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Abstract
The solution of problem of non-homogeneous partial differential equations was discussed using the joined Fourier-
Laplace transform methods in finding the Green'’s function of heat equation in different situations.
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Thus eqn (3) can be written as:
The Green's function is a powerful tool of mathematics method an (3)
is used in solving some linear non-homogenous PDEs, ODEs. So i{p(x)@}i-q(x)y-l-ﬂr(x)yzo (4)
Green’s functions are derived by the specially development method of dx dx

separation of variables, which uses the properties of Dirac’s function.
This method was considerable more efficient than the others well
known classical methods.

The series solution of differential equation yields an infinite series
which often converges slowly. Thus it is difficult to obtain an insight
into over-all behavior of the solution. The Green’s function approach
would allow us to have an integral representation of the solution
instead of an infinite series.

To obtain the filed u, caused by distributed source we calculate the
effect of each elementary portion of source and add (integral) them all.
If G(r, r,) is the field at the observers point r caused by a unit source
at the source point r,, then the field at r caused by distribution f(r,) is
the integral of f{r) G(r, r,) over the whole range of 7, occupied by the
course. The function G is called Green’s function.

Preliminaries

Sturm-Liouville problem

Consider a linear second order differential equation:

2
A(x)%+B(x)%+C(x)y+/1D(x)y=0 1

Where A is a parameter to be determined by the boundary
conditions. A(x) is positive continuous function, then by dividing every
term by A(x), eqn (1) can be written as:

d?y dy - 2
) +b(x X)js e x)y+Ad(x)y=0 2)

C(X)Z% and d(x)z%

Let us define integrating factor p(x) by
X

px1=explb(¢)i |

Multiplying eqn (2) by p(x), we have:

d?y dy =0 (3
PO+ PN Z+ plxic(x)y+ Apd (x)y =0
A% X
Since
Tocac|  Je(cde g ox
Aot _ | 1| I S [b(¢)a¢ |= pxipi

Where g(x)=p(x)c(x) and r(x)=p(x)d(x).

Equation in form (4) is known as Sturm-Liouville equation. Satisfy
the boundary conditions [1-5].

Regular Sturm-Liouville problem: In case p(a)=0 and p(b)=0,
p(x),q(x),r(x) are continuous, the Sturm-Liouville eqn (4) can be
expressed as:

Llyl=Ar(x)y ®)

Where L_di{p( );{%} q(x) (6)

If the above equation is associated with the following boundary
condition:

a y(a)+a,y(a)=0
By (0)+B,y(b)=0 ™)
Where +a,#0 and 8, +§,20

The eqn (4) and the boundary condition (7) are called regular
Sturm-Liouville problem (RSLP).

Singular Sturm-Liouville problem: Consider the equation:
L[y]+Ar(x)y=0 a<x<b (8)

Where L is defined by eqn (6), p(x) is smooth and r(x)is positive,
then the Sturm-Liouville problem is called singular if one of the
following situations is occurred.

(i) If p(a)=0 or p(b)=0 or both

(ii) The interval (a,b) is infinite.
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Eigenvalue and Eigenfunction: The Eigenvalue from eqn (4)
defining by a Sturm-Liouville operator can be expressed as:

1| d dy
aes) dx[p(x)cbc]wm} ©)

The non-trival solutions that satisfy the equation and boundary
conditions are called eigenfunctions. Therefore the eigenfunction of
the Sturm-Liouville problem from complete sets of orthogonal bases
for the function space is which the weight function is r(x).

The Dirac Delta function

The delta function is defined as:
5(x—cj):JL0 x;‘ég} (10)
o x=({
But such that the integral of § (x—£) is normalized to unit;
+0
j5(x—§)dx:l 11)
—0

In fact the first operator where Dirac used the delta function is the
integration:

[ f(x)6(x=&)dx (12)
Where f(x) is a continuous function, we have to find the value of

the integration eqn (12).

Since § (x—£&) is zero for x#¢, the limit of integration may be change
to {— and (+¢, where ¢ is a small positive number, f(x) is continuous at
x—¢, it’s values within the interval ({~¢,{~) will not different much from
f(0), approximately that:

j f(x)é(x—g)dxzz f08(x-

With the approximation improving as ¢ approaches zero.

§)dx=f(¢) § Blx-

(=€

¢)dx (13)

From eqn (11), we have:

1= [8(x=¢)dx=| 8(x=¢)dv=1 (14)

From all values ofe, then by letting e50, we can exactly have:

+00

[ f(06(x=&)dx=r(¢) (15)
—o0

Despite the delta function considered as fundamental role in
electrical engineering and quantum mechanics, but no conventional
could be found that satisfies eqns (10) and (11), then the delta function
sought to be view as the limit of the sequence of strongly peaked
function § (x) such that:

()= lim% (%) (16)
As:
5}1 x :L
(%) 7z(l+n2x2)
n 2.2
X)=—f—e 17
0,(X) N (17)
12
5n(x):w,etc
nx

Some important properties of Dirac delta function
Property (1): Symmetry
0 (—x)=0 (x) (18)
Proof: Let {(=—x, then dx=—d(

We can write:

+00

I f<x>6<—x>dx=—jf(§)5(4)d4{[:f(g)é(é)dgzﬂo) (19)
But, I f(»

Therefore, from eqns (19) and (20), we conclude that § (—x)=8 (x).

x)dx = £(0) (20)

Property (2): Scaling

5(ax)—@5( ) (21)

Proof: Let {(=ax, then dx = %d 4
If a>0, then,

Trosana=T1 150 )ac -4 1115

5(¢)d¢ - gs [2}%«0)

Since, If(é’)%é‘( )dx:

Therefore: 5(ax) - %5(}6)

2| fwdmdr-Lro)

Similarly for a<0, 5(ax)=7l5(x) , then,
We can write: J(ax)= ‘611‘5
Property (3)
S(x—a?\=L1 [S(x+a).Sx—a (22)
( ) ‘Za\[ (x+a)-Sx—a)
Proof: The argument of this function goes to zero when x=a and
x=—a, wherefore:

[71¢)8(2-w)dx- | f 15

[(x+a)x—a)|dx

Only at the zero of the argument of the delta function that is:
+00 5 —ate 5 R ate
J Sx)O(x 7a2)dx:7]'7 »f(x)c‘)‘(x ~a?)dx+ I »f(x)c‘)‘

Near the two zeros x*—a* can be approximated as:

(x2 7az)dx (23)

D\ B [—2a](x+a), X——a
(.X a )_(x a)(x+a)_{[+2aj(x—a), X—>+a

In the limit as 0 the integral eqn (23) becomes:

) f<x)5(xz_az)dx{:f f(x)5[(—2a)(x+a)]dX+j: F 08 [a)c—a))dx

—ate

:ﬁ j f(x)&(ﬁ@dmﬁaff(x)&xw)dx
If ‘2 ‘[ x— a)+5(xfa)]dx

Therefore: 5()(:2 _(12): L[6‘(J\‘—a)+é‘(x—a)]

2|
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Green’s Function for the Heat exp[—‘x— ¢ \/E—sr] 09)
a

Heat equation over infinite or semi-infinite domains g(x.s.¢ 57): 2435

Consider one dimensional heat equation: Taking Laplace transform of eqn (29) we obtain:

Ou_ 0% _ 2

—-a —f(x1) (24) . x—C
o "o G(x.5,6.7)- \/azl(zt t) oo ac(lz(t Z‘) G0
Subject to boundary conditions |u(x,f)|<e as |x|<eo and initial )

condition. Let G(x, t, {, T) be the Green’s function for the one-
dimensional heat equation, then:

oG _ 82G
o Yo =0

Subject to the boundary condition |G(x, t, {, 7)|<e as |x|<eo, and the
initial condition G(x, t, {, 7)=0. Let us find G(x, t, {, 7).

C<m, 0<t,r (25)

—w<X,

We begin by taking the Laplace transform of eqn (24) with respect
to t, we have:

~)es

S —

Where g(x, s, {, 7) the Laplace transform of G(x, ¢, {, 7)

Sg(xasaéir)—g(x,o,g,r) e S

Now by taking the Fourier transform of eqn (26) with respect to
x, so that:

ik§—st

(—ik) (ks(r) % (k,s,(,f)z—e_az
kZG(k s,¢, z')+ S G(k 5,4,7)= eflkg il

Where G(k,s,é’ ,‘[) is Fourier transform of g(x, s, {, 7), now let

S
7
eﬂk{ ST
(2 17)G[k,s.¢ )= @)
To find g(x, s, {, 7), we use the inversion integral:
_ ix=¢
e o[ "

(xsé’f) 27mzj k2+b?

Transforming eqn (27) into a closed contour, we evaluate it by the
residue theorem and find that:

—ST @ \x—é’J

glxs¢ r) gﬁaz ] (k+zb)(k—zb)

dk

el S
at k=xib then Zb [eﬂ" g ]]:ﬁe—\kg‘b
ST - _ ‘X ¢ ‘b—sr
g(X,S,é’,T) 2a2be 2lb

Now substituting for =5

Example (5.1.1) Consider one dimensional heat equation:

R

Subject to boundary condition u(0,t)=0, hm‘u (x,¢) <0 and initial
condition U(x,0)=0

Solution: Let us find the Green’s function for the following
problem:

0G _ 20°G

o ox? &

Subject to the boundary conditions G(0, ¢, {, 1), )lcgr%‘G(x,t,é’ ,z') <00
and initial condition G(x, 0, {, 7)

§)5(t—r),0<x,§<oo,0<t,z' (32)

From the boundary condition G(0, ¢, {, 7)=0, we deduce that G(x, t,
(, 1) Green’s function by introducing an image source of —8(x—{) and
resolving eqn (25) with the source (x—{)d (t-7)-0 (x+{)é (t-7). Eqn
(30) gives the solution for each delta function and the green’s function
for eqn (32) can be written:

His —(x=¢ | [T
G(x,s,(,r)=J4ﬂa(2(t)_T) eXp[4c(12(t—)r)JeXp[4¢(z2(t—)r)J (33)

wsit) HinJon(=2ag =2 —2.l =2
Gxsd, )\j47ra(2t)r){e p[ 4a2(t-1) } *p 4a’(t-7) ]}
—2—(2 &
Xp 5 + 5 -
 H(-r) [461 (t-7) 2a (t—r)]
G(x,s,{,z')_ dra®(t—1) —2-(2 £
eXp[4c:2(t—r)2a2x(t—T)J
—2+4?
Glusdr]. Hia | 4 i)
29565 dra(t—1) exp 2azxg_r)}‘eXp[2azzf/_TJ
~ H@-o J el Sl PN 4
G(x’s’gjr)f\/47m2(t—r) [eXp[4a2(t—T)}m [2(12(1—1)]} B9

In a similar manner, if the boundary condition at x=0 changes to
G (0, ¢, {, 7)=0, then eqns (31) and (32) become:

Hio oo 50 e 5T
R {e"p daii—7) P darfi-1)
Hi —(x=¢ | [x+e)
G(x,s,(,r)=J4ﬂa(2(t)_T) exp 46(120_)7) -exp 4c(z2(t—)r) (35)
Ht T x2+ 2 X
(x 5,6, r) \/47ra(2 t) T){exp 4a2(t€r) cosh 2a2(ét/—r)} (36)
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Heat Equation within a finite Cartesian Domain

In this section we find Green’s function for the heat equation
within finite Cartesian domains. These solutions can be written as
series involving orthonormal eigenfunction form regular Sturm-
Liouville problem [6-10].

Example (5.2.1)

Here we find the Green’s function for the one-dimensional heat
equation over the interval 0<x<L.

W -0 f(x,0<x<L,0<t (37)

Where a? is the diffusivity constant,

To find the Green’s function for this problem, consider the
following problem,

0G_20°G gy

ot Yoz ~$)8(t-7),0<x,¢ <L,0<t, (38)

With the boundary conditions,

a,G(0,64,1)+B,G (0,4,4,1)=0,0<t (39)
and
«,G(L,t,(,1)+B,G (L,t,¢,t)=0,0<t (40)

And the initial condition,
G(x,t,¢,1)=0, 0<x<L (41)
We begin by taking the Laplace transform of eqn (38) and find that:

o(x—¢g e
5 gl S0 g =00
o2g s _ Ofx=¢le (42)
i T,O<x<L
With a,g(0,4,4,7)+,4'(0,4,{,1)=0, (43)
And a,g(L,1,{,7)+B,¢'(L,1,(,1)=0 (44)

Applying the technique of the eigenfunction expansions, we have
that:
2 ,(C)h)
X,8,6,T)=e5!
8(x.5,¢.7)- nZ::l s+a2k2

Where ¢ () is the nth orthonormal eigenfunction to the regular
Sturm-Liouville problem:

(45)

P(x)+k¢’(x)=0 (46)
Subject to the boundary conditions:

a,¢(0)+p,¢'(x)=0 (47)
And a,¢(L)+B,¢'(L)=0 (48)

Taking the inverse of eqn (45), we have that:

Giea )| § 0

R L

Heat equation within cylinder

In this section, we turn our attention to cylindrical domains. The
techniques used here have much in common with those used in the
previous section. However, in place of sines cosines form in Sturm-

Liouville problem, we will encounter Bessel functions.
Example (5.3.1)

Find the solution of the following problem by construction the
Green’s function:

oU_a 3(,0U|_f () .
ﬁ r 57‘{ a}"} 27z'r '0<r’p<b’0<t:2— ( )

£)=0, and

the initial condition U(r,0)=0.

Solution: In this problem, we find Green’s function for head
equation in cylindrical coordinates:

0G _a? 8 (,0G|_0(r=p)o(i-7

ot T arL or 2rr

Subject to the boundary conditions Ligr(}‘G(r,t, P,7) <0
G(b,t,p,7)=0, and the initial condition G(b,0,p,7)=0

) 0<r, p<b,0<t,r (51)

>

Now we begin by taking the Laplace transform to eqn (51) with
respect to t:

SG(r,S,P,T)~ %di

atd
S dr

dr 2rr
_estor—p)
2ra’r

dﬁ} et o(r—p)
(52)
g

dr g

Next we re-express M as the Fourier-Bessel expansion:

S(r=p)_ k,r 53
- 2rr ZCJ[bJ 9

Where k_is the n™ root of ] (k )=0, and

J knl"]
?5(I”—p)JO{lc,,I”err:0 b (54

2
C b b2 72k,

BTk 27

J
Sothat 1 d dg s g:_ et & 0[ b
rarl"dr math /o J 2(k,,

e—ST o0 0
b s T

By applying Fourier transform:

7k2@+ik257§=—7[@” $

J [
e 3 b ol B (56)
7a® i (sb +kia? ) J2 (k)
Taking the inverse of eqn (56) and applying second shifting
theorem,

G(r.s,p,7)=
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B B
) J, [ k’;)p ] J, [kz” ] And i 3 (k,,r)rdr - %,,2 [ 3 (knr) + )2 (knr)}‘a (69)
57
G( 7S, P,T)= (tbzr ) Z J? ( k ) &7 with the wronskian relationship:
1\ -2
J, -J == 70
If we modify the boundary condition at r=b, o ENEAN AN 7z 7o)
G (b,tp,1)+hG(b,t,p,1)=0 (58) We find that:
Where h0, our analysis now leads to: B, 1 J g(kna )
é[t¢n ( rdr 2 2k2 L]g(knﬂ)_l (71)

APl
b2 nz_l T3l T2 ) "
Where k, are the positive roots of kJ, (k)+hbJ, (k)=0.

knF]

G(r,s,p,7) 3

—a?k? (t—T)J (59)

Problem (3.3.2)

Find the solution for the heat equation in cylindrical by construction
the Green’s function:

U _a® 8(,0U)\_J (1) g4 (60)
ot Tt orl or 2r
Subject to the boundary conditions U(a,t)=U(f,t)=0, and the initial
condition U(r, 0)=0

Let G(b,t,p,7) Green’s function, then:

0G _a2 0(,0G|_0(r=p)o(t=7) 61
o T 8r[r 81”] 2rr 0<r, p<f,0<t,z (61)

Subject to the boundary condition that G(a,t,p,7)= G(f,t,p,7)=0,
and the initial condition G(r,0,p,7)=0

We begin by taking Laplace transform of eqn (61), we obtain:

1 d(,.dg sg__e‘”5(”—,0) (62)
rdr dr 2rwa’r

Now, we express

S(r=p)
r

regular Sturm-Liouville problem:

as a Fourier series by considering the

il P9 Kep=0, prar=piar=s ()
The eigenfunction that satisfy eqn (63) are:
¢n (x)=y()(kna)‘]()(kn’)*‘]()(kna)y()(knr) (64)

Provided k is the nth zero of y (ka)] (k B)-J (kB yo(k «)=0,
therefore, the expansion for the delta function i 1n term of ¢ (r) is

o(r-p)

7 nzlc Bu(r) (65)

B
JO(r=p)fu(r)a

Where C, :“ﬂ— (66)

[#ir)a

Using the orthogonality condition that:

B 1 . s

g(Jg (knr)rdr :jrz [JO (k,,rﬂ‘a (67)

B
(ol ol - L2yl vyl | yl(knrﬂ‘f (68)

e ki (k)b (PI(T)
Therefore g(,8,0,7)= ﬁ nZ::I[Jg(kna)f-]g(knﬁ)}(s+azk3

(72)
)

Inverting the Laplace transform, we obtain:

2 ]2
Ln(t-1)3 kg (kus (01 (7)

G(r,s,p,l'): n=1 ‘]g (k"a)ﬂ]g(knﬂ)

o|—a*k3(t—1)| (73)

In similar manner, we can solve the general problem eqn (61) with
Robin boundary conditions:

alGr((x,t, ps7)-a,G(at,p,7)=0 (74)
And b,G (B.t, p,7)~b,G(B,t,p,7)=0 (75)
Where a, a,, b, b,20. The solution for this problem is:

2
o Tk, (o), ]

Gr.s.p.1)=n(t—7)3 (k) (76)
" (01 r)ese] —a2h2 (=)
J (k) ak,y (kup) - a, v, (K,
Where ¢n(7”): O( )[al yl( ﬁ) azyO( ﬁ)} (77)
Vol @], (R T )|
nd Pl (B2h + 03[ afen], (ke )+ @y Ty (e | -

—Y, (knr)[alkn ¥, (knﬂ) ~a,y, (knﬂﬂ
Heat equation within a sphere

Let us find Green’s function for the radically symmetric heat
equation within a sphere of radius b. mathematically, we must solve:

0G _a? 02 _O(r=p)d(t-t
W—TW(MG)—$D<Ap<b,0<t,f (79)

With the boundary condition &i_r)l(}‘G(r,t, p,7) <0, G(b,tp,1)=0,

and the initial condition G(r,0,p,7)=0

Conclusion

We begin by introducing the dependent variable
u(r,t,p,7)=rG(r,t,p,7), so that condition eqn (69) becomes:

Ou_a? 52“=5(r_p)5(t_r),0<r,p<b,0<t,r (80)

ot T or 4712

With the boundary conditions u(0,t,p,7)=u(b,t,p,7)=0, and the
initial condition u(r,0,p,7)=0. Taking the Laplace transform of eqn (80),
we obtain:

2dU _es" 5, 5 AU sp— e _
sU-a dar? 47rr5(r PI= darr a2U 47ra2r5(r P) (81)

Let us expand (r P) in the Fourier sine series:

Fluid Mech Open Acc, an open access journal
ISSN: 2476-2296

Volume 4 « Issue 2 + 1000152



Citation: Hassan AA (2017) Green’s Function for the Heat Equation. Fluid Mech Open Acc 4: 152. doi: 10.4172/2476-2296.1000152

Page 6 of 6
5(V—p) ® 262(F5G) or—pot—-t
_&c [ nmr 0G_a _OU=PIOUT) o p<h,0<t,r (87)
7’, n§1 n sin b (82) al v arz 47Zr2 b p b bl
b With the boundary conditions G(a,t,p,7)=G(S,t,p,7)=0, and the
2 (AT 2 (NP P> >LPs >
Where C":E (j) 5(}” p)m[ b Jdu bpm[ b J (83) initial condition G(r,0,p,7)=0. Therefore the Green’s function in this
particular case is:
Therefore we write eqn (81) as: .
G(r,t,p,r)z H(t T) § sin[nﬂ-(p_a)}in[nﬂ-(r_a)]x
dU s et o (nap) . (nxr 27 (p-a)V Pzl (p-a) (b-a)
£~ 2 U= ZSin sin (84) 250270 (88)
dr? a2 dralrim \ b b | (t=7)
€X] 72
. _ (B-a)
and [%,%JU: 46 s; § Sin[”Zszin[anj References
a za ,0n:1 1. Al-Gwaiz MA (2008) Sturm-Liouville theory& its Application, Verlag London
2.2.2 limited, UK.
an<yw S
b2 * U=— est x nrp) nrr 2. Blakledge G, Evans J, Yardley P (2000) Analytic methods for Partial differential
a2 - 472'612,0 n—lsm b s b Equations, Sprenger London Limited.
3. Kwong-Tin T (2007) Mathematical methods for Engineers and Scientists 3,
U(r o) =— et ® 1 Sm{nﬂp]sm nr Verlag Berlin Heidelbarg.
e 47Z'p n:1s+a2n27z2 b b (85) 4. Gerald HB (1992) Fourier analysis and Application, Wodsworth. Inc. Belmon
b2 California.

Because this particular solution also satisfies the boundary
condition, we do not require any homogeneous solution so that the
sum of the particular and homogeneous solution satisfies the boundary
conditions.

Taking the inverse of eqn (85), using the second shifting theorem
and substituting for U(r,t,p,7), we finally obtain:

Gapni=EHZ 018 om0 )

—a’n’r?(t—7)
27br =&UD b

- } (86)

For the case of a sphere a<r<f, the Green’s function can be bound
by introducing the new independent variable x=r—a into the partial
differential equation:

5. Kwong-Tin T (2007) Mathematical methods for Engineers and Scientists 2,
Verlag Berlin Heidelbarg.

6. Neta B (2002) Partial differential equations, lecture notes, Naval postgraduate
School, California.

7. Pinchover Y, Rubinstein J (2005) An introduction to Partial differential
equations, Cambridge University.

8. Roach GF (1970) Green’s function introductory theory with Application, New
York Toronto Melbourne.

9. Addison W (1984) Boundary Value problem, Monterey California.
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CRC Press.
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