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Abstract
Objective: Metabolic syndrome entails hypertension, hyperglycemia, obesity and hypercholesterolemia. This 

syndrome increases the risk of cardiovascular disease and diabetes. Hyperglycemia during coronary reperfusion is 
associated with a poor prognosis. Contrastingly, targeting correction of hyperglycemia in clinical trials has not improved 
clinical outcome or has even been detrimental. H2O2 is produced under hyperglycemic conditions and under reperfusion. 
This study aims to provide a mechanistic approach evaluating the impact of high glucose on the endothelial nitric oxide 
pathway in a H2O2 -rich environment. 

Methods and results: HUVECs (human umbilical vein endothelial cells) were exposed to high glucose (20 mM) 
for either 20 or 72 hours co-incubated with or without H2O2 (400 µM) for 30 minutes as models of increased oxidative 
stress during acute and prolonged hyperglycemia, respectively. The presence of reactive oxygen species (ROS) in 
both mitochondria and cytoplasm was measured by fluorescence activated cell sorting (FACS). Phosphorylation of 
endothelial nitric oxide synthase (eNOS) on threonine 495 (Thr495) and serine 1177 (Ser1177) was assessed by 
western blotting. Short-term (20 hours) high concentration of glucose alone increased ROS in mitochondria to 133.5% 
(p<0.05), whereas prolonged (72 hours) did not increase mitochondrial ROS. The increase in mitochondrial ROS could 
be attenuated by the anti-oxidant N-acetyl-L-cysteine (NAC). Incubation with H2O2 for 30 minutes resulted in an increase 
in Thr495 phosphorylation (to 425%, p<0.01) and a decrease in Ser1177 phosphorylation (to 50.6%, p<0.01). Pre-
incubation for 20 hours with 10 and 20 mM glucose did not affect phosphorylation of Thr495 and Ser1177. Stimulating 
HUVECs that were pre-incubated with 20 mM glucose for 72 hours with H2O2 increased Thr495 phosphorylation to 
146.6% (p<0.05). PKC inhibition attenuated the H2O2-induced Thr495 phosphorylation in cells incubated with high 
glucose levels for 72 hours.

Conclusion: Acute exposure to high glucose induces oxidative stress. H2O2 leads to phosphorylation of eNOS at 
Thr495 and dephosphorylation of Ser1177. After prolonged exposure to high glucose levels, the addition of H2O2 yields 
phosphorylation of Thr495 through the PKC pathway.
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Introduction
The present study aims to provide information on how chronic and 

acute high glucose affect the activation of endothelial nitric oxide (NO) 
in an oxidative-stress rich environment. An important manifestation 
of endothelial dysfunction is the decrease in endothelial derived 
nitric oxide bioavailability [1]. The production of NO by vascular 
endothelial cells is central in maintaining normal endothelial function 
and preventing the development of atherosclerosis. In clinical settings, 
decreased endothelium-derived NO is an independent predictor of 
cardiovascular events [2], which probably is related to the ability 
of NO to inhibit platelet aggregation, attachment of neutrophils to 
endothelial cells and proliferation of smooth muscle cells [3]. Diabetes 
is characterized by hyperglycemia and endothelial dysfunction [4,5]. 
Two interdependent mechanisms seem to contribute to endothelial 
dysfunction in diabetes: Hyperglycemia and reactive oxygen species 
(ROS). The experiments conducted in humans by Calver et al. and 
McVeigh et al. showed that forearm blood flow in diabetic patients was 
impaired due to decreased availability of NO [6,7]. Studies in healthy 
subjects during hyperglycemic clamps suggest an important role of 
hyperglycemia as the response of forearm vessels to methacholine, 
as it is attenuated during the clamps [8]. The reperfusion that follows 
prolonged ischemia provides oxidative stress which may contribute 

to an impairment of NO production [9,10]. Thus, a combination of 
hyperglycemia and reperfusion following myocardial ischemia has 
been regarded as a possible explanation for a poorer outcome in 
patients with diabetes who suffer from myocardial infarction [11-18]. 
The results of the DIGAMI-1 study seemed to support this notion, as 
correcting glycaemia in diabetic patients with high glucose levels (blood 
glucose >11 mM) at admission for acute myocardial infarction seemed 
to reduce mortality in these patients [19,20], even though subsequent 
studies do not support the use of insulin to achieve glycemic control 
[21]. Since phosphorylation of eNOS at Ser1177 is necessary for eNOS 
to synthesize NO [22]. While phosphorylation at Thr495 hinders its 
enzymatic activity [23,24], it is expectable, that conditions where 
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increased phosphorylation of eNOS-Thr495 occur, lead to a decreased 
eNOS enzymatic activity and, consequently, to decreased NO 
production. Indeed, prolonged periods (2-3 days) of exposure of high 
glucose levels in rat aortic endothelial cells, smooth muscle cells and 
bovine retina endothelial cells increase the total diacylglycerol (DAG) 
levels, leading to the activation of the DAG-PKC pathway, and eNOS 
Thr495 phosphorylation [25].

During the reperfusion that follows acute target organ ischemia, 
there is a substantial increase of the presence of H2O2 [26], which may 
induce specific phosphorylation of eNOS regulating the synthesis of 
NO. This effect may also be mediated by increases in the endothelial 
calcium concentrations or changes in membrane potential [27-29]. 
In regard to ROS, it has been shown that high glucose levels lead 
to increased superoxide production by inducing NADPH oxidase 
[30], which will decrease eNOS expression in endothelial cells [31].
Furthermore, uncoupling of eNOS results in production of superoxide, 
which reacts rapidly with NO producing peroxynitrite ultimately 
leading to decreased NO bioavailability [32]. In some studies H2O2 
appears to be have bidirectional effects, with an early promotion of 
NO production though eNOS phosphorylation at Ser1177 [33,34] and 
later inhibition of NO production [35] while only an inhibitory effect 
is apparent in other [36]. Hence, it is still obscure to what extent eNOS 
expression, eNOS cofactor availability or oxidative stress contribute to 
a decreased NO activity in diabetes. 

Our study aims to investigate the effects of glucose and ROS on 
phosphorylation of eNOS Thr495 and Ser1177 in HUVECs. We 
hypothesized that the presence of high glucose levels in an environment 
rich in H2O2 would lead to eNOS Thr495 phosphorylation and Ser1177 
dephosphorylation. Based on previous results, in which we observed 
increased mitochondrial ROS after H2O2 incubation [36], we expected 
to see an increase in mitochondrial ROS generation with high glucose 
alone and with H2O2 incubation. By extension, we anticipated 
phosphorylation changes of eNOS after high glucose levels alone 
and with H2O2 and an additive effect by combining the two. We have 
previously shown that incubating HUVECs with H2O2 led to an ERK 
and ROCK mediated phosphorylation of eNOS at Thr495 [36]. We 
hypothesized that incubating HUVECs for longer duration (72 hours) 
with high glucose levels would lead to a facilitation of the PKC pathway 
and therefore expected to see an increase in Thr495 phosphorylation 
with high glucose levels alone or combined with H2O2 and that the 
phosphorylation could be hindered by inhibition of PKC. 

Materials and Methods
Cell culture and medium

Pooled HUVECs (human umbilical vein endothelial cells) from 15 
women were obtained from Lonza (CC-2519, Lonza, Basel, Switzerland) 
and were grown to confluency in EBM-2 medium (CC-3156) with 
growth factor and additional supplements (CC-4176, both Lonza, Basel, 
Switzerland) and 5% Bovine Serum (10270-106, Invitrogen, Carlsbad, 
CA, USA). According to vendor supplements contained ascorbic acid. 
Final concentration of ascorbic acid or whether it was in stable form is 
not stated. Cells were not serum deprived prior to experiments and only 
cells in passage 3 and 4 were used. The cells were grown to confluency 
and co-incubated with relevant chemicals in 6 well plates (92006, 
Techno Plastic Products AG, TPP, Trasdingen, Switzerland) coated 
with 10.5 µg/cm2 gelatin (214340, Difco Laboratories, Beckton, USA). 
Cells were grown at 20% O2 (ambient air). HUVECs exposed to glucose 
were incubated in concentrations of 5, 10 or 20 mM for either 20 hours 
or 72 hours. It has been shown that HUVECs grown in high glucose 
levels (19 or 33 mM) for at least 36 hours undergo apoptosis, which 

could be reverted by ascorbic acid (100 µM) [37]. Because HUVECs 
were grown in and treated with high glucose levels with ascorbic acid, 
we did not expect to induce apoptosis. In concurrent experiments, 
HUVECs were exposed to 400 µM H2O2 for 30 minutes to simulate 
ischemia/reperfusion. Suppressible oxidative stress was assessed by 
pre-incubating the relevant subset of HUVECs with 10 mM N-acetyl-
L-cysteine ((NAC), A9165, Sigma-Aldrich, Steinheim, Germany) for 
20 hours before stimulation with H2O2. 

The pan-PKC-inhibitor (3-(N-[Dimethylamino]propyl-3-indolyl)-
4-(3-indolyl)maleimide, Bisindolylmaleimide I,3-[1-[3-(Dimethylamino)
propyl]1H-indol-3-yl]-4-(1Hindol-3-yl)1H-pyrrole-2,5dione) 
GF109203X (GFX) in a concentration of 1 µM, (G2911, Sigma-Aldrich, 
Inc., Steinheim, Germany) was used to investigate the role of Protein 
kinase C (PKC) in Thr495-eNOS phosphorylation and was added 1 hour 
before harvest. 

Western blot procedure

HUVECs were washed twice in ice-cold PBS and harvested 
with RIPA buffer (R0278), which contained protease (P8340) and 
phosphatase inhibitor cocktails I and II (P2850, P5726). Additional 1 
mM sodium orthovanadate (S6508) and 1 mM phenylmethanesulfonyl 
fluoride (PMSF, 78830) was added to robustly preserve the 
phosphorylation of eNOS and inhibit serine proteases, respectively 
(all compounds from Sigma-Aldrich, Steinheim, Germany). The cell 
lysate was ultrasonicated and centrifuged for 30 minutes at 20,000 g. 
After discarding the pellet the solubilized protein concentration was 
determined with Bradford Protein Assay, according to the producer’s 
recommendations (500-0006, Bio-Rad Laboratories, Hercules, 
California, USA). After obtaining the protein concentration of each 
lysate, the concentration was corrected with RIPA buffer to attain 
equivalent protein amounts. The samples were run on a 7% Novex Tris-
Acetate gel (EA03585BOX, Invitrogen Corporation, Carlsbad, CA, 
USA). After transfer to a nitrocellulose membrane, the equal loading of 
the gel lanes was confirmed with protein detection Ponceau S staining. 
The nitrocellulose membrane was blocked by submerging it in a 
blocking buffer containing 5% (w/v) Skim milk in Tris Buffered Saline 
(TBS) with 0.05% Tween-20 (TBS-T) for 1 hour at room temperature. 
Then the membrane was washed 3 times in TBS-T followed by overnight 
incubation at 4°C with relevant primary antibodies in 5% BSA in 
TBS-T, which consisted of 1:1000 anti-phospho-eNOS (Thr495) mouse 
antibody (612707, BD Transduction Laboratories, Franklin Lakes, NJ, 
USA ), 1:1000 anti-phospho-eNOS (Ser1177) mouse antibody (612393, 
BD Transduction Laboratories, Franklin Lakes, NJ, USA) and rabbit 
polyclonal anti-eNOS (07-520, Upstate, Lake Placid, NY, USA), 
followed by washing of the nitrocellulose membrane three times with 
TBS-T. Thereafter we applied blocking buffer containing a secondary 
HRP-conjugated anti-rabbit antibody (1858415, Pierce Biotechnology, 
Rockford, IL, USA) or a HRP-conjugated anti-mouse antibody 
(1858413, Pierce Biotechnology, Rockford, IL, USA) for 1h at room 
temperature (1:5000). After washing the nitrocellulose membrane 
three times it was incubated in SuperSignal West Femto Maximum 
Sensitivity Substrate (34095, Pierce Biotechnology, Rockford, IL, USA) 
for 1 minute followed by densitometric quantification (LabWorks, 
Ultra-Violet Products Ltd, Cambridge, UK). The membranes were also 
analyzed for equal loading with beta-tubulin. We used the ratio between 
Thr495 and total eNOS for comparison of eNOS phosphorylation in all 
western blotting experiments.

Fluorescent activated cell sorting (FACS)

HUVECs were analyzed in separate wells for intracellular and 
intramitochondrial ROS by incubating cells in medium with 5 µM 
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5-(and-6)-chloromethyl-2´,7´-dichlorodihydrofluorescein diacetate 
(CM-H2DCFDA) (C6827, Invitrogen, Eugene, Oregon, USA) 
or MitoSOX Red mitochondrial superoxide indicator (M36008, 
Invitrogen, Eugene, Oregon, USA), respectively for 15 minutes at 37°C 
in the dark. HUVECs were suspended in cold PBS with 1% BSA and 
analyzed by flow cytometry on a FACS-Aria from BD Biosciences (New 
Jersey, USA), armed with a blue (488 nm), red (633 nm) and violet (405 
nm) laser. CM-H2DCFDA was measured with a 525/50 bandpass filter 
and MitoSOX Red with a 585/42 bandpass filter. Ten thousand data 
points were accumulated for each round of analysis.

Statistical analysis

As the absolute signal value from each round of experiment 
displayed variation we normalized to the control situation in each 
western gel, thus reflecting the variation in the control level of 
phosphorylation in an increased variation in the treatment groups. 
Data are expressed in arbitrary units as percent changes compared to 
Control (unstimulated cells) and are expressed as average +SEM unless 
otherwise stated. Groups of data were analyzed by ANOVA followed 
by the Scheffé post hoc analysis (Statistica, Statsoft, Tulsa, OK, USA). 
To maintain variance homogeneity relevant data sets underwent 
logarithmic transformation. Paired comparisons were analyzed by 
Student’s T-test for unequal variance. A p-value <0.05 was considered 
statistically significant. The letter “n” refers to the number of times an 
experiment was repeated. 

Results
To assess the capability of high glucose levels to induce ROS we 

exposed HUVECs to a glucose concentration of 20 mM for 20 hours 
and analyzed the level of ROS in mitochondria as described above. 
Figure 1a shows that this increased the amount of ROS in mitochondria 
to 133.5%, p<0.05. This effect could be abolished by simultaneous 
treatment of cells with 10 mM NAC for 20 hours (Figure 1b). We also 
investigated the effect of glucose on the cytoplasmic levels of ROS. 
FACS analysis showed that there was no difference in these levels (data 
not shown).

We wished to investigate combinations of high glucose and ROS to 
model the short and long term ischemic conditions and to find additive 
or synergistic effects between the two. We therefore analyzed Thr495 
phosphorylation levels in response to increasing concentrations of 
glucose in combination with a high amount of H2O2. Figure 2 show 
that H2O2 increased Thr495 phosphorylation (to 425% (5 mM), 370% 
(10 mM), 308% (20 mM)). As these increases after H2O2 addition in 
Thr495 phosphorylation were not significantly different from each 
other, there was no combined effect of glucose and H2O2 on Thr495 
phosphorylation. Regarding phosphorylation of Ser1177 in response 
to glucose and H2O2, Fig. 3 shows that H2O2 decreased Ser1177 
phosphorylation (to 50.6% (5 mM), 31.2% (10 mM), 29.4% (20 mM), 
p<0.01). As these decreases in Ser1177 phosphorylation were not 
significantly different from each other, there was no combined effect of 
glucose and H2O2 on Ser1177 dephosphorylation (Figure 3). 

Studies have shown that the production of diacylglycerol (DAG) is 
significant after prolonged exposure to of high glucose concentrations 
(72 hours). [see Rask-Madsen and King(Rask-Madsen and King 
2005) for a review]. DAG stimulates PKC which in turn is capable of 
phosphorylating Thr495. We therefore hypothesized that although 
the short term effect of H2O2 is not mediated by PKC, prolonged 
incubation with glucose concentrations in the range of hyperglycemia 
could facilitate the PKC pathway. We therefore stimulated cells with 
20 mM glucose for 72 hours and added 400 µM H2O2 for the last 30 
minutes, which increased Thr495 phosphorylation with 146.4% (from 
112.9% to 165.4%) compared to 20 mM (p<0.05) (Figure 4). This effect 
was significantly reduced by the pan-PKC inhibitor GFX indicating an 
enhanced role of PKC by the combined effects of glucose and H2O2. 

Stimulation with H2O2 induced phosphorylation of eNOS Thr495 
after 72 hours of incubation with high levels of glucose and was 
paralleled by an accumulation of ROS in the mitochondria to 235% (5 
mM) and 267% (20 mM) (p<0.05) ( Figure 5). No significant difference 
of mitochondrial ROS accumulation was observed between control (5 
mM) and 20 mM without H2O2 stimulation. 

a. The results are presented as normalized means + SEM. N=5. (*p < 0.05: 20 mM glucose treatment for 20 hours vs. control (5 mM))
b. The results are presented as normalized means + SEM. N=4. (n.s. p>0.05; 5 mM + NAC: Control (5 mM glucose) co-incubated with 10 mM NAC for 20 hours. 20 
mM + NAC: Cells incubated with 20 mM glucose and 10 mM NAC for 20 hours.

Figure 1: FACS analysis of the ROS formation assessed by application of MitoSOX red mitochondrial superoxide indicator. 
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Discussion
The main findings in our study is that 72 hours after exposure of 

HUVECs to 20 mM glucose followed by addition of 400 µM H2O2 
for 30 minutes induced Thr495 phosphorylation mediated by PKC. 

These findings support earlier reports from other groups. Inoguchi et 
al. observed increased DAG content and PKC activation in aortas of 
streptozotocin induced diabetic rats and BAECs grown in 22.2 mM 
glucose for four days also displayed the same characteristics [38]. The 

30 minutes of H2O2 stimulation (400 µM) increased phosphorylation of Thr495 significantly. Incubating cells with increasing amounts of glucose (5, 10, 20 mM) did not 
significantly alter the Thr495 phosphorylation level. No combined effect of H2O2 and glucose was observed. The results are presented as densitometric means of ratios 
between Thr495 and Total eNOS signals (+/- SEM). Below the graph is shown Thr495, total eNOS and Beta tubulin. (HP: H2O2; n.s.: p>0.05; ** p<0.01).

Figure 2: Western blotting analysis of the role of H2O2 and glucose on phosphorylated threonine 495 residue on eNOS (p -Thr495) (n=8).

30 minutes of H2O2 stimulation (400 µM) decreased Ser1177 phosphorylation 30 minutes of H2O2 stimulation (400 µM) decreased phosphorylation of Ser1177 
significantly. Incubating cells with increasing amounts of glucose (5, 10, 20 mM) did not significantly alter the Ser1177 phosphorylation level. No combined effects of 
H2O2 and glucose was observed. The results are presented as densitometric means of ratios between Thr495 and Total eNOS signals (+/- SEM). Below the graph is 
shown Ser1177 as a representative blot as well as the same blot reprobed with total eNOS. Beta tubulin is shown below. (HP: H2O2; n.s.: p>0.05; ** p<0.01).

Figure 3: Western blotting analysis of Ser1177 phosphorylation in HUVECs stimulated with H2O2 and glucose (n=8).
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source of the increased DAG has in bovine or rat aortic endothelial 
and smooth muscle cells grown under the same circumstances for 
three days been shown to derive from de novo synthesis [39]. Xia et 
al. also demonstrated that endothelial and smooth muscle cells grown 
in 22 mM glucose for two to three days increased DAG levels which 
originated from de novo synthesis [25]. This increase in DAG levels 
and activity has the pivotal effect of activating PKC [25,38] Similarly, 
Craven et al. detected an increased PKC activity which correlated with 
increased DAG content in non-diabetic rat glomeruli incubated in 30 
mM glucose [40]. Consequentially an increased PKC activity leads 
to phosphorylation of eNOS Thr495 [41]. Our study failed to show 
that elevated glucose per se would lead to increased phosphorylation 
of eNOS Thr495. We have previously shown [36] that incubation of 
HUVECs with H2O2 increased phosphorylation of Thr495 not through 
PKC activation but ROCK and MEKK/ERK activation. In the current 
study, however, stimulation with H2O2 in cells incubated 72 hours after 
exposure to high glucose levels demonstrated that this phosphorylation 

can be inhibited by application of the pan-PKC inhibitor GFX. As 
DAG production is increased after high glucose exposure for 72 hours 
[3] we therefore expected phosphorylation of Thr495 after glucose 
exposure alone. Although we failed to observe this, we obtained results 
that suggest that elevated glucose concentrations for 72 hours facilitate 
signaling via the DAG-PKC pathway when cells are exposed to H2O2, 
something we failed to see previously [36]. The applied concentration 
of the pan-PKC inhibitor GFX of 1 µM exceeds the IC50 value of around 
20 nM [42], which should completely inhibit PKC with the applied 
concentration. In pilot experiments we observed that pre-incubation 
with 1 μM GFX inhibited Thr495 phosphorylation in both HUVECs 
and BAECs stimulated with PMA. We do recognize that GF109203X 
may have off-target effects with the applied concentration of 1µM 
as it has been shown that GF109203X is not a selective inhibitor 
of PKC isoforms α,β and γ. Both MAPKAP-K1β and p70 S6 kinase 
are inhibited by similar potency of GF109203X with MAPKAP-K1β 
having IC50=50 nM and p70 S6 kinase IC50=100 nM [43]. This is crucial 

In order to assess the role of PKC some cells were incubated with 1 µM of the pan-PKC inhibitor GFX for the last 60 minutes (n=3). H2O2 induced phosphorylation of 
Thr495, which could be inhibited by GFX. (HP: H2O2; GFX: GF 109203X ; *p<0.05)

Figure 4: Western blotting analysis of Thr495 phosphorylation in HUVECs incubated in 20 mM glucose for 72 hours and stimulated with H2O2 for the last 30 minutes.

The results are presented as normalized means +/- SEM (n=4). HUVECs were stimulated with 20 mM glucose for 72 hrs and relevant cells were stimulated with 400 
µM H2O2 for the last 30 minutes. H2O2 increased the concentration of ROS in the mitochondria whereas 72 hrs of 20 mM glucose failed to do so. (HP: H2O2; *p<0.05)

Figure 5: FACS analysis of the ROS formation assessed by application of MitoSOX red (mitochondrial superoxide indicator).
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because these kinases are involved in signaling pathways activating 
PKC. In conducting research applying GFX one should ensure that 
the effects obtained are not due to MAPKAP-K1β and p70 S6 kinase 
inhibition conducting control experiments with specific inhibitors 
PD 98059 and rapamycin, respectively. The medium was not changed 
during the 72 hours of incubation. Studies have shown that HUVECs 
consume approximately 0.1 mM glucose per hour regardless of 
outset glucose concentration, yielding a concentration of about 18 
mM after 20 hours and 13 mM after 72 hours, without affecting the 
morphology of the cells [44,45]. This relationship is well established 
and robust among other cell types also. Altamirano et al. measured 
consumption rates of glucose in CHO cells. If grown initially at 20 
mM the glucose concentration after 20 hours was approximately 17-19 
mM, whereas after 72 hours the concentration dropped to around 13 
mM [46]. Rheinwald et al. observed in V79 cells grown with complex 
carbohydrates, when these complex carbohydrates were depleted 
the concentration of glucose would decline from around 20 mM to 
approximately 11 mM after 3 days [47]. In all cases the 72 hour time 
point was still hyperglycemic. Cells incubated with normoglycemic 
medium would on the other hand experience a slight hypoglycemic 
environment after 72 hours [45]. It is possible that the used glucose 
concentration was insufficient to elicit a phosphorylation response 
without concomitant H2O2 stimulation. To convey this, cells could be 
incubated with higher glucose concentrations, and assess whether it is 
possible to obtain a dose dependent relationship in both mitochondrial 
ROS generation and Thr495 phosphorylation. Higher mortality has 
been shown in patients with myocardial infarction with an admission 
glucose levels above 8.44 [48], 9-10 [49,50], 11 [51-53] and 11.7 [54]. 
mM. Based on these values we incubated HUVECs with high glucose 
levels with an outset concentration of 20 mM reaching calculated 
concentrations of 18 mM and 13 mM after 20 and 72 hours, respectively. 
We thus calculate that the cells remained within the concentration 
range that is associated with higher mortality in clinical trials. Williams 
et al. showed that the minimum concentration of glucose to activate 
PKC is 15 mM [55]. Based on the calculations exposed above, such 
a concentration is reached after 50 hours. This may explain why we 
observe mitochondrial increase in ROS after 20 hours, but not after 72 
hours. Furthermore, we found in preliminary studies, that HUVECs 
that have been either serum deprived or have not had changed medium 
(5 mM glucose) for several days could not elicit a phosphorylation 
response upon stimulation with H2O2 (data not shown). The rationale 
behind starvation is poorly defined and it induces an artificial condition 
where most of the cells are in an arrested state. The effects of serum 
starvation seem grave as it induces phosphorylation of many signaling 
molecules, such as a more than tenfold change in ERK phosphorylation 
in different cell lines [56]. Therefore, we chose not to starve our cells 
prior to the studies.

In the micromolar concentration range, H2O2 induces changes 
in membrane potential [57] and intra-cellular calcium in human 
endothelial cells [57,58], which is not the case at higher concentrations 
[58]. Thus, intracellular calcium changes are probably not part of the 
changes that we have observed in our studies. 

The applied concentration (400 µM) of H2O2 is enough to cause 
apoptosis in HUVECs [59] and PKC inhibition could inhibit PKC-
dependent cell apoptosis [60]. It is in our model not elucidated whether 
apoptotic pathways play a role in eNOS phosphorylation on Thr495.

Activation of eNOS by phosphorylation at Ser1177 is accompanied 
by a decrease in the dependence of eNOS for Ca2+/calmodulin [61]. The 
role of high glucose levels on NO production and the effect on Ser1177 
phosphorylation are somewhat unclear. Carneiro et al. showed that 

diabetic rats had decreased eNOS phosphorylation levels at Ser1177 in 
corpora cavernosa [62] and Schnyder et al. showed that high glucose 
levels in HUVECs (15-30 min; 25 mM) inhibited NO production 
[63]. Salt et al., however, showed in Human Aortic Endothelial Cells 
(HAECs) that 25 mM glucose for 48 hours inhibited insulin stimulated 
NO production although phosphorylation at Ser1177 was not reduced 
[64]. Furthermore even shorter periods (5 hours) of high glucose levels 
inhibits Thr495 dephosphorylation and phosphorylation of Ser1177 
in bradykinin-stimulated PAECs (porcine aortic endothelial cells) 
[65]. A recent study on adult cardiac myocytes showed that 10 µM 
hydrogen peroxide stimulation increased phosphorylation of eNOS at 
Ser1177 [66]. Likewise, Thomas et al. incubated PAECs with 130-300 
µM H2O2 for 30 minutes yielding the same result [34]. Also Urao et al. 
showed that endogenous H2O2 increases Ser1177 phosphorylation in a 
mouse hind limb ischemia model [67]. Our experiments did not show 
an effect of increased ROS generated by high glucose concentrations 
on the phosphorylation of Ser1177. In fact, high concentrations of 
hydrogen peroxide had the opposite effect with a decrease in Ser1177 
phosphorylation regardless of the concomitant glucose concentration. 
The explanation for these apparently contradictory results is suggested 
by a study by Hu et al. who described a dose-dependent biphasic 
response to H2O2 in which 500 µM initially increased Ser1179 
phosphorylation in eNOS transfected HEK 293 cells and BAECs 
grown in serum-containing medium followed by a drastic decline 
in phosphorylation after 30 minutes [35]. It is possible that the same 
mechanism has taken place in our cells, even though this remains 
speculative as we only have assessed the phosphorylation response after 
30 minutes of H2O2 stimulation. A clinical trial showed that infusion 
of a peptide inhibitor of PKCδ (delcasertib) given at reperfusion 
reduced infarct size when given to STEMI patients [68]. IC50 of GFX on 
PKCδ inhibition is 0.21 µM. Thus a substantial suppression of PKCδ 
to about 10% activity is achieved with 1 µM used in our study [69]. 
The findings, however, could not be replicated in the PROTECTION-
MI trial, which was a multicenter, double-blind trial was performed 
in patients presenting within 6 hours undergoing primary PCI for 
STEMI [70]. We confirm here in an in vitro model of reperfusion 
that PKC is involved in Thr495 phosphorylation giving an indication 
that inhibition of PKC could prevent endothelial dysfunction which 
is seen in conjunction to reperfusion damage and high glucose levels. 
Oxidative stress leads to mitochondrial dysfunction [9,71,72] and 
H2O2 has been suggested as a retrograde signaling molecule deriving 
from the cytoplasm, as it seems to be supported by the finding that 
neuronal mitochondria release H2O2 in response to incubation with 
H2O2 [73]. Nevertheless, our previous studies failed to confirm this 
hypothesis [36]. Here we also found no clear indication of a possible 
retrograde signaling from the mitochondrion to eNOS, since 20 mM 
of glucose elicited ROS accumulation in the mitochondrion that was 
not paralleled by phosphorylation or dephosphorylation of eNOS, 
while externally applied H2O2, both accumulated eNOS and induced 
phosphorylation changes of eNOS. We cannot conclude whether 72 
hours of high glucose levels have an effect on mitochondrial ROS 
accumulation since the final glucose concentrations probably were 
insufficient to provoke this response. To amend this problem, future 
studies with higher glucose levels are warranted. 

Because a decrease in eNOS-derived NO bioavailability is an 
important manifestation of endothelial dysfunction, it could be argued 
that we should have attempted to measure the available NO after 
HUVECs had been exposed to high glucose levels or H2O2. However, 
we have previously described [36] a decrease in NO production (DAF-
2DA chemiluminescence) in acetylcholine stimulated HUVECs 
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pre-incubated with H2O2 and thus showed a correlation between an 
increase in Thr495 phosphorylation and a decrease in NO production.

Conclusion
Incubation of HUVECs with 20 mM glucose for 20 hours increased 

mitochondrial ROS but did not induce phosphorylation of Thr495 or 
dephosphorylation of Ser1177, and did not act synergistically with 
H2O2. Exposure to 400 µM of H2O2 for 30 minutes in a physiologic 
glucose concentration phosphorylates Thr495 and dephosphorylates 
Ser1177 along with increased ROS in mitochondria. High glucose 
levels were neither able to increase mitochondrial ROS after 72 hours 
nor did it induce phosphorylation of Thr495. Addition of H2O2 elicited 
phosphorylation of this residue, which could be prevented by PKC 
inhibition. This suggests that 72 hours exposure to high glucose levels 
facilitates the PKC pathway in opposition to our previous studies where 
HUVECs naïve to high glucose levels phosphorylated Thr495 through 
MEK/ERK and ROCK in response to H2O2. Thus, this model points 
toward two different pathways being involved in eNOS phosphorylation 
in response to acute ROS as a model of ischemia and reperfusion in the 
normoglycemic and hyperglycemic state. Our findings support that 
high glucose levels induce changes in eNOS phosphorylation which 
leads to decrease in enzymatic activity and thus NO production. These 
findings have clinical implications with respect to metabolic syndrome 
underscoring the importance of optimizing glycemic control in these 
patients thus minimizing development of endothelial dysfunction and 
by extension the incidence of cardiovascular events. 
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