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Introduction
Non-perturbative effects are of great importance for the theory 

of space inside hadron. Supposing a sequence of QCD problems are 
concentrated in the branch of occurrences that can be described through 
the transition from the Minkowski space M(xM0,xM1,xM2,xM3) (M-space) 
into the Euclidean space inside hadron via the analytical extension of 
the time axis onto the lower semi plane xEi0=ixM0. In this case we get 
the Euclidean space with the imaginary time Eim(xEi0,xE1xE2,xE3,) (Eim 

is  space), and XEi=XM  is automatically VEi=iVM  and 0 ≤ ||VEi|| ≤ 1. 
The use of such a space has brought to great results: the QCD valuum 
models, lattice calculations, string theory and so on. However, e.g. 
QCD in lattice can now be used only for the description of a limited 
class of hadronic elements of the matrix. There is no common and 
self-congruent description of the QCD vacuum heretofore, as well as 
confinement occurrence and a spontaneous disturbance of the chiral 
invariance. In the common case the rotation group of the Euclidean 
space in the plane (xE0, XE) presupposes that 0 ≤ ||VE|| ≤ ∞, while 
Eim0 ≤ ||VEi|| ≤ 1. At the same time Eim is not even a subspace of the 
Euclidean space, because it is not closed in respect of the operation 
of composition of vectors. Thus, an infinite velocity causing non-local 
(instantaneous) interactions and contained in some NQCD models lies 
outside the frames of Eim - space. Non-local quark non-perturbative 
vacuum condensate plays a crucial role while creating realistic hadrons 
models [1]. At the same time the space correlation functions look 
like the curve of decreasing exponent [2] whose negative parameters 
include the distance of z=x-y while xEi0=const.

In correspondence with [3,4] physics of non-locality starts to be 
seen at the distance of 0,2fmλ ≈ . The correlation length λ determines 
the spatial declining of bound gauge-invariant bilocal correlator of field 
gradient.

In other studies, a minimal Gauss model, offered in [5], is used 
for condensates in a non-perturbative vacuum. The parameter of non-

locality λ characterizes an average square of quarks’ impulse in the 
QCD vacuum. Its estimations by means of QCD in lattice have shown 
the following range of probable values: 2 20.45 0.1ГэВλ = ±q  [6,7]. Eim- is 
homomorphic in respect of the M-space and non-local, in other words, 
the instantaneous interactions even at some low λ value contradict with 
S principles.

It gives a reason to consider that the use of merely a part of four-
dimensional Euclidean space volume in the models with Eim does not 
allow using its potential to the full extent. The article expounds the first 
steps in the research of the inside hadronic four-dimensional Euclidean 
space with real time model E(xE0, xE1, xE2, xE3) (Е-space), where 0 ≤ 
||VE|| ≤ ∞, and its aim is to show the expedience of the studies in the  
Е-space as s probable prospective direction of sub-hadronic physics 
development. The article contains researches of the E-space properties 
in protons and it is presupposed that the obtained correlations have a 
common nature and can cover all the hadrons. Moreover it has been 
considered been considered that the models in the Е-space will not be 
an alternative for the theoretical developments in Eim, but will extend 
their possibilities. The following requirement is the basic condition 
enabling this model to exist:

Requirement 1: Space-time relations and regularities in the Е-space 
model mapped into the М -space must correspond to the principles of 
SR and be Lorentz-covariant. 
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Abstract
 The paper represents the results of the study of the four-dimensional Euclidean space with real time (E-space), 

where 0 ≤ ||VE|| ≤ ∞, in sub-hadronic physics. This closed space has a metric that distinguished from the Minkowski 
space and the results obtained in the model are different from physical law in the Minkowski space. As it follows 
from the model of Lagrangian Mechanics, quarks in the central-symmetric attractive potential, kinetic energy of 
quark diminishes while the speed grows as the quarks exchange their energy-mass with gluons possessing a zero 
rest mass, so that to ensure the permanent proton mass. This dependence describes the dynamical relation of 
constituent and current quarks masses. 

In the quantified motion model it has been stated, that the oscillations of the particles are cyclic, including 
alternating localization and translation phases, the action per cycle for a free particle equals h . The calculation of 
charge distribution density in proton, carried out on the basis of this model, conforms to the results of the experimental 
research. All relations between physical values in the E-space, mapped in the Minkowski space, correspond to the 
principles of SR and are Lorentz-covariant and the infinite velocity is equal to the velocity of light in the Minkowski 
space. These models have a transparent physical sense.
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Inside Hadronic Euclidean Frames of Reference
In the Е-space no frames of reference, which are microscopic 

in reality, can be physically implemented. To determine the spatial 
coordinates the laboratory frame of reference LFR with the coordinates 
(xM0,  xM1,  xM 2, xM3) has been used, where hadron rests, and dxE= dxM. 
The own time of particles in the LFR is admitted to be the temporal 
coordinate xE0, Thus the Е-space is “subsidiary” towards the М-space.

Definition 1: Inner hadronic four-dimensional Euclidean Frame of 
Reference (xE0, xE1 ,xE2 ,xE3) EFR, is a system, where the space coordinates 
are indexed by the coordinates of (xM1, xM 2, xM3) LFR and the own time 
of the particles is equal to the own time of the particles in the LFR

2
0 0 1= = −E i Mi M i Midx ds dx v ,                                                           (2.1)

Where VMi is the velocity of the i-number particle in the LFR. 
The transition to the other IFR is carried out by means of Lorenz 
transformation. The Е -space of the real particles corresponds to 
the М-space upper closed cone { }2

0V : M / 0, 0+ = ∈ ≥ + ≥M M Mx x x�  and 
xE0=[0;∞), that ensures the execution of the causality principle. The 
EFR has an invariant which taking into consideration the Definition 
1 is equal to

 2 2 2
0 0+ =E E Mdx d dxx   			                                (2.2)

Then there is symmetry between EFR and LFR: the time of one 
space is the invariant of the other. 

From (2.1) and (2.2) it follows that

21
=

+
E

M

Ev
vv ,                                                               	                 (2.3)

Where  vE - is the velocity of the particle in the EFR. And, 
correspondingly

21
=

−
M

E

Mv
vv .                                                               	             (2.4)

If vE → ∞, then vM → 1. There is also 4-vector of velocity in the EFR 

2 2

1 ;
1 1

 
 =
 + + 

E
E

E E

u
v v

v  

And its invariant is equal to the invariant of the corresponding 
relativistic 4-vector.

(2)SO  Group of the rotation of plane (xE0, xE), cannot be applied in 
the EFR, because the existence of the infinite velocity makes the time 
absolute, and xE0 can take no negative values. In accordance with (2.2), 
E-group of position-vector rotations Е which describes the particles 
moving with different velocity is valid in the EFR. This group does 
not mix the temporal xE0 and the spatial coordinates RE((xE1,xE2,xE3). 
Mapping kinetic parameters of the particle in ERF observed in into 
LRF putting the fundamental quadratic forms 

[ ] ( ) 2E ,  µ µν ν= =E E E Edx g dx ds , where gЕμν -Kronecker symbol, μ, ν=0,1,2,3 and 

[ ] ( ) 2,  µ µν ν= =M M M Mdx g dx dsM , where gMμν-metric tensor. The translation 

matrix

[ ] ( ) ( ) ( )Ò
EM E EM E EM E[ ] ,  K x , G g K: x ,  ϕ = = 

Ò Ò
EM E E E M M ME M dx g dx dx g dx�

must involve kinematic KEM  and metric GEM  transformations. 
With (2.2) we obtain the kinematic transformation matrix 

2( 1+ ,  1,  1,  1).=EÌ EK diag v  the metric transformation matrix ||GEI||= 
diag (1, -1, -1, -1). There is a distinction of properties of the studied 

space from the Minkowski space that emerges because of different 
metric: E-group of radius-vector rotations xM0 does not mix the 
temporal xE0 and spatial coordinates RE(xE1,xE2,xE3).

The Model of E-invariant Lagrange Mechanics Particle
4-vector energy- momentum

Lagrange function of the free particle

21 ( )= +E EL m v .                                                                                  (3.1)

The momentum of the particle

21
=

+
E

E

E

mvp
v

,                                                                                     (3.2)

And the kinetic energy

21
∂

= − =
∂ +

E
E E E

E E

L mE L v
v v

.                                                           (3.3)

This equation is valid under condition that 0.≥EE .  At the same 
time

E2
E+P2

E=m2                                                            		               (3.4)

From (3.4) we can make a conclusion that there is a 4-vector 
of energy-momentum in the EFR, and its invariant is equal to the 
invariant of the corresponding relativistic 4-vector and it is one more 
symmetry between the LFR and EFR. Translating the 4-vector of the 
particle in LFR through (2.3), we obtain 21= −EM ME m v  и =EM Mmp v . 
These values stay  -invariant.

Formula (3.3) testifies to an unusual behavior in the E-space of the 
kinetic energy: it diminishes when the speed grows. The next unit will 
demonstrate that it is so because of the energy-mass exchange between 
quarks and gluons.

Mechanics of quark in the proton

Here we use the model where quarks are considered electrically 
neutral particles, and we admit that in the center of a proton there is 
a hypothetical source creating central-symmetrical attractive potential 
V(r) of strong interactions. It is considered that this simplified model 
will provide the possibility to determine some peculiarities of quarks 
motion in the proton.

The E-invariant Lagrange function of the quark in the potential 
V(r)  

1 V( )= + −EVq q EqL m r2v ,                                                               (3.5)

where mq - constituent mass of the quark. Е-invariance of this 
function is ensured by dxE= dxM  potential V(r)  will be identical for 
each proton in LFR.

On the analogy with (3.3) the energy of the system “quark – 
potential V(r) »

EV =EEq-V(r) =const.                                                                        (3.6)

If a particle is under the influence of power V( )= − rF ∇  parallel to 
the velocity, that it will change the momentum as follows: 

( )
3

20 021
= =

+

Eq q Eq

E E
E

d m d
dx dx
p v

F
v

.                                                            (3.7) 

The alteration of the energy                                                                           

( )
3

20 021
= − = −

+

Eq Eq q Eq
Eq

E E
Eq

dE m d
dx dx

v v
Fv

v
.                                                   (3.8)
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From which 

0 0 ( );    V( ) ( )  = = −Eq E Eq Eq Ed dx a dE dx bp F Fv = x∇ .                            (3.9)

From the (3.9b) and (3.6) it follows that EV=0. The zero-value of 
VE is a result of the fact that gluons have not been taken into account. 

To ensure the constant proton mass, the alteration of the quark kinetic 
motion must be compensated by the relevant alteration of gluons 
energy – mass. Taking gluons into account.

LEV=LEq(vq)+LEG(vG)-V(r), where LEG(vG) is the Lagrange function 
for gluons. 

The preserved energy of “quark – gluon – potential V(r) system 
makes                   

( ) ( )( ) ( ) V( )
( ) ( )

∂ ∂
= − + − − =

∂ ∂
Eq q EG G

VqG Eq q q G EG G q
q G

L LE L L r m
v vv v v v

v v
.      (3.10)

This equation has a solution, if vG=vq. Then in the potential V(r) 

21 ( ) V( )= + − −EGV q q qL m r mv                                                        (3.11)

Gluon momentum is

21
=

+
q q

EG

q

m v
p

v
,                                                      	              (3.12)

And the energy 

21
= −

+
q

EG q

q

m
E m

v
.                                               	           (3.13)

From Esq. (3.3) and (3.13) we can draw a conclusion, that the 
energy – mass of the quark translates into the energy - mass of the 
gluon, and their sum makes equals mq. At the same time PEG=PEq   and 
gluons are moving along with quarks creating valon. As a result, the 
constituent mass of quarks includes zero rest mass. This determines 
the dynamical relation of constituent and current quarks’ masses. The 
quark mass diminishes as it approaches to the centre of a proton. This 
corresponds to the existing idea that quark has a minimum mass under 
a big transferred to it q2 momentum.  There are some scientific studies 
devoted to the NQCD, in which gluons are described as possessors 
of dynamical energy - mass [8]. Contains an approximate solution of 
Dyson-Schwinger equation, where a propagator of non-perturbative 
gluon is regulated by the dynamical generated mass of a gluon. The 
usage of this propagator gives an opportunity to calculate sections 
of pp- scattering and achieve a good concord of calculations with 
experimental data for an effective gluon mass of 370 MeV [9], this value 
corresponds to mq in the nucleon. The fact that gluon has peculiarities 
of a massive particle is confirmed by calculations in lattice [10,11].  In 
the papers [12,13] different non-zero masses of gluons have also been 
studied. Let us examine the quark motion in the linearly increasing 
potential V(r) =cr. The zero orbital moment of a proton along with 
experimental studies of the charge distribution in proton means that 
the quark is vibrating along the diameter towards the center of a 
proton. Let us presuppose that the quark vibrates under the power of  
|Fz|=constant along the z axis which has a null in of the center a proton. 
Basing n the eq. (3.2), (3.3) and (3.9a) we obtain                                   

0 clz 0
2 2 2 2

0 0 clz 01 ( )
= = =

− −
Ezq z E E

E Eq q z E E

p F x a xdz
dx E m F x a x

,                                     (3.14)

Where clz /= z qa F m  is a “classic” acceleration? Then                                                                       

2 2
clz 0
−= − − Ez a x                                                    		           (3.15) 

and  
2 2

clz
− −

=Ezq

a z
v

z
.                                                                             (3.16)

The dependence of the quark energy on the radius is 1
clz
−=EqE mza . 

From the (3.6) we can draw a conclusion that V(rmax=rp) =mq, where rp  is the 
radius of a proton and -1

clz = pa r . Under the condition that 1 1
0

− −− ≤ ≤clz E clza x a  

in the coordinates (xE0, z) quark makes a circumference with a radius 1
clza− . 

But the allowable values are xE0=[0;∞)  and this formula must be specified.  
The half period of quark vibration is 12θ −= clza  and to preserve xE0   in 
the given range of values we need to put (3.15) it in the following way:

2 1 2
clz 0 clz( )− −= ± − −Ez a t a ,                                                               (3.17)

Where 1
0 0 clz[ ]2 −= −E Et x n a , [n] is the biggest whole number in

1
0 / 2 −

E clzx a . The digits before the root take turns depending on the 

alteration of [n].

Thus, a vibrating quark makes two half circumferences with z>0 and 
z<0, moved at 1

clz2a− . Figure 1 shows the graph of the quark oscillations. 
The calculation involves the rms radius of the proton rp=0.84fm. 

Here we can show how the formula (3.6) is functioning. Under z=0 
and V=0 the speed makes vEzq=∞ and EEq=0 (points A, C, E). Under 

1
clz
−= ±z a  and vEzq=0 as well as EEq=mq, as well as V=mq (points B, D). 

And therefore EEq-V=0. 

This brings up a question: how do the oscillations of quarks 
provide total zero momentum in the motionless proton while they are 
oscillations? Under multi-particle interactions, a symmetric disposition 
of particles corresponds to the minimum of energy and therefore a 
proton possesses a spherical symmetry and that means that 3 quarks 
make diametric oscillations creating a space angle π and their impulses 
are getting balanced. This supposition correlates with analytical studies 
described in [14]; according to them effective fields in baryons has a 
Y-shaped configuration of quarks’ plane making an equilateral triangle. 
This conclusion has also been confirmed by calculations in lattice [15]. 

Models of E-Invariant Quantized Motion of Massive 
Particles

A peculiarity of inside hadronic E-space is that its size in the three-

Figure 1: Diametrical quark oscillations in the proton: dash line is for the 
model of Lagrangian Mechanics, continuous line is for the model of quantified 
motion: points A, C, E-Ezq v=∞, 0; points B, D-EEq=0 Ezq v= ∞, E m Eq q c=1.
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dimensional space is comparable to the Compton quark wave length 
and the maximum value of quark kinetic energy makes mq. According 
to the quantum mechanics the minimum quark energy in the limited 
space must excess its mass. This is also applicable for oscillators’ 
energy in the quantum field theory. Thus the wave equations cannot be 
applied in our case, including probability interpretation. Though the 
quarks’ behavior in hadrons has a casual nature and the definite metric 
of the E-space enables to precede straight forward to the probability 
characteristics. 

Free scalar particle

The model is oriented towards the inside hadronic space, in which 
a particle cannot be free, so this part is of a methodic character.

Let us introduce the probabilistic space indexed by Е-elements and 
defined by three quantities (Ω,∑µ) where Ω is a multitude of eve, ∑ σ is 
algebra of Ω subsets and µ is a positive measure normalized, and µ(Ω) 
≤1. If XE is the real random variable and XÅ ∈Ω , then the distribution 
of XE is the probabilistic measure on Ω µ =P(XE0<XE<XE) 

Definition 2: The state of the particle is described by the 
function 0( , ) 1 µ µ= − =E EÔ x x , belonging to Е and selected for 

0( , ) 0.Φ = ∞ = ∞ =E Ex x

If the functions ( )0, ( )ϕ Φ=E E Ex xx   describe a scalar particle then its 

Lagrangian will equal Ò
2

2 21 )
2 2
( µϕ ϕ+= ∂ mL ,                                       	               (4.1)

From which in a usual way we can get a Klein-Gordon-Fock 
equation in the Е - space

( ) ( )2 2
0 0, 0( ) ,ϕ ϕ∂ + =E E E Ex m xx x∆ ,                                                (4.2)

Correspondingly to the (3.4)

The obvious function 0, 0 0( ) exp[ ( )]ϕ = − +E E E E E Ex p xx p x  may not 
seem to be the solution of the (4.2), as it will give the conditional 
expectation value 1

0( | 0) −= =E E EE xx p . Under PE=0 we obtain the non-
physical value 0( | 0, 0)= = = ∞E E EE xx v . It is also impossible to use the 
transition to K-representation through a Fourier transformation, as the 
frequency 0Ek  and the wave vector KE not satisfy the (3.4).

Despite the time coordinate, (4.2) describes the static state. 
However the infinite velocity in Е – space, makes it possible to 
transform the equation for the description of dynamic systems. Now 
represent 0( , )ϕ E Ex x  as the product of two functions 0( , )ϕ =E Ex x  

l 0 tr( ) ( )ϕ ϕE E , each depending on just one variable. Such separation 
has the following physical meaning. For vЕ=0 the function  

l 0 0 0( ) ( , )ϕ ϕ ==E E E E
x x xx  will describes the localization phase, and the 

function tr 0
0 0( ) ( , )ϕ ϕ ==E E E

Exxx x   the translation phase for vЕ=∞. These 
phases cannot exist simultaneously, and supposing the average duration 
of the localization phase is 0τ =E Ex , and that of the translation phase 
is - E E= xχ , and the average phase change occurring with τ E  and Eχ , 
then after every cycle of phase change we get the motion of the particle 
at the average velocity of /τ=E E Ev χ . Such a separation is due to the 
infinite velocity., 

Probabilistic approach in compliance with definition 2, consider 
Ô(xE0,xE)=P(XE0>xE0,XE>xE) being the multidimensional random 
vector. The random projection of this vector on, for example, axis xE0 

defines the probability of event P(XE0>xE0) and requires the condition 
P(XE>xE)=1  to be commonly met. The latter condition is met for XE=0, 
that is l 0 0 0( ) ( )ϕ = >E E Ex P X x . Accordingly, u, tr ( ) ( )ϕ = >E E EPx X x  
for P (XE0>xE0) =1, i.e. xE0=0. As a result, we arrive at (4.2).

Separating the variables it is necessary to take into account that τ E  
and E÷  must be a 4 – vectors: 2 2 2τ + = ΘE Eχ , and 2Θ -Е-invariant and 

0( ) ( )τΘ = =E E E Ec x c x χ , where

1
2 2

0( ) (1 )
−

= +E Ec x v (a);   
1

2 2( ) (1 )
−

= +E E Ec x v v  (b).                    (4.3)

From this it follows that equations for each phase of the i-cycle are 
to be solutions of (4.1)

2 2
0 l 0 l 0( ) ( )ϕ ϕ∂ =E E Ex k x  (a);  2

tr tr( ) ( )ϕ ϕ=E E Ex k x∆   (b),             (4.4)

where

( )2 21 1= + = +E E E Ek m Ev v (а);     
21+

= Å
Å

E

m v
k

v
(b).             (4.5)                                                                  

Equation (4.4a) has the following solution
0 1 0 2 0( ) exp( ) exp( )ϕ = − + +l E E E E Ex C k x C k x . As attractive potential V(r) 

≥ 0  equally affects the particle as well as the antiparticle, according 
to (3.6) 2 2 0= − ≥E EÅ m p  and correspondingly, KE ≥ 0. Considering 
that 0 0≥Ex  from Definition 2 it follows that 1 1=C , 2 0=C ,  and 
there remains the decreasing exponent. The probability density 

l 0 l 0 0 0( ) ( ) / exp( )ϕ= − = −E E E E E Ef x d x dx k k x  possesses necessary 
properties: the densities are not negative and the integral of the densities 
over all values of 0Ex  equals unity. The mathematical expectation of 
the localization phase duration

2

1 1
1

τ = =
+

E
E E

k m v
.                                          		               (4.7) 

For several cycles, segments 0Ex  form the simplest stream 
with no aftereffect. For the free particle in the translation phase the 
displacement vector of the particle Ex   and vector Åk  are co-directed 
and (4.4b) has the following solution

( ) exp( )= −

tr E E E Eu xx x k ,                                   	              (4.8)

Where =E Ex x  and  Ex  is the unit vector. Probability density 
( ) exp( )= −tr E E E Ef xx k k , i.e. probability density is also positive and 

the mathematical expectation of the particle displacement in the 
translation phase is 

1
− =1 E

E E 2
Å

=
m +

vk
v

χ .                                           		               (4.9)

As has been assumed ,τ E   and χE are the components of E-vector 
and with (2.2)

2 2 2τ −=E E m+ χ τ= 2
Ml

,                                          		            (4.10)

where τMl  is the average cycle duration in LRF. E-invariant is a value  

τ E E0 E Ep + =pχ ,                                               		               (4.11) 

which equals quantum of action . 

On the grounds of (4.10) we consider the cycle duration in LRF xM0l 
to be the two-dimensional random vector with random coordinates xE0 
and xE  , distributed by the exponential law. Then xM0l is also distributed 
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by the exponential law c 0 0( ) exp( )= −M l M lu x mx  with the average value 
1

0
−=M lx m . From equality dxE=dx =E Mld dx x  it follows that xMl  is 

also distributed by the exponential law ( ) exp( )= −

Ml Ml M Mlu xx x k  and 

Ì l Eχ = χ . Using equations (2.3b) and (4.9) we obtain

-1( ) =Ì l Ì Ì mv vχ .                                            		               (4.12)

and the average velocity of / 1τ= ≤M Ml Mlv χ . The value 
0 -τ =Ml M Ml Mp pχ 21- Mv  is also relativistically covariant, and 

equals to relativistic Lagrangian accurate to a coefficient and changes 
from   to 0.

Thus the motion of the particle in E-space is discreet, consists of 
alternating translation and localization phases and the resultant action 
for every cycle equals a quantum of motion. The averaged graph of free 
– particle motion in   is a random step function with the average step 
length τ E  and the average step height Eχ .

The average duration of free – particle cycle in LRF quantizes time 
0M lx  into intervals with the average value 1τ −=M m  dependent only on 

particle mass. And homogeneity is not violated. 

Free spinor particle

Spinor function ( )0,ψ E Ex x  also should be a solution to the 
Dirac equation in E and describe two phases of motion. To derive 
the Dirac equation model in E we need to take into account that 

0 1 2 3= ( 0) ( , , )≥ ⊕ E E E E E Ex x x xE� . The sense of such E-space partition 
is in the fact that in it the rotation is only possible in 0= ( 0)≥ ⊕E ExE�  

1 2 3( , , )E E E Ex x x  and consequently only bispinors have effect. Let us 
factorize (4.2)

( ) ( )0, 0,µ µγ ψ ψ∂ = −E E E E E Ex m xx x .                                	             (4.13)

Matrices µγ E  satisfy the relation 2µ ν ν µ µνγ γ γ γ+ =E E E E Eg , where  gЕμν 
– the Kronecker symbol, and equal

0 diag( 1, 1)γ =E â=   ,  γ σ=Ei i .                                                      (4.14) 

Function ( )0,ψ E Ex x should describe two phases of motion

( ) ( ) ( )0, l 0 trψ ψ ψ=E E E Ex xx x .                                                            (4.15) 

For the localization phase together with (4.5) we obtain

0 0 l 0 l 0( ) ( )γ ψ ψ∂ = −E E E Ex k x ,                                                             (4.16)

where l 0 0( ) exp( )ψ β= −E E Ex k x  - bispinor with 0>Ek  and 0 0≥Ex .                                                                                          

Equation for the translation phase is

( ) ( )tr trψ ψ= −E E E Ex k xγ ∇                                                                (4.17)

and in compliance with (4.8) the solution is ( )tr exp( )ψ β= −

E E E Exx x k . 
Then 

( ) ( )tr tr ψ ψ= E
E E E

E

kx x
k

γ ,                                         	              (4.18)

When movement is along axis х3

( ) ( )3
3

3
tr tr3 3=σ ψ ψE

E
E E

kx x
k

                                                         (4.19)

and the space of bispinor tr 3( )ψ x is a proper space of the diagonal matrix 
3σ  with positive and negative helicity and there may be only a discrete 

transition between these subspaces. The duration of localization phases 
and the extent of translation phases are defined by formulae (4.7) and 
(4.11).

All the features of the quantum theory of the scalar particle are 
valid for spinors as well. But in the latter case we have a new detail 
of helicity. In E, the helicity of massive fermions is only observed in 
the translation phase, and it is a “good” quantum number, whereas 
in M the helicity of massive fermions with a nonzero mass can’t be a 
quantum number characterizing the particle, since it can be inverted 
by appropriate Lorentz transformations. Nevertheless, in nature, there 
exist left and right fermions that are quite different particles and this is 
seen in E.

Neutral spin or particle in the strong potential  

If the particle is affected by the attractive potential which in the 
general case equals  V(x0,xE), then (4.13) will take the form 

( ) ( )0 0 0 0[ V( )] V( )µ µ µγ ψ ψ∂ = − + ∂E E E E E E E E E E Ex m x x x, x , x , x , x .      (4.20)                   

If potential V( )Ex  works then in the localization phase

0 0 V 0 V 0
V( )( ) 1 ( )γ ψ ψ ∂ = − + 

 
E

E E l E E l Ex k x
m
x .                                               (4.21)

The solution to this equation is

V 0 0
V( )( ) exp (1 )ψ β

 
= − + 

 
E

l E E Ex k x
m
x .                                                 (4.22)

The average duration of the localization phase is

V
1

(1 V( ) / )
τ =

+E Ek mx
.                                                                    (4.23)

The equation for the translation form will take the form

( ) ( )trV trV(1 V( ) / ) V( )ψ ψ= − +E E E E E Emx k x x xγ ∇ ∇                            (4.24)

and the solution

( ) ( )tr exp (1 V( ) / )ψ β= − +

E E E E Em xx x x k .                                      (4.25)

The average extent of the translation phase is

V
1

(1 V( ) / )
=

+E mk x
χ .                                                                     (4.26) 

With the quantized motion for V(r)=cr (3.9) takes the following 
form

V VE( )  ( );    E( )  ( )τδ = δ = −Eqi i Eqi ia E bp F Fχ .                                       (4.27)

Equation (4.27b) proves that while the translation phase is on when 
xE0=const, there are instant nonlocal interactions in E. However, when 
mapped in M they take place with speed с.

Application of the Model of Quantized Motion of 
Quarcs to Determine Some Properties of Quarks in 
Protons
Quantized motion of quarks

The calculation of the quantized motion of quarks has been done 
on the basis of the IVC (Figure 1) on the assumption that the quark 
moves along the axis z which passes though the centre of the proton, 
parameters of motion Vτ i  and Vχ zi  being of average value. The 
following data are used in the calculation: root-mean-square radius 
of the proton rp=0.84 fm and 1

cly 0.84fm− = =pa r , averaged constituent 
mass u and d of quarks 0.33Gev. This mass is included into the 
calculation as Compton wave-length of a quark 0.6fm≈ q . The motion 
of a quark is divided into deceleration and acceleration portions. The 
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initial point for the calculation (point A) is chosen at the beginning of 
the deceleration portion when a quark has passed through the centre 
of a proton and at point 0,  / 2 0,3fm= = =E qx z  the quark localization 
phase starts. The acceleration portion starts with the translation phase 
at point B when vEz=0 and the end of the translation phase coordinate 
xE0 has become more than 0.84fm.

The quark deceleration in the second half-period of oscillation 
starts also with the localization phase at point C for  vEz=∞  and z<0  and 
the calculation is done in the way similar to the first half-period. Here 
the following peculiarity is disclosed: the coordinates of the beginning 
of the second oscillation (0.08fm 0.32fm) are close to the accepted 
coordinates of the beginning of the first oscillation (0.0, 0.3fm). 

Charge distribution in the proton 

Central-symmetric motion of quarks (Section 3.1) makes it 
possible to confine to the calculation of the charge distribution for one 
quark considering that its charge equals the charge of a proton. The 
calculation is done on the assumption that V(r) =cr and the charge 
distribution is defined by the probability of the quark being at a given 
point of radius r=|Z| and this probability must be determined from the 
M-space "viewpoint"|

V V( ) /τ τ= ∑i Ml i Ml iP r , where 2
V V V( )τ τ χ= + 2

Ml i E i i . As the calculations 
show that the second oscillation practically repeats the first oscillation 
the parameters of the first oscillation are accepted as the calculation 
basis. The calculation of the charge density has been done under 
the condition that the charge is located in the spherical layer with 
a unit thickness which has radius r. After the approximation by the 
exponential function the equation for the charge density calculation 
is obtained 3( ) 4.0exp( 3.9 ) / fmρ = −c r r e  for validity factor R2=0.85. The 
calculated charge distribution along the radius is 2( ) 4 ( ) / fmπ ρ=c cj r r r e  
(Figure 2).

For the comparison the experimental data for the electric form-
factor of the proton have been used which are usually described by 
dipole approximation 2 2(1 / 0.71)−= +G q  [16] for the preset square 
of 4‑momentum q2. This dependence gives the experimental value of 
charge density 3( ) 3.0exp( 4.35 ) / fmρ = −e r r e  and that of the distribution 
of a charge along the radius 2( ) 4 ( ) / fmπ ρ=e ej r r r e  (Figure 2). 

Graph jc(r) systematically exceeds je(r). It is connected with the fact 
that definitional domain jc(r) equals 0<r<0.85 fm and the box under 
jc(r) equals 1≈ . Definitional domain jc(r) equals 0<r<∞ and the box 

under this curve on the section 0<r<0.9fm equals 0.6.  

Conclusion
It is stated that in the E-space model, Radius-vector rotations 

group does not mix temporal and spatial coordinates;- kinetic energy 
diminishes when the speed grows. This determines the existence of 
constituent and current quarks and describes the dynamic relation of 
their masses; - to describe quantum movement in the E-space, wave 
equations cannot be applied. The application of the random function 
theory has shown that the quarks’ movement consists of localization 
and translation phases;- helicity of massive fermions can be observed 
only during translation phase and is a “good” quantum number;- 
an infinite velocity and non-local interactions connected with it 
while mapping in the M-space does not upset the RS-principles: the 
maximum interaction transmission velocity and the maintenance 
of causality principle; -the proton charge calculation result plausibly 
agrees with the experimental data; the four-dimensional values in the 
E-space are the 4-vector with scalar invariants which have analogies 
in the M-space;- the E-invariant models have a transparent physical 
content and are no alternative for the existing QCD methods, but 
expand their possibilities. 
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