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Abstract
As the speed requirements of imaging and communications systems increase, the latency requirements of 

digital circuits also become stringent. Due to such tight latency or timing requirements, large-stage pipelined 
circuits need to be redesigned to meet the low-latency requirements. Most modern imaging and communications 
systems rely on digital signal processing (DSP) that compute complex mathematical operations. The emergence 
of powerful and low-cost field programmable gate array (FPGA) devices with hundreds of arithmetic multipliers 
has enabled many such DSP hardware applications, traditionally implemented only as software solutions. 
The reciprocal square root algorithm is a popular technique for computing square roots, used widely in many software 
applications. This paper shows how this algorithm can be implemented efficiently on hard-ware, and is suitable for low-
latency mathematically-intensive applications. Using a low-cost FPGA device, the algorithm takes up less than 1000 
look-up-tables (LUTs), which on an Artix XC7A200T device, translates to less than 1% of all the LUT resources in the 
chip.

Keywords: Reciprocal; Square root; Inverse square root; Non-
restoring; FPGA; ASIC; VHDL

Introduction
Many signal processing and imaging applications de-pend on the 

computation of non-linear equations. The square root is one such non-
linear operation that is used by such applications. In image and video 
processing, the square root is used to calculate the magnitude of the 
gradient of an image, root mean square error, vector normalisation, 
among others.

Most square root computations are expensive and takes many 
iterations to complete. In hardware, these iterations translate to clock 
cycles. A highly-iterative operation such as those using Newton-Raphson 
algorithms will require a high-latency hardware circuit. Therefore, such 
hardware are not suitable to be used in low-latency applications such 
as high-speed communications and image processing. With an already 
high system clock frequency, increasing the frequency even further will 
most likely result in timing issues on hardware.

Pipelining the circuit just partially works around this problem. 
Due to fast-changing input data, the result from the computation of 
a highly-iterative high-latency circuit could be available only after 
the next request is received. Each request to compute usually comes 
with a new set of data. These fast changes in the input data while the 
computation is still in progress may corrupt the final result which is 
yet to be computed. To work around this problem, more storage logic 
is being added to buffer the incoming data, which in turn increases 
the area and power consumption, slows down the entire circuit, and 
increases the complexity unnecessarily Figure 1 illustrates this problem 
in a timing diagram. This problem is compounded if the result from 
the computation is available only after two or more such requests is 
received.

Square Root Algorithms
There are several techniques to compute the square root. The 

floating-point square root based on Taylor series expansion using 
lookup tables and multipliers is discussed in detail by Wang [1] and 
Ercegovac [2] et al. Iştoan [3] de-scribes several techniques for fixed-
point implementations of the square root. Li and Chu [4] describes the 

FPGA im-plementation of the single-precision floating-point square 
root, while Nanhe et al. [5] describes both fixed- and floating-point 
square root implementations. These square root implementations are 
based on concepts such as the non-restoring algorithm [4], tabulate-
and-multiply, bipartite, and Taylor series expansion [1-3]. The Newton-
Raphson iterations is a common technique to improve the precision of 
the result, and usually acts as the final step in many of these techniques, 
including for the method described in this paper.

This paper uses the techniques described by Lomont [6] and 
Robertson [7]. However, most of these techniques were implemented 
as software algorithms. Zafar S [8] presented a similar FPGA-based 
implementation which took 12 clock cycles to complete the processing. 
Here, we present a low-latency FPGA-based hardware implementation 
which has only 3-cycle latency. This algorithm involves multiplication, 
bit-shifts, and subtraction from a “magic” constant. This magic constant 
was algebraically derived by Robertson, which confirms the same value 
computed numerically by Lomont in his earlier paper.

Our magic constant also uses the value 0x5f375a86 rather than 
0x5f3759df as was used in Zafar’s paper. The constant 0x5f3759df was 
originally used in the Quake III program, and was proven by these 
authors as being less accurate compared with using new constant. In 
our paper, we shall refer to this algorithm as the fast reciprocal square 
root (FRSR).

The Newton-Raphson iterations

The Newton-Raphson method is an iterative technique that takes 
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a current approximation, yn, and returns a new approximation yn+1, 
aimed at estimating the final result more accurately. Equation 1 shows 
how a new estimate is being computed.
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Where f(y) = 0 is the function to be approximated, and f_ is the first-
order derivative of  f.

Performing this iteration on a reciprocal square root function 	
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which yields the estimate yn+1 as
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Equation 3 will later be computed in floating-point hardware.

The Reciprocal Square Root
In the IEEE 754 floating-point system, a 32-bit single-precision 

floating-point number f can be physically represented as shown in 
Figure 2. The representation consists of three parts: the sign bit s, the 
exponent field q, and the mantissa field M.     

We can write f in equation form, as shown in Equation 4.
8 127( 1) . .2qf m −= −          				                (4)

Where s denotes the sign and indicates whether the mantissa, is 
even or odd, m denotes the normalised mantissa, and 2q-127 denotes the 
biased exponent. The normalised mantissa component is calculated 
from the mantissa field represented physically as shown in Figure 2.
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 The reciprocal square root of f can be written as
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Let zq0 represent the mantissa field of Equation 6
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When q is even, q0 = 0. We have
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When q is odd, q0 = 1, giving us

1
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Depending on whether the physical mantissa M is large or small, the 
estimate ŷ  can be found [6]. Equation10 estimates the mantissa field 
of ( )ŷ x . Because this approximation works for all valid exponents, 

( )ŷ x can be considered the general approximation for the reciprocal 
square root 1/ x  without needing different approximations for the 
mantissa and the exponent fields of a float.
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The Newton-Raphson step of Equation 3 can be applied to ˆ( )y x
to give

1
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where x ∈[1,2)

The estimate ŷ  is then minimised to give the least possible 
error relative to the actual reciprocal square root function1/ x . The 
maximum relative error for ŷ  can be expressed as 

ˆ( )( ) 1
1/
y xe x

x
= −           				                  (12)

where x = f(t).

Robertson and Lomont [6,7] notes that the optimal t value 
corresponds to the floating-point constant value of 0x5f375a86. This 
“magic” constant, and earlier approximations of this constant, is 
being used frequently in many software algorithms that require fast 
calculations of the reciprocal square root, such as computer graphics. 
Our proposed hardware implementation also makes use of this 
constant.

Hardware Architectures of the Fast Reciprocal Square 
Root
Low-cost Output-Registered Implementation of the FRSR

Figure 3 shows the proposed hardware architecture of our 
reciprocal square root algorithm. The “magic” constant is implemented 
as pull-ups and pull-downs in hardware. The input data n is bit shifted 
by one bit to the right, before being subtracted from the “magic” 
constant. The bit-shift operation in hardware just requires rewiring 
the logic to access the appropriate bits. Accessing a register set starting 
from the first index instead of the zeroth index essentially gives a shift-
right-by-one result. The output of the subtractor provides a very good 
initial guess of the reciprocal square root of n.

If the Newton-Raphson iterations are enabled, the result from the 
subtractor is multiplied with itself to produce the square of itself, with 
the input n, and with a floating-point constant 0.5f. The multiplication 
is performed with floating-point inputs. Depending upon the speed of 
the target hardware, the multipliers may or may not be pipelined.

Figure 1: Example timing issue of a high-latency processing block in a high-
speed circuit.

Figure 2: VHDL’s IEEE 754 floating-point representation in hardware.
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The result from this multiplication is then fed to another subtractor, 
where this result is subtracted from another floating-point constant 
1.5f. The output of this subtractor is then multiplied with the result 
from the first subtractor to produce the reciprocal square root estimate. 
This result may be looped back to become the new value of n if more 
iterations are required. Finally, the reciprocal square root result can 
also be multiplied by the input n to produce the square root estimate. 
This final result can be clocked by a flip-flop before being read by other 
logic.

Pipelined implementation of the FRSR

The same circuit of Figure 3 can also be pipelined if some of the 
computational elements are taking a long time to complete. An example 
implementation is shown in Figure 4. In our case, we were using a 
low-cost Artix 7 FPGA which requires the use of Xilinx’s floating-
point multiplier core. The simulation of the multi-stage pipelined 
implementation is shown in Figure 5.

Results
The latency of our simple low-cost output-registered FRSR is only 

three clock cycles, mainly contributed by the floating-point subtraction 
core. Running on a 50-MHz clock, we managed to achieve a timing 
margin of 1.65ns. Our implementation was designed with the VHDL 
language, and simulated with Mentor Graphics Modelsim. We have 
implemented the design on a low-cost Xilinx Artix 7 XC7A200TFBG676 
FPGA device, using Xilinx Vivado’s default synthesis and place-and-
route settings. The software version used was Vivado 2017.4.

In the case where the input n is a 32-bit unsigned integer, as is 
the case for our image processing application, the Newton-Raphson 
iterations can be omitted while still maintaining an accuracy of 0.3. This 
is especially useful in applications where accuracy is not as important 
as speed, and a rough estimate of the reciprocal square root is sufficient. 
If more precision is required, the final output can still be fed back to 
the input n to go through a couple more iterative cycles. An accuracy 
of 1.6% (0.016) can be achieved for unsigned integer inputs after one 
Newton-Raphson iteration, while 0.01% (0.0001) accuracy can be 
achieved after two iterations. The design can also accept floating-point 
input, where the accuracy would follow the ones reported by Lomont 
and Robertson [6,7].

Functional simulations and hardware synthesis

Figure 5 shows the simulations of our FRSR implementations. For 
basic verification on hardware, we used Xilinx’s ChipScope integrated 
logic analyzer to acquire real-time waveforms from our development 
board.

Table 1 shows the resource utilisation of our implementation 
compared against previous implementations. In our paper, we have 
implemented our floating-point algorithm using the 32-bit IEEE single-
precision format 32(8,23). Wang [1] noted in her 2007 paper that her 
32-bit floating-point implementation takes up 351 slices (LUTs) (1%), 
3 block RAMs (2%), and 9 embedded multipliers (6%), on a Xilinx 
Virtex II XC2V6000 FPGA. Now, with modern FPGAs packing lots of 
resources, our implementation takes up only 635 LUTs which translates 
to a mere 0.47% of a low-cost Artix 7 XC7A200TFBG676 FPGA. Our 
implementation does not use any block RAMs since there is no need 
for a look-up table in our square root implementation. We use 12 DSP 
multipliers, which on a modern low-cost FPGA such as the Artix 7, 
translates to only 1.62% of the entire DSP resources within the FPGA.

Our selection of DSPs and LUTs when generating the floating-

point cores enable us to achieve very low latency in our design. The 
only delay was contributed by the three-cycle latency from the floating-
point subtraction. Table 2 show the latency of the design, compared 
against other implementations or algorithms.

Discussion
Many digital signal processing (DSP) and digital imaging hardware 

avoid implementing the square root function due to its perceived 
complexity [9-14]. As the demand for faster processing increases, 
latency is also becoming an issue that increasingly needs to be resolved. 
A low-latency reciprocal square root implementation on hardware 
could help many computationally-intensive DSP hardware main-tain 
its precision while also complete computations in the fewest clock 
cycles possible. We have presented a feasible and inexpensive square 
root and reciprocal square root circuit suitable for implementation in 
low-latency FPGA or ASIC hardware.

The FRSR algorithm has been traditionally used in software 
requiring high-speed computations of the square root, such as graphics-
intensive video games. Li and Chu [4] have shown two hardware 
implementations of their floating-point non-restoring square root 
algorithms, whose performance results have been highly cited. The first 
low-cost iterative version, requires 25 clock cycles (latency) for the result 
to be computed. The second pipelined version, requires 15 clock cycles 
for the result to be computed. For the pipelined version, it is mentioned 
the issue rate is 1 clock cycle, which means new data can be issued as 

Figure 3: Simple circuit of the FRSR algorithm.

Figure 4: Pipelined example of the FRSR algorithm.

Figure 5: Simulation results for output-registered and pipelined versions of 
reciprocal square root.
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well as new results are available every clock cycle, although there is still 
a 15-cycle delay between an input data and its corresponding result. 
Zafar and Adapa [8]  presented an implementation of their reciprocal 
square root algorithm based on the fast inverse square root algorithm 
as well, however, their implementation requires 12 clock cycles to 
complete [15-17].

As we apply this algorithm on FPGA hardware, we had to ensure 
that the floating-point FPGA cores were inferred correctly by the tool. 
This was done by characterising the functionality of the floating-point 
cores in the laboratory. We observed incorrect physical behaviour of 
the floating-point basic calculations when we synthesised our design 
by allowing the synthesis tool to automatically infer the floating-point 
cores from the standard VHDL-2008 floating-point library. After 
directly instantiating the Xilinx floating-point cores, correct behaviour 
was observed in the lab. The results presented are using the directly-
instantiated cores which exhibit the intended behaviour [18-20].

Although the VHDL language provides very useful fixed- and 
floating-point packages suitable for DSP-heavy applications, special 
attention needs to be made to ensure that these packages are supported 
by tool vendors. A successful synthesis that produces no errors 
cannot be assumed to exhibit the correct behaviour, and careful lab 
characterisation is necessary to ensure whether or not the tools are 
synthesising these packages correctly [21].

Conclusion
The fast reciprocal square root algorithm, popularly used in many 

software applications, has been shown to be a good alternative for low-
latency hardware. While there is a slight increase in logic resources 
and area, this increase is negligible as the density of modern FPGAs 
keeps the utilisation percentage for LUTs below 1% for a low-cost 
Artix device. Although Zafar and Adapa is using a similar algorithm 
as that shown in our paper, the solution presented was shown to be 
more expensive and complex with the usage of 1939 LUTs. We have 

Implementation LUTs FFs DSP
Y. Li & W. Chu (Iterative) [4] 82 138 0

Y. Li & W. Chu (Pipelined) [4] 408 675 0
X. Wang [9] 351 - 9
S. Zafar [5] 1939 748 2

Output-registered FRSR 635 82 12
(1 N-R iteration) (0.47%) (0.03%) (1.62%)

*Percentage values are measured with respect to the Xilinx 
Artix 7 XC7A200TFBG676 FPGA on the AC701 board.

Table 1: Resource utilization of fast reciprocal square root.

Implementation Latency
Y. Li & W. Chu (Iterative) [4] 25
Y. Li & W. Chu (Pipelined) [4] 15

M. Iştoan [7] 15 to 23
X. Wang [9] 13
S. Zafar [5] 12

Output-registered FRSR 3

*Only data using 32-bit fixed and single-precision
32(8,23) floating-point formats are shown.

Table 2: Latency comparison.

shown that it is feasible and cost-effective to implement the same FRSR 
algorithm on hardware with much less logic resources (635 LUTs), and 
also with much lower latency (3 clock cycles).
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