
Research Article Open Access

Volume 7 • Issue 4 • 1000278J Electr Electron Syst, an open access journal
ISSN: 2332-0796

Open AccessResearch Article

Journal of
Electrical & Electronic SystemsJo

ur
na

l o
f E

lec
trical & Electronic System

s

ISSN: 2332-0796

Daniel Kho et al., J Electr Electron Syst 2018, 7:4
DOI: 10.4172/2332-0796.1000278

*Corresponding author: Daniel Kho CK, Faculty of Engineering, Multimedia
University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia, Tel:
60163330498; E-mail: daniel.kho@synvue.com

Received October 04, 2018; Accepted October 25, 2018; Published November
01, 2018

Citation: Daniel Kho CK, Ahmad Fauzi MF, Lim SL (2018) Hardware Implementation
of Low-Latency 32-bit Floating-Point Reciprocal. J Electr Electron Syst 7: 278. doi:
10.4172/2332-0796.1000278

Copyright: © 2018 Daniel Kho CK, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.

Hardware Implementation of Low-Latency 32-bit Floating-Point
Reciprocal
Daniel Kho CK*, Ahmad Fauzi MF and Lim SL
Faculty of Engineering, Multimedia University, Malaysia

Abstract
As the speed requirements of imaging and communications systems increase, the latency requirements of

digital circuits also become stringent. Due to such tight latency or timing requirements, large-stage pipelined
circuits need to be redesigned to meet the low-latency requirements. Most modern imaging and communications
systems rely on digital signal processing (DSP) that compute complex mathematical operations. The emergence
of powerful and low-cost field programmable gate array (FPGA) devices with hundreds of arithmetic multipliers
has enabled many such DSP hardware applications, traditionally implemented only as software solutions.
The reciprocal square root algorithm is a popular technique for computing square roots, used widely in many software
applications. This paper shows how this algorithm can be implemented efficiently on hard-ware, and is suitable for low-
latency mathematically-intensive applications. Using a low-cost FPGA device, the algorithm takes up less than 1000
look-up-tables (LUTs), which on an Artix XC7A200T device, translates to less than 1% of all the LUT resources in the
chip.

Keywords: Reciprocal; Square root; Inverse square root; Non-
restoring; FPGA; ASIC; VHDL

Introduction
Many signal processing and imaging applications de-pend on the

computation of non-linear equations. The square root is one such non-
linear operation that is used by such applications. In image and video
processing, the square root is used to calculate the magnitude of the
gradient of an image, root mean square error, vector normalisation,
among others.

Most square root computations are expensive and takes many
iterations to complete. In hardware, these iterations translate to clock
cycles. A highly-iterative operation such as those using Newton-Raphson
algorithms will require a high-latency hardware circuit. Therefore, such
hardware are not suitable to be used in low-latency applications such
as high-speed communications and image processing. With an already
high system clock frequency, increasing the frequency even further will
most likely result in timing issues on hardware.

Pipelining the circuit just partially works around this problem.
Due to fast-changing input data, the result from the computation of
a highly-iterative high-latency circuit could be available only after
the next request is received. Each request to compute usually comes
with a new set of data. These fast changes in the input data while the
computation is still in progress may corrupt the final result which is
yet to be computed. To work around this problem, more storage logic
is being added to buffer the incoming data, which in turn increases
the area and power consumption, slows down the entire circuit, and
increases the complexity unnecessarily Figure 1 illustrates this problem
in a timing diagram. This problem is compounded if the result from
the computation is available only after two or more such requests is
received.

Square Root Algorithms
There are several techniques to compute the square root. The

floating-point square root based on Taylor series expansion using
lookup tables and multipliers is discussed in detail by Wang [1] and
Ercegovac [2] et al. Iştoan [3] de-scribes several techniques for fixed-
point implementations of the square root. Li and Chu [4] describes the

FPGA im-plementation of the single-precision floating-point square
root, while Nanhe et al. [5] describes both fixed- and floating-point
square root implementations. These square root implementations are
based on concepts such as the non-restoring algorithm [4], tabulate-
and-multiply, bipartite, and Taylor series expansion [1-3]. The Newton-
Raphson iterations is a common technique to improve the precision of
the result, and usually acts as the final step in many of these techniques,
including for the method described in this paper.

This paper uses the techniques described by Lomont [6] and
Robertson [7]. However, most of these techniques were implemented
as software algorithms. Zafar S [8] presented a similar FPGA-based
implementation which took 12 clock cycles to complete the processing.
Here, we present a low-latency FPGA-based hardware implementation
which has only 3-cycle latency. This algorithm involves multiplication,
bit-shifts, and subtraction from a “magic” constant. This magic constant
was algebraically derived by Robertson, which confirms the same value
computed numerically by Lomont in his earlier paper.

Our magic constant also uses the value 0x5f375a86 rather than
0x5f3759df as was used in Zafar’s paper. The constant 0x5f3759df was
originally used in the Quake III program, and was proven by these
authors as being less accurate compared with using new constant. In
our paper, we shall refer to this algorithm as the fast reciprocal square
root (FRSR).

The Newton-Raphson iterations

The Newton-Raphson method is an iterative technique that takes

Citation: Daniel Kho CK, Ahmad Fauzi MF, Lim SL (2018) Hardware Implementation of Low-Latency 32-bit Floating-Point Reciprocal. J Electr Electron
Syst 7: 278. doi: 10.4172/2332-0796.1000278

Page 2 of 4

Volume 7 • Issue 4 • 1000278J Electr Electron Syst, an open access journal
ISSN: 2332-0796

a current approximation, yn, and returns a new approximation yn+1,
aimed at estimating the final result more accurately. Equation 1 shows
how a new estimate is being computed.

1
()
()

n
n n

n

f yy y
f y+ = −


 				 (1)

Where f(y) = 0 is the function to be approximated, and f_ is the first-
order derivative of f.

Performing this iteration on a reciprocal square root function 	
1y
h

= gives

2
1()f y h
y

= − 			 	 (2)

which yields the estimate yn+1 as

2
1 (3)

2
n

n n
yy hy+ = − 				 (3)

Equation 3 will later be computed in floating-point hardware.

The Reciprocal Square Root
In the IEEE 754 floating-point system, a 32-bit single-precision

floating-point number f can be physically represented as shown in
Figure 2. The representation consists of three parts: the sign bit s, the
exponent field q, and the mantissa field M.

We can write f in equation form, as shown in Equation 4.
8 127(1) . .2qf m −= − 				 (4)

Where s denotes the sign and indicates whether the mantissa, is
even or odd, m denotes the normalised mantissa, and 2q-127 denotes the
biased exponent. The normalised mantissa component is calculated
from the mantissa field represented physically as shown in Figure 2.

231
2
Mm = + 				 (5)

 The reciprocal square root of f can be written as
1 0 63

2
127 0

1 1 1 1 (2) 2
2 2

qq

q qf m m

− −

−
= = 		 (6)

Let zq0 represent the mantissa field of Equation 6
1 0

0
(2) q

qz
m

−
= 				 (7)

When q is even, q0 = 0. We have

0
2 2z

mm
= = 				 (8)

When q is odd, q0 = 1, giving us

1
1z
m

= 				 (9)

Depending on whether the physical mantissa M is large or small, the
estimate ŷ can be found [6]. Equation10 estimates the mantissa field
of ()ŷ x . Because this approximation works for all valid exponents,

()ŷ x can be considered the general approximation for the reciprocal
square root 1/ x without needing different approximations for the
mantissa and the exponent fields of a float.

32 , 0 0, 1 2
4 2 4
5ˆ() 2 , 0 0, 1 2
8 4 8

1 , 0 1
2 4

t x q x t

t xy x q x t

t x q

  + − = ≤ +   
  = + − = > +  

 

+ − =



 			 (10)

The Newton-Raphson step of Equation 3 can be applied to ˆ()y x
to give

1
3ˆ ˆ ˆ() () ()
2 2n n n

xy x y x y x+
 = − 
 

 		 (11)

where x ∈[1,2)

The estimate ŷ is then minimised to give the least possible
error relative to the actual reciprocal square root function1/ x . The
maximum relative error for ŷ can be expressed as

ˆ()() 1
1/
y xe x

x
= − 				 (12)

where x = f(t).

Robertson and Lomont [6,7] notes that the optimal t value
corresponds to the floating-point constant value of 0x5f375a86. This
“magic” constant, and earlier approximations of this constant, is
being used frequently in many software algorithms that require fast
calculations of the reciprocal square root, such as computer graphics.
Our proposed hardware implementation also makes use of this
constant.

Hardware Architectures of the Fast Reciprocal Square
Root
Low-cost Output-Registered Implementation of the FRSR

Figure 3 shows the proposed hardware architecture of our
reciprocal square root algorithm. The “magic” constant is implemented
as pull-ups and pull-downs in hardware. The input data n is bit shifted
by one bit to the right, before being subtracted from the “magic”
constant. The bit-shift operation in hardware just requires rewiring
the logic to access the appropriate bits. Accessing a register set starting
from the first index instead of the zeroth index essentially gives a shift-
right-by-one result. The output of the subtractor provides a very good
initial guess of the reciprocal square root of n.

If the Newton-Raphson iterations are enabled, the result from the
subtractor is multiplied with itself to produce the square of itself, with
the input n, and with a floating-point constant 0.5f. The multiplication
is performed with floating-point inputs. Depending upon the speed of
the target hardware, the multipliers may or may not be pipelined.

Figure 1: Example timing issue of a high-latency processing block in a high-
speed circuit.

Figure 2: VHDL’s IEEE 754 floating-point representation in hardware.

Citation: Daniel Kho CK, Ahmad Fauzi MF, Lim SL (2018) Hardware Implementation of Low-Latency 32-bit Floating-Point Reciprocal. J Electr Electron
Syst 7: 278. doi: 10.4172/2332-0796.1000278

Page 3 of 4

Volume 7 • Issue 4 • 1000278J Electr Electron Syst, an open access journal
ISSN: 2332-0796

The result from this multiplication is then fed to another subtractor,
where this result is subtracted from another floating-point constant
1.5f. The output of this subtractor is then multiplied with the result
from the first subtractor to produce the reciprocal square root estimate.
This result may be looped back to become the new value of n if more
iterations are required. Finally, the reciprocal square root result can
also be multiplied by the input n to produce the square root estimate.
This final result can be clocked by a flip-flop before being read by other
logic.

Pipelined implementation of the FRSR

The same circuit of Figure 3 can also be pipelined if some of the
computational elements are taking a long time to complete. An example
implementation is shown in Figure 4. In our case, we were using a
low-cost Artix 7 FPGA which requires the use of Xilinx’s floating-
point multiplier core. The simulation of the multi-stage pipelined
implementation is shown in Figure 5.

Results
The latency of our simple low-cost output-registered FRSR is only

three clock cycles, mainly contributed by the floating-point subtraction
core. Running on a 50-MHz clock, we managed to achieve a timing
margin of 1.65ns. Our implementation was designed with the VHDL
language, and simulated with Mentor Graphics Modelsim. We have
implemented the design on a low-cost Xilinx Artix 7 XC7A200TFBG676
FPGA device, using Xilinx Vivado’s default synthesis and place-and-
route settings. The software version used was Vivado 2017.4.

In the case where the input n is a 32-bit unsigned integer, as is
the case for our image processing application, the Newton-Raphson
iterations can be omitted while still maintaining an accuracy of 0.3. This
is especially useful in applications where accuracy is not as important
as speed, and a rough estimate of the reciprocal square root is sufficient.
If more precision is required, the final output can still be fed back to
the input n to go through a couple more iterative cycles. An accuracy
of 1.6% (0.016) can be achieved for unsigned integer inputs after one
Newton-Raphson iteration, while 0.01% (0.0001) accuracy can be
achieved after two iterations. The design can also accept floating-point
input, where the accuracy would follow the ones reported by Lomont
and Robertson [6,7].

Functional simulations and hardware synthesis

Figure 5 shows the simulations of our FRSR implementations. For
basic verification on hardware, we used Xilinx’s ChipScope integrated
logic analyzer to acquire real-time waveforms from our development
board.

Table 1 shows the resource utilisation of our implementation
compared against previous implementations. In our paper, we have
implemented our floating-point algorithm using the 32-bit IEEE single-
precision format 32(8,23). Wang [1] noted in her 2007 paper that her
32-bit floating-point implementation takes up 351 slices (LUTs) (1%),
3 block RAMs (2%), and 9 embedded multipliers (6%), on a Xilinx
Virtex II XC2V6000 FPGA. Now, with modern FPGAs packing lots of
resources, our implementation takes up only 635 LUTs which translates
to a mere 0.47% of a low-cost Artix 7 XC7A200TFBG676 FPGA. Our
implementation does not use any block RAMs since there is no need
for a look-up table in our square root implementation. We use 12 DSP
multipliers, which on a modern low-cost FPGA such as the Artix 7,
translates to only 1.62% of the entire DSP resources within the FPGA.

Our selection of DSPs and LUTs when generating the floating-

point cores enable us to achieve very low latency in our design. The
only delay was contributed by the three-cycle latency from the floating-
point subtraction. Table 2 show the latency of the design, compared
against other implementations or algorithms.

Discussion
Many digital signal processing (DSP) and digital imaging hardware

avoid implementing the square root function due to its perceived
complexity [9-14]. As the demand for faster processing increases,
latency is also becoming an issue that increasingly needs to be resolved.
A low-latency reciprocal square root implementation on hardware
could help many computationally-intensive DSP hardware main-tain
its precision while also complete computations in the fewest clock
cycles possible. We have presented a feasible and inexpensive square
root and reciprocal square root circuit suitable for implementation in
low-latency FPGA or ASIC hardware.

The FRSR algorithm has been traditionally used in software
requiring high-speed computations of the square root, such as graphics-
intensive video games. Li and Chu [4] have shown two hardware
implementations of their floating-point non-restoring square root
algorithms, whose performance results have been highly cited. The first
low-cost iterative version, requires 25 clock cycles (latency) for the result
to be computed. The second pipelined version, requires 15 clock cycles
for the result to be computed. For the pipelined version, it is mentioned
the issue rate is 1 clock cycle, which means new data can be issued as

Figure 3: Simple circuit of the FRSR algorithm.

Figure 4: Pipelined example of the FRSR algorithm.

Figure 5: Simulation results for output-registered and pipelined versions of
reciprocal square root.

Citation: Daniel Kho CK, Ahmad Fauzi MF, Lim SL (2018) Hardware Implementation of Low-Latency 32-bit Floating-Point Reciprocal. J Electr Electron
Syst 7: 278. doi: 10.4172/2332-0796.1000278

Page 4 of 4

Volume 7 • Issue 4 • 1000278J Electr Electron Syst, an open access journal
ISSN: 2332-0796

well as new results are available every clock cycle, although there is still
a 15-cycle delay between an input data and its corresponding result.
Zafar and Adapa [8] presented an implementation of their reciprocal
square root algorithm based on the fast inverse square root algorithm
as well, however, their implementation requires 12 clock cycles to
complete [15-17].

As we apply this algorithm on FPGA hardware, we had to ensure
that the floating-point FPGA cores were inferred correctly by the tool.
This was done by characterising the functionality of the floating-point
cores in the laboratory. We observed incorrect physical behaviour of
the floating-point basic calculations when we synthesised our design
by allowing the synthesis tool to automatically infer the floating-point
cores from the standard VHDL-2008 floating-point library. After
directly instantiating the Xilinx floating-point cores, correct behaviour
was observed in the lab. The results presented are using the directly-
instantiated cores which exhibit the intended behaviour [18-20].

Although the VHDL language provides very useful fixed- and
floating-point packages suitable for DSP-heavy applications, special
attention needs to be made to ensure that these packages are supported
by tool vendors. A successful synthesis that produces no errors
cannot be assumed to exhibit the correct behaviour, and careful lab
characterisation is necessary to ensure whether or not the tools are
synthesising these packages correctly [21].

Conclusion
The fast reciprocal square root algorithm, popularly used in many

software applications, has been shown to be a good alternative for low-
latency hardware. While there is a slight increase in logic resources
and area, this increase is negligible as the density of modern FPGAs
keeps the utilisation percentage for LUTs below 1% for a low-cost
Artix device. Although Zafar and Adapa is using a similar algorithm
as that shown in our paper, the solution presented was shown to be
more expensive and complex with the usage of 1939 LUTs. We have

Implementation LUTs FFs DSP
Y. Li & W. Chu (Iterative) [4] 82 138 0

Y. Li & W. Chu (Pipelined) [4] 408 675 0
X. Wang [9] 351 - 9
S. Zafar [5] 1939 748 2

Output-registered FRSR 635 82 12
(1 N-R iteration) (0.47%) (0.03%) (1.62%)

*Percentage values are measured with respect to the Xilinx
Artix 7 XC7A200TFBG676 FPGA on the AC701 board.

Table 1: Resource utilization of fast reciprocal square root.

Implementation Latency
Y. Li & W. Chu (Iterative) [4] 25
Y. Li & W. Chu (Pipelined) [4] 15

M. Iştoan [7] 15 to 23
X. Wang [9] 13
S. Zafar [5] 12

Output-registered FRSR 3

*Only data using 32-bit fixed and single-precision
32(8,23) floating-point formats are shown.

Table 2: Latency comparison.

shown that it is feasible and cost-effective to implement the same FRSR
algorithm on hardware with much less logic resources (635 LUTs), and
also with much lower latency (3 clock cycles).

Acknowledgment

The authors are thankful to the Ministry of Higher Education Malaysia for the
award of Fundamental Re-search Grant Scheme FRGS/1/2015/TK04/MMU/02/10
to support this project. Also, we are thankful to Richard Joseph, Jeannie Lau, and
Ang Boon Chong for the many technical discussions that helped us complete this
project in one way or another.

References

1.	 Wang X (2007) Variable Precision Floating-Point Divide and Square Root for
Efficient FPGA Implementation of Image and Signal Processing Algorithms.
Northeastern University, Massachusetts.

2.	 Ercegovac MD, Lang T, Muller JM, Tisserand A (2000) Reciprocation,
square root, inverse square root, and some elementary functions using small
multipliers. IEEE Trans Comput 49: 628-637.

3.	 Iştoan M, Pasca B (2015) Fixed-Point Implementations of the Reciprocal,
Square Root and Reciprocal Square Root Functions. HAL Id: hal-01229538.

4.	 Li Y, Chu W (1997) Implementation of single precision float-ing point square
root on FPGAs. IEEE Symp on Field-Programmable Custom Computing
Machines, Napa, California, USA, pp: 226-232.

5.	 Nanhe A, Gawali G, Ahire S, Sivasankaran K (2013) Implementation of Fixed
and Floating Point Square Root Using Non-restoring Algorithm on FPGA.
IJCEE 5: 533-537.

6.	 Lomont C (2003) Fast Inverse Square Root. West Lafayette, Indiana.

7.	 Robertson M (2012) A Brief History of InvSqrt. University of New Brunswick.

8.	 Zafar S, Adapa R (2014) Hardware architecture design and map-ping of ‘Fast
Inverse Square Root’ algorithm. ICAEE, pp: 1-4.

9.	 Kanjar De, Masilamani V (2013) A New No-Reference Image Quality Measure
for Blurred Images in Spatial Domain. Int J Image Graph 1: 39-42.

10.	 Kanjar De, Masilamani V (2013) Image Sharpness Measure for Blurred
Images in Frequency Domain. Int Conf Design Manufacturing.

11.	 Kanjar De, Masilamani V (2017) Image Quality Assessment for Blurred
Images Using Nonsubsampled Contourlet Transform Features. J Computers
12: 156-164.

12.	 Halder A, Chatterjee N, Kar A, Pal S, Pramaniket S (2011) Edge Detection: A
Statistical Approach. Int Conf Electron Comput Tech (ICECT).

13.	 Umar A, Li H, Aguirre A, Zhu Q (2012) FPGA-based reconfigurable processor
for ultrafast interlaced ultrasound and photoacoustic imaging. IEEE Trans
Ultrason Ferroelectr Freq Control 59: 1344-1353.

14.	 Nelson AE (2000) Implementation of image processing algorithms on FPGA
hardware. Vanderbilt University.

15.	 Ercegovac MD, Muller JM, Tisserand (2005) A Simple Seed Architectures for
Reciprocal and Square Root Reciprocal. IEEE.

16.	 Sajid I, Ahmed MM, Ziavras SG (2010) Pipelined imple-mentation of fixed
point square root in FPGA using modified non-restoring algorithm. ICCAE,
pp: 226-230.

17.	 Ananthalakshmi AV, Sudha GF (2017) Design of a re-versible floating-point
square root using modified non-restoring algorithm. Microprocess Microsyst
50: 39-53.

18.	 Lachowicz S (2008) Fast Evaluation of the Square Root and Other Nonlinear
Functions in FPGA. IEEE Int Symp Electronic Design Test Appl.

19.	 Gonzalez RC, Woods RE (2002) Digital Image Processing. 2nd Ed. Prentice-
Hall.

20.	 Proakis JG (1995) Digital communications. McGraw-Hill, New York.

21.	 Ashenden PJ (2010) The Designer’s Guide to VHDL, Volume 3, 3rd Ed.
Morgan Kaufmann.

https://www.semanticscholar.org/paper/Variable-Precision-Floating-Point-Divide-and-Square-Wang/4bfe42dc7d1bad4b7c20a58fe2737e13950bf4b7
https://www.semanticscholar.org/paper/Variable-Precision-Floating-Point-Divide-and-Square-Wang/4bfe42dc7d1bad4b7c20a58fe2737e13950bf4b7
https://www.semanticscholar.org/paper/Variable-Precision-Floating-Point-Divide-and-Square-Wang/4bfe42dc7d1bad4b7c20a58fe2737e13950bf4b7
http://dx.doi.org/10.1109/12.863031
http://dx.doi.org/10.1109/12.863031
http://dx.doi.org/10.1109/12.863031
https://hal.archives-ouvertes.fr/hal-01229538/file/fxpfunc.pdf
https://hal.archives-ouvertes.fr/hal-01229538/file/fxpfunc.pdf
https://pdfs.semanticscholar.org/1c3c/569f613024e8164450daf05a01163c99f72c.pdf
https://pdfs.semanticscholar.org/1c3c/569f613024e8164450daf05a01163c99f72c.pdf
https://pdfs.semanticscholar.org/1c3c/569f613024e8164450daf05a01163c99f72c.pdf
http://www.ijcee.org/index.php?m=content&c=index&a=show&catid=54&id=831
http://www.ijcee.org/index.php?m=content&c=index&a=show&catid=54&id=831
http://www.ijcee.org/index.php?m=content&c=index&a=show&catid=54&id=831
https://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
https://cs.uwaterloo.ca/~m32rober/rsqrt.pdf
http://dx.doi.org/10.1109/ICAEE.2014.6838433
http://dx.doi.org/10.1109/ICAEE.2014.6838433
http://dx.doi.org/10.12720/joig.1.1.39-42
http://dx.doi.org/10.12720/joig.1.1.39-42
http://dx.doi.org/10.1016/j.proeng.2013.09.086
http://dx.doi.org/10.1016/j.proeng.2013.09.086
http://dx.doi.org/10.17706/jcp.12.2.156-164
http://dx.doi.org/10.17706/jcp.12.2.156-164
http://dx.doi.org/10.17706/jcp.12.2.156-164
http://dx.doi.org/10.1109/ICECTECH.2011.5941707
http://dx.doi.org/10.1109/ICECTECH.2011.5941707
http://dx.doi.org/10.1109/TUFFC.2012.2335
http://dx.doi.org/10.1109/TUFFC.2012.2335
http://dx.doi.org/10.1109/TUFFC.2012.2335
http://www.isis.vanderbilt.edu/sites/default/files/Nelson_T_0_0_2000_Implementa.pdf
http://www.isis.vanderbilt.edu/sites/default/files/Nelson_T_0_0_2000_Implementa.pdf
http://dx.doi.org/10.1109/ACSSC.2005.1599944
http://dx.doi.org/10.1109/ACSSC.2005.1599944
http://dx.doi.org/10.1109/ICCAE.2010.5452039
http://dx.doi.org/10.1109/ICCAE.2010.5452039
http://dx.doi.org/10.1109/ICCAE.2010.5452039
http://dx.doi.org/10.1016/j.micpro.2017.01.010
http://dx.doi.org/10.1016/j.micpro.2017.01.010
http://dx.doi.org/10.1016/j.micpro.2017.01.010
http://dx.doi.org/10.1109/DELTA.2008.119
http://dx.doi.org/10.1109/DELTA.2008.119
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
https://arnabiitk.files.wordpress.com/2013/02/proakis-digital-communications-4th-ed.pdf
https://www.elsevier.com/books/the-designers-guide-to-vhdl/ashenden/978-0-12-088785-9
https://www.elsevier.com/books/the-designers-guide-to-vhdl/ashenden/978-0-12-088785-9

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Square Root Algorithms
	The Newton-Raphson iterations

	The Reciprocal Square Root
	Hardware Architectures of the Fast Reciprocal Square Root
	Pipelined implementation of the FRSR

	Results
	Functional simulations and hardware synthesis

	Discussion
	Conclusion
	Acknowledgment
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	References
	Table 1
	Table 2
	References

