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Abstract
Magnetic Co3Pt films were sputtered on a Ru(0002)/Pt(111) bilayer on glass substrate at room temperature. The 

effects of a Ru buffer layer thickness (t nm) on magnetic properties and microstructures were studied. AFM surface 
roughness results revealed that the root mean square roughness (Rrms) of the Ru/Pt bilayer surface is smaller than 1.5 
nm. Granular Ru topography was observed as t is larger than 7 nm, which played an important role in influencing the 
magnetic properties and microstructures of Co3Pt thin film. In this study, Ru(0002) grew along the Pt(111) underlayer 
and then became a template for epitaxially growing Co3Pt(0002) film, in order to enhance the perpendicular magnetic 
anisotropy (PMA). Maximum Hc were obtained as t=15, due to the columnar structure formed in the whole Co3Pt/Ru/
Pt film. It demonstrates that a Ru buffer layer is helpful to enhance the PMA of Co3Pt magnetic thin film and increase 
out-of-plane squareness (S⊥) and Hc.
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Introduction
In order to achieve a higher areal density of magnetic recording 

media, new developments are constantly coming out one after another. 
Recently, magnetic tunneling junction (MTJ) based spin transfer 
torque magneto resistive random access memory (STT-MRAM) has 
been regarded as the next generation temporary data storage device 
[1-3]. In this case, material with large magnetocrystalline anisotropy 
(Ku), high coercivity (Hc) and good chemical stability is necessary for 
the fix layer in an MTJ cell. Furthermore, material for a fix layer with a 
high perpendicular magnetic anisotropy (PMA) can make cells become 
perpendicular MTJ (p-MTJ), which can further increase recording 
density [3]. Thus, high PMA L10-type FePt and CoPt magnetic alloy 
thin film has attracted a great deal of research in recent years [4-
10]. However, an L10 phase transformation temperature is too high, 
becoming a drawback for further application. Recently, Co3Pt with 
an HCP structure has been regarded as a promising candidate to 
replace L10-type FePt and CoPt due to its lower formation temperature 
(RT~350°C) and similar magnetic properties such as large Ku (~2 × 107 
erg/cm3) and PMA (S⊥~0.9), compared with L10-type FePt and CoPt 
[11-16]. Additionally, lower Pt content can make this structure more 
economical. In order to develop an HCP structural Co3Pt with high 
PMA, costly single crystal substrates such as MgO(111) and Al2O3(0001) 
were adopted [17-20], suggesting an obvious limitation in future 
applications. Thus, it is necessary to fabricate HCP structural Co3Pt on 
glass substrate and still retain its attractive magnetic properties. But 
HCP structural Co3Pt difficultly grows on glass substrate due to the 
amorphous substrate plane.

Usually, textured underlayer was adopted to enhance the PMA 
of magnetic layer on glass substrate [15,16,21], because small lattice 
mismatch (δ) between magnetic layer and underlayer helps PMA phase 
epitaxially grows on the lattice sites of underlayer and consequently 
induced higher PMA of magnetic layer. The δ is used to illustrate the 
extent of lattice differences of two different materials during epitaxial 
growth. The δ between two different materials, α and β, can be calculated 
by the following formula [22]:

α

βαδ
a

aa −
=                     (1)

where aα and aβ are the lattice parameters of materials α and β, 
respectively.

Pt(111) shows a flat surface and similar lattice parameters to a 
Co3Pt(0002) plane. Thus, the lattice mismatch (δ=7.9%) at Pt(111)/
Co3Pt(0002) interface provides a template for epitaxially growing 
Co3Pt with (0002) orientation [23]. However, if the δ could be further 
reduced, Co3Pt films with more (0002) orientation would be expected. 
To achieve that, HCP Ru(0002) is a proper choice. Figure 1 depicts 
δ between Co3Pt(0002), Ru(0002), and Pt(111). Lattice parameters of 
Co3Pt(0002) [1120] , Ru(0002) [1120] , and Pt(111) [110] are 0.255, 
0.270 and 0.277 nm, respectively. Therefore, δ between Ru(0002)
[1120]  and Co3Pt(0002) [1120]  is 5.9%, which is smaller than the lattice 
misfit between Co3Pt(0002) [1120]  and Pt(111)[110]. However, it is 
difficult to deposit pure HCP Ru(0002) structural film directly on glass 
substrate in our experience; usually, the second phase appears easily. 
But using a Pt(111) to induce the Ru(0002) is workable since the δ 
between Pt(111) and Ru(0002) is 2.6%, which is helpful for Ru(0002) 
growth. Therefore, an HCP Co3Pt(0002) structure is expected to be 
fabricated by adopting a Pt/Ru bilayer film. In this study, Ru layers with 

Figure 1: Lattice mismatch (δ) between Pt(111), Ru(0002), and Co3Pt(0002).
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different thicknesses (t nm) were prepared as the buffer layer between 
a Pt underlayer and a Co3Pt magnetic layer, and the effect of Ru buffer 
layer thickness on magnetic properties and microstructures of Co3Pt 
films was investigated.

Experimental Section
In this study, HCP structural Co3Pt(10 nm)/Ru(t nm)/Pt(20 nm)/

glass substrate was fabricated by a sputtering method in a high vacuum 
magnetron sputtering system. The base pressure of the chamber was 
greater than 2 × 10-7 Torr. Argon was selected to be the working gas 
and the pressure was set to 10 mTorr. Direct current (DC) power 
was adopted to supply the sputtering system. Before sputtering the 
magnetic Co3Pt layer, Ru layer with varied t was sputtered on a 20 
nm-thick textured Pt(111) underlayer on glass substrate at 350°C, 
where t was 0, 7, 15 and 25 nm, respectively. After that, the substrate 
was cooled to room temperature (RT) for depositing Co3Pt film at a 
10 nm thickness. Two-inch Co, Pt, and Ru targets with purity levels 
higher than 99.99 at.% was adopted as the sputtering sources. The Pt 
content in the Co-Pt alloy thin film was controlled by adjusting the 
number of Pt chips on the Co target. The chemical composition of Co-
Pt film was 76 at.% Co and 24 at.% Pt, which was confirmed by energy 
dispersion spectroscopy (EDS) equipped on a field-emission scanning 
electron microscope (FE-SEM). The thickness and surface roughness 
of the films were checked by an atomic force microscope (AFM). 
The surface morphology was observed by SEM. Magnetic properties 
were measured by a vibrating sample magnetometer (VSM). The 
crystallization was characterized by X-Ray diffractometer (XRD) with 
Cu-Kα radiation. The microstructure was investigated using a high-
resolution transmission electron microscope (HR-TEM) with 200 keV 
accelerating voltages.

Results and Discussion
In order to understand the effect of the Ru thickness on surface 

roughness in Ru/Pt bilayers, the topography of Ru(t nm)/Pt(20 nm) 
bilayers were identified by AFM and shown in Figure 2a-2d. Figure 
2e is the relationship between t and the root mean square roughness 
(Rrms) of Ru/Pt bilayers. All the bilayer films have flat surface, where the 
Rrms of surfaces are less than 1.5 nm. In Figure 2a, numerous small dots 
are observed at t=0, which shows the lowest Rrms (0.23 nm) in Ru/Pt 
bilayers. Further increasing t would increase the Rrms. When t=7, small 
particles could be observed on the surface (marked by white arrow in 
Figure 2b), so called granular topography. The amount of particles 
increase as t is increased to 15 nm (Figure 2c). The particles size was 
also raised and the maximum Rrms (Rrms=1.36) was obtained. When t 
keeps increasing to 25 nm (Figure 2d), the amount and size of particles 
decreased slightly, leading the Rrms decreasing to 0.53 nm. Apparently, 
the particles played an important role in affecting the Rrms in Ru/Pt 
bilayer. Next, Co3Pt magnetic layer was sputtered on the Ru/Pt bilayer, 
therefore it is expected that granular topography influence Co3Pt film 
growth.

Figure 3a-3d show hysteresis loops of Co3Pt(10 nm)/Ru(t nm)/
Pt(20 nm) films, where t=(a) 0, (b) 7, (c) 15 and (d) 25 nm. Figure 3f 
exhibits the functions of out-of-plane squareness (S⊥) and coercivity 
(Hc⊥) on the thickness of Ru layer. Without a Ru buffer layer (t=0), the 
film shows lower Hc⊥ (~0.23 kOe) and S⊥ (~0.23). Then, the Hc⊥ and S⊥ 
increase as t increases. The maximum Hc⊥ (~1.7 kOe) and S⊥(~0.43) 
appear at t=15, indicating that a higher amount of perpendicular 
hard magnetic structure exists in the Co3Pt film. Further increasing t 
decreased Hc⊥ and S⊥. Combining with Rrms in Ru/Pt bilayer, as shown 
in Figure 2, can obtain that the highest Hc⊥ with the highest Rrms (1.36 

nm) is at t=15. Increasing t to 25 nm leads Rrms to decline and further 
reduce Hc⊥ and S⊥.

Figure 4a shows XRD patterns of Co3Pt(10 nm)/Ru(t nm)/Pt(20 
nm), where t=0, 7, 15 and 25 nm, respectively. It is clear to see the 
strong Pt(111) diffraction peaks in all samples, indicating formation of 
a textured Pt(111) underlayer. However, Co3Pt(0002) diffraction peaks 
are weak at t=0, revealing poor crystallization. Increasing the t to 7 nm 
quickly enhances the intensity of the Ru(0002) peak. Although little 
A1 CoPt(111) forms at 2θ=41.9°, a clear Co3Pt(0002) diffraction peak 
appears at 2θ=43.2°, indicating the Ru(0002) has the benefit to grow a 
Co3Pt(0002) phase. However, more Co3Pt(0002) does not increase the 
Hc⊥. Further increasing the t to 25 nm presents highest Ru(0002) peak, 
but lower Co3Pt(0002) peak. Figure 4b presents the lattice constants of 
FCC Pt(111), HCP Ru(0002), and HCP Co3Pt(0002), calculating from 
Figure 4a. The dash lines are the lattice constants form bulk material 
[24-26]. All the Pt(111) show a similar lattice constant, indicating that 
the underlayer provides a stable template for Ru film growth. When t > 
7, the lattice spacing of Ru(0002) increases with t. As lattice constant of 
Pt is larger than Ru, this phenomena suggests that the Ru(0002) lattice 
is adjusted by the Pt(111) plane. Increasing the thickness of Ru layer 
continuously expands its lattice constant. The upper Co3Pt(0002) layer 
is also fitted with a lattice spacing with Ru(0002) when t>7, evidencing 
the epitaxial growth between Ru(0002) and Co3Pt(0002) planes [21,27]. 

Figure 2: Surface topography of Ru(t nm)/Pt(20 nm) bilayers, where t=(a) 0, (b) 
7, (c) 15, and (d) 25 nm. (e) is the relationship between t and Rrms.
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of Co3Pt(0002). With a further increase of t to 15 nm, as shown in 
Figure 5c, it is clear that the Ru buffer layer transfers into a columnar 
structure (marked as white dash line), which resulting granular 
topography in the AFM results (Figure 2d). This columnar growth 
behavior may result in a higher Rrms. Granular structural buffer layers 
provide a template which helps Co3Pt to grow along it and allows Co3Pt 
to become a columnar structure which makes the film discontinuous 

A comparison of Figures 2e, 3e and 4b finds that the surface roughness 
between Ru(0002) and Co3Pt(0002) is the major effect on crystal quality 
of Co3Pt(0002) structure. Thus, losing granular topography at t=25 
decreases the amount of Co3Pt(0002) orientation, thereby achieving a 
low S⊥.

In order to understand the granular topography effect, the internal 
microstructures of Co3Pt(10 nm)/Ru(t nm)/Pt(20 nm) films are shown 
in Figure 5. Figure 5a-5c show cross-sectional TEM bright field images 
of Co3Pt(10 nm)/Ru(t nm)/Pt(20 nm) trilayer films with t=0, 7 and 15 
nm, and the corresponding magnified images are shown in Figures 5d-
5f, respectively. In Figure 5a, a flat interface between Pt and Co3Pt can 
be clearly observed at t=0, which is in agreement with the AFM results 
(Figure 2a). In the enlarged image (Figure 5d), Pt(111) lattice images 
appeared. However, a Co3Pt lattice image seems unclear observation, 
evidencing that the flat Pt(111) underlayer is insufficient to grow HCP 
Co3Pt(0002) at RT. This result is also predicted by the XRD, which 
show a strong Pt(111) but a weak Co3Pt(0002) diffraction peak. When 
t increases to 7 nm, as shown in Figure 5b, the film shows continuous 
film structure with less grain boundary, which has a less pinning site 
for the magnetic reversal process and further reduces Hc [28,29]. 
Figure 5e shows the corresponding magnified image. Very clear lattice 
images are observed and the lattice distances are identified as 0.224 nm, 
0.215 nm and 0.208 nm, which correlate with Pt(111), Ru(0002), and 
Co3Pt(0002), respectively. This is the proof that a Ru(0002) buffer layer 
grows along the Pt(111) underlayer and further induces the formation 

Figure 3: Hysteresis loops of Co3Pt(10 nm)/Ru(t nm)/Pt(20 nm), where t=(a) 0, 
(b) 7, (c) 15, and (d) 25 nm. (e) is the relationship between S⊥, Hc and t.

Figure 4: (a) XRD patterns of Co3Pt(10 nm)/Ru(t nm)/Pt(20 nm), where t=0, 7, 
15 and 25. (b) is corresponding calculated lattice spacing for Pt(111), Ru(0002), 
and Co3Pt(0002).

Figure 5: Cross-sectional TEM images of Co3Pt(10 nm)/Ru(t nm)/Pt(20 nm), 
where t=(a) 0, (b) 7, and (c) 15 nm. The corresponding magnified images are 
shown in (d)–(f), respectively. 
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and obtains higher Hc⊥. In Figure 5f, the clear Ru lattice is helpful for 
Co3Pt(0002) growth at RT.

Conclusion
In this study, the correlation between magnetic properties and 

microstructures of Co3Pt films sputtered on various thicknesses of Ru 
buffer layer at RT were investigated. Results point out that the Ru/Pt 
bilayer shows a granular topography. When t=7, the Co3Pt film shows 
a high S⊥ but a lower Hc⊥ due to less pinning site in the continuous 
magnetic film structure. The maximum Rrms can be observed at t=15, 
which also shows the greatest Hc⊥. The microstructure indicates that 
a Ru(0002)/Pt(111) bilayer structure could enhance the Co3Pt(0002) 
phase and S⊥. The films form a columnar structure and further increase 
Hc⊥ to 1.7 kOe when t=15. Kept increasing t to 25 nm decreases Hc⊥ and 
S⊥. Our results indicate that a Ru buffer layer is helpful for Co3Pt(0002) 
growth of RT-deposited Co3Pt magnetic thin films, which can be the 
basis for future development of Co3Pt magnetic films at RT.
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