Ryosuke Sakata, Makoto Inomata. "Recent advances in cardiac magnetic resonance imaging for hypertrophic cardiomyopathy." J Cardiol 76 (2020):1-8.
- Antonio Pelliccia, Giuseppe Limongelli, Annamaria Biffi. "Exercise in patients with hypertrophic cardiomyopathy: a call for a change in paradigm." Eur Heart J 42 (2021):1243-1256.
- Christopher Semsarian, Nancy K. Sweitzer, Martin S. Maron. "Hypertrophic cardiomyopathy: the therapeutic landscape, 2023." Eur Heart J 44 (2023):4569-4581.
- Yasuhiro Maekawa, Masaru Utsunomiya, Ryota Kawakami. "Emerging Gene Therapies for Hypertrophic Cardiomyopathy." J Clin Med 11 (2022):1718.
- James C. Moon, Roberto Barriales-Villa, Juan R. Gimeno-Blanes. "Advanced imaging in hypertrophic cardiomyopathy: a review." Eur Heart J 41 (2020):843-855.

How to cite this article: Dupont, Isabelle. "HCM: Advancements in Diagnosis, Treatment and Future." *J Biomed Pharm Sci* 09 (2025):310.

Dupont I.	J Biomed Pharm Sci, Volume 9:2, 2025
*Address for Correspondence: Isabelle, Dupont, Department of Cardiology, Hôpital Pitié-Salpêtrière, Sorbonne University, Paris, Fra	ance, E-mail: isabelle.dupont@soiv.fr
Copyright: © 2025 Dupont I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, we and reproduction in any medium, provided the original author and source are credited.	hich permits unrestricted use, distribution
Received: 03-Mar-2025, Manuscript No. jigc-25-172256; Editor assigned: 05-Mar-2025, PreQC No. P-172256; Reviewed: 19-24-Mar-2025, Manuscript No. R-172256; Published: 31-Mar-2025, DOI: 10.37421/2684-4591.2025.9.310	Mar-2025, QC No. Q-172256; Revised: