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Introduction
In mathematics and physics, nonlinear partial differential 

equations are partial differential equations with nonlinear terms. A few 
nonlinear differential equations have known exact solutions, but many 
which are important in applications do not. Sometimes these equations 
may be linearized by an expansion process in which nonlinear terms 
are discarded. When nonlinear terms make vital contributions to the 
solution this cannot be done, but sometimes it is enough to retain a 
few small ones. Then a perturbation theory may be used to obtain the 
solution. The differential equations may sometimes be approximated 
by an equation with small nonlinearities in more than one way, giving 
rise to different solutions valid over different range of its parameters.

Most scientific and engineering problems are modeled by ordinary 
differential equations or partial differential equations, some of them 
are solved using the analytic methods of perturbation by Nayfeh 
[1]. In the numerical methods, stability and convergence should be 
considered so as to avoid divergence or inappropriate results. In the 
analytic perturbation methods, we should exert the small parameter in 
the equation. In numerical methods the advantage is that we have to 
use the small parameter a lot since most problems do not have known 
analytic solutions or that if they are known it is too complex to deal 
with them. The main advantage in analytic method is that it is exact 
and gives us more contexts. One of the semi-exact methods which do 
not need small or large parameters is the Homotopy Analysis Method 
(HAM), first proposed by Liao in his thesis. Liao [2] employed the basic 
ideas of homotopy in topology to propose a general analytic method 
for nonlinear problems, namely HAM, which is a powerful analytical 
method for solving linear and nonlinear differential equations. The 
HAM also avoids discretization and provides an efficient solution 
with high accuracy, minimal calculations and avoidance of physically 
unrealistic assumption. Furthermore, the HAM always provides us 
with a family of solution expressions with the auxiliary parameter 
~, the convergence region and the rate of each solution might be 
determined conveniently by the auxiliary parameter ħ. HAM contains 
the homotopy perturbation method (HPM) discussed by He [3], the 
Adomian decomposition method (ADM) examined by Allan [4], and 
the d-expansion method.

The main goal of the present study is to find the totally analytic 
solution for the problem of flow between two disks by the HAM. In 
this way, the paper has been organized as follows. In Chapter 2, the 
flow analysis and mathematical formulation are presented. We extend 
the application of the HAM to construct the approximate solutions for 
the governing equations. And we have analyzed the convergence of the 
obtained series solutions. Chapter 3 contains the results and discussion. 
Finally conclusions are summarized.

Mathematical Formulation 
Consider the axis-symmetric flow between two in finite disks 

with a distance d between them. Both disks are placed in the radial 
direction with a velocity proportional to the radii. The bottom disk is 
located in the z=0 plane. The velocity ratio of the upper disk to the 
lower one is γ and є is the amplitude of the disk. For an incompressible 
fluid without body forces and based on axis symmetric reads from the 
papers discussed by Dinarvand [5].
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Where the velocity vector ( , )= r zV u u , v is the kinematic viscosity. 
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Abstract
Purpose: The paper aims to find an analytic solution of an unsteady three di-mensional Navier-Stokes equations 

of flow between two parallel disks by using von Karman type similarity transformation.

Methodology: In this paper, the Homotopy Analysis Method (HAM) with the value of unknown convergence 
control parameter has been used to derive accurate analytic solution for an unsteady three dimensional Navier-
Stokes equations of flow between two parallel disks. The possible optimal value of the convergence control parameter 
determined by increasing the order of HAM.

Findings: The results obtained from HAM are compared with numerical results. The result shows that this 
method gives an analytic solution with high order of accuracy with a few iterations.
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By using von Karman type similarity transformations, similarity 
functions can be sought as follows,

( ), ( ),η η= =r zu rF and u dH    

Where η
γ

= =
z z
d t

 is the similarity variable. Substituting the 

similarity functions into the equations (1), (2) and (3). Therefore, the 
governing equations yields a similarity equation group
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with boundary conditions
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Where 
2

ν
=

dRe is the Reynolds number of the wall and γ is the 

parameter of the upper disk showing the velocity ratio of the upper 
disk to the bottom disk. Without loss of generality, we assumed that 
0≤ γ≤ 1.

Analytical Solution with HAM 
Due to basic idea of HAM, as described in detail by Liao [6], 

according to the boundary conditions (5), we choose

0 ( ) 1 (1 ) ,η γ η= − + − +F cost cost                      (6)

0 ( ) 0,η =H                     (7)

as initial guesses of F (Ƞ); and H(Ƞ) which satisfy the boundary 
conditions (5). Besides, we select the auxiliary linear operators L1(F); 
and L2(H) as

L1(F)=F˝,                    (8)

L2(H)=H́ ,                     (9)

satisfying the following properties

L1(C1 Ƞ+C2 Ƞ)=0,                (10)

L2(C3)=0.                  (11)

where ci; i=1; 2; 3 are arbitrary constants. If q2 [0; 1] is an embedding 
parameter and ħ is an auxiliary nonzero parameter, then the zeroth-
order deformation equations are of the following form,
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in which we define the nonlinear operators N1; and N2 as
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Clearly, when q=0 the zero-order deformation equations (12) and 
(13) give rise to:

0 0 0
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when q=1, they become:
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As q increases from 0 to 1, ˆ ( ; )ηF q  and ˆ ( ; )ηH q vary from F0(Ƞ) 
and H0(Ƞ) to F(Ƞ) and H(Ƞ). Expanding ˆ ( )ηF and ˆ ( )ηH in Maclaurin 
series with respect to the embedding parameter q and equations (14) 
and (15), we obtain
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As pointed by Liao, the convergence of the series (16) and (17) 
strongly depend upon auxiliary parameter ħ [7-18]. Assume that ħ is 
selected such that the series (16) and (17) are convergent at q=1 then 
due to equations (14) and (15) we have
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Differentiating the zero-order deformation equations (12) and (13) 
m times with respect to q, then setting q=0 and finally dividing by m! 
we have the mth-order deformation equations:

[ ]1 1 1,( ) ( ) ( ),η χ η η−− = m m m mF F R                (20)

[ ]2 1 2,( ) ( ) ( ).η χ η η−− = m m m mH H R              (21)

with the following boundary conditions

Fm(0)=Fm(1)=0 and Hm(0)=Hm(1)=0,                 (22)
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Then the solutions for equations (20) and (21) can be expressed by:
1

1 1 1,( ) [ ] 1 2,η χ η−
−= + + +m m m mF F R c c
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where c1; c2; c3 are integral constants can be found by boundary 
conditions (22). For example, we can obtain the following result 
for solving the first-order deformation equation by using symbolic 
software MATHEMATICA, and successively obtain,
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Convergence of HAM Solution 
The totally analytic series solutions of the functions F (η) and H(η) 

are given in equations (18 and 19). The convergence of these series and 
the rate of approximation for the HAM strongly depend upon the value 
of the auxiliary parameter ħ, as pointed out by Liao [7]. In general, by 
means of the ħ-curve, it is straightforward to choose a proper value of 
ħ to control the convergence of the approximation series [19-26]. To 
find the range of the admissible values of ħ, ħ-curves of F˝(0) and H́ 
(0) obtained by the 11th order approximation of the HAM for γ=0 and 
γ=1 at Re=1 ; t=1 and є=1 are plotted in Figures 1 and 2, respectively. 
From these figures, the valid regions of ħ correspond to the line 
segments nearly parallel to the horizontal axis. Sometimes this region 
is not perfectly flat to the slowly convergence rate of the series solution. 
However a value of ħ can be picked up. Therefore for our problem we 
choose ħ=0:4 [27,28].

Results and Discussion 
We studied the axis-symmetric flow between two infinite parallel 

disks and the results obtained from HAM solution are compared 
with numerical results. HAM method gives an analytic solution with 
high order of accuracy with small number of iterations. Graphical 
representation of results and tables are useful means for demonstrating 
the efficiency and accuracy of the HAM for the above problem. The 
velocity pro les in the radial direction obtained by the 11th order 
approximation of the HAM for Re=1, time and amplitude is to be 
constant with different values of γ are shown in Figure 3.

For the radial flow velocity, it is found that the velocity near the 
wall is extended by the wall movement. However, away from the wall, 
there exists an out flow in the positive radial direction to balance the 
mass strained out by the wall to be consistent within the force balance. 
For γ ≠ 0, the fluid is moved away from the wall with an outer flow in 
the radial direction near the lower disk.

Figure 4, shows that the velocity pro les in the vertical direction 
obtained by the 11th order approximation of the HAM for Re=1, time 
and amplitude is to be constant with different values of γ. The vertical 
velocity is downward near the bottom wall due to the movement of the 
wall. So the overall net flow rate is downward to balance the moving of 
the bottom disk as seen from the velocity profiles dominant for (γ<1). 
For γ ≠ 1, the net flow in the vertical direction is zero. The maximum 
negative velocity in the vertical direction decreases with the decreasing 
values of γ.

 

Figure 1: The h-curve of F"(0), obtainedby 11th order approximation of the HAM 
for γ=0, γ=1 and t=1 with Re=1.

 
Figure 2: The h-curve of H"(0), obtained by 11th order approximation of the 
HAM for γ=0, γ=1, є= 0 and t=1 with Re=1.

Figure 3: The velocity profiles in the radial direction obtained by the 11th order 
approximation of the HAM when є=1, t=1 and Re=1. 

 

Figure 4: The velocity profiles in the vertical direction obtained by the 11th order 
approximation of the HAM when є=1, t=1 and Re=1.
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From Figures 3 and 4, we can observe a very good agreement 
between the analytic results of the HAM and numerical results shown 
in Tables 1 and 2.

Figure 5, shows that, the time variation in the radial direction is 
obtained by the 11th order approximation of the HAM for fixed values 
of Re=1, є=1 and η=0:6 with the different values of γ the fluid is moving 
downward near the bottom wall. And the value of γ coincide at t=3, at 
this time the flow will become steady and after this time the value of γ 
increases and the fluid is moving near to the top wall.

From Figure 6, we observe that the time variation in the radial 
direction is obtained by the 11th order approximation of the HAM for 
fixed values of Re=1, є=1 and η=0:6 with the different values of γ. When 
increasing the value of the fluid is moving downward near the bottom 
wall. In this figure also the fluid velocity coincide at t=3, so that the flow 
will become steady at this time. After this the value of the fluid velocity 
increases and the fluid is moving upward to the top wall. Figures 7 
and 8, shows that the velocity pro les in the radial direction under two 
values of Reynolds number are illustrated for different values of γ=0 
and γ=1 by keeping time and amplitude as constant. It is obvious that 
with increasing Re, the velocity pro les get closer to the bottom wall. 
The maximum negative velocity decreases with increasing value of Re.

Figures 9 and 10, shows that the time variation in the radial 
direction and vertical direction is obtained by setting Re=1, η=0:6, t=1 
and γ=0:5 with the different values of amplitude (є) in the 11th order 
approximation of HAM. For increasing value of є, the fluid is moving 
near to the top wall with an out flow in the radial direction near the 
lower disk. In this case the fluid does not become steady because of the 

ϒ η 9th order 10th order 11th order Numerical Error

0

0 +2.7032 +2.6982 +2.6921 +2.6928 0.0007
0.5 +1.1418 +1.1824 1.1813 +1.1832 0.0019
1 -4.9328 -4.9864 -4.9862 -4.9863 -0.0001
1.5 -4.5631 -4.6382 -4.6380 -4.6382 -0.0002
2 +3.9732 +3.8624 +3.8614 +3.8615 0.0001

0.25

0 +2.3289 +2.3679 +2.3576 +2.3566 -0.001
0.5 +0.9631 +1.0321 +1.0322 +1.0353 0.0031
1 -3.7396 -3.8921 -3.8920 -3.8933 -0.0013
1.5 -4.1382 -4.3680 -4.3670 -4.3673 -0.0003
2 +4.9843 +4.9621 +4.9623 +4.9636 0.0013

0.5

0 +2.3692 +2.4692 +2.4682 +2.4683 0.0001
0.5 +0.9328 +0.9621 +0.9620 +0.9626 0.0006
1 -2.7329 -2.8392 -2.8391 -2.3966 0.4425
1.5 -3.8321 -3.8321 -3.8323 -3.8325 -0.0002
2 +2.6328 +2.8628 +2.8329 +2.8629 0.03

0.75

0 +2.2836 +2.2936 +2.2937 +2.2938 0.0001
0.5 +0.9325 +0.9626 +0.9627 +0.9628 0.0001
1 -1.6312 -1.6432 -1.6433 -1.6432 0.0001
1.5 -2.3895 -2.6892 -2.6893 -2.6896 -0.0003
2 +0.9865 +0.9625 +0.9623 +0.9626 0.0003

1

0 +2.3286 +2.4621 +2.4620 +2.4626 0.0006
0.5 +0.7283 +0.9621 +0.9620 +0.9622 0.0002
1 -0.8325 -0.8217 -0.8218 -0.8319 -0.0101
1.5 +0.8176 +0.9163 +0.9162 +0.9163 0.0001
2 +1.9086 +1.9321 +1.9323 +1.9326 0.0003

Table 2: The analytic results of H(η) at different orders of  HAM 
approximation compared with the numerical results, when Re=1, t=1 
and ε=1.

ϒ η 9th order 10th order 11th order Numerical Error

0

0 +2.1619 +2.1732 +2.1736 +2.1735 -0.0001
0.5 +1.1219 +1.1328 +1.1432 +1.1431 -0.0001
1 -2.6529 -2.7324 -2.7632 -2.7622 0.001
1.5 -5.6405 -5.6329 -5.6432 -5.6431 0.0001
2 +4.6714 +4.7325 +4.7423 +4.7422 -0.0001

0.25

0 +2.5362 +2.4563 +2.4536 +2.4542 0.0006
0.5 +1.2005 +1.2345 +1.2346 +1.2453 0.0107
1 -2.6432 -2.5634 -2.5638 -2.5636 0.0002
1.5 -4.6532 -4.6643 -4.6743 -4.6744 -0.0001
2 +1.6985 +1.7051 +1.7132 +1.7325 0.0193

0.5

0 +2.3648 +2.4563 +2.4632 +2.4621 -0.0011
0.5 +1.2795 +1.2736 +1.2836 +1.2826 -0.001
1 -2.5632 -2.5348 -2.5448 -2.5438 0.001
1.5 -4.3624 -4.4621 -4.4632 -4.4630 0.0002
2 +1.8574 +1.8795 +1.8685 +1.8683 -0.0002

0.75

0 +2.4321 +2.5464 +2.5463 +2.5645 0.0182
0.5 +1.3562 +1.3563 +1.3654 +1.3655 0.0001
1 +1.9321 +1.9465 +1.9466 +1.9465 -0.0001
1.5 -1.6959 -1.7324 -1.7325 -1.7326 -0.0001
2 +0.9485 +1.3245 +1.3256 +1.3245 -0.0011

1

0 +2.3541 +2.6541 +2.6435 +2.6435 0
0.5 +1.4365 +1.4563 +1.4532 +1.4653 0.0121
1 +0.9 +0.9632 +0.9654 +0.9568 -0.0086
1.5 -0.6862 -0.6598 -0.6548 -0.6538 0.001
2 +0.4756 +0.4562 +0.4562 +0.4563 0.0001

Table 1: The analytic results of F(η), at different orders of HAM 
approximation compared with the numerical results, when Re=1, t=1 
and ε=1.

 

Figure 5: The time variation in the radial direction obtained by the 11th order 
approximation of the HAM when є=1, t=1 and Re=1.

 

Figure 6: The time variation in the vertical direction obtained by the 11th order 
approximation of the HAM when є=1, t=1 and Re=1.
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variation of amplitude in t direction.

Conclusion 
In this paper, the HAM was used for finding the analytic 

solutions of the system of nonlinear ODE derived from von Karman 
type similarity transform for the unsteady state three dimensional 

Navier-Stokes equations of flow between two parallel disks. Unlike 
perturbation methods, the HAM does not depend on any small 
physical parameters. Thus homotopy analysis method is valid for 
both weakly and strongly nonlinear problems. Different from all other 
analytic methods, the homotopy analysis method provides us a simple 
way to adjust and control the convergence region of the series solution 
by means of auxiliary parameter ħ. Thus, the auxiliary parameter ħ 
plays a vital role within the frame of HAM which can be determined 
by the ħ curves. The solution obtained by HAM is an infinite power 
series for appropriate initial approximation, which can be expressed 
in closed form. Continuously, the present success of the homotopy 
analysis method for nonlinear problem of flow between two parallel 
disks verifies that the method is a useful tool for nonlinear problems 
in many fields.
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and t=0.
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