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Abstract

Strap-down air borne gravimeter is the core sensor of strap-down gravimetry system. In this paper, A new strap-down 
airborne gravimeter called SGA-WZ has been developed by the Laboratory of Inertial Technology of the National University 
of Defense Technology. Precise gravity anomaly data reconstruction is the key technology in airborne gravimetry based on 
the SGA-WZ. This paper explores a method for large scale precise gravity anomaly data reconstruction using the theory 
of Compressed Sensing (CS). Based on the CS theory, the gravity anomaly data reconstruction can be transformed into 
the one-norm convex quadratic program to be solved by several methods such as interior point methods (IPM). This 
paper presents an improved IPM for performing the large scale gravity anomaly data reconstruction precisely that uses 
the Preconditioned Conjugate Gradients Algorithm (PCG) to compute the search direction. And then, a flight test has been 
carried out in China with SGA-WZ. The test results have shown that the PCG-IPM algorithm can reconstruct the large 
scale gravity anomaly data with higher accuracy than the existing nearest interpolation method in airborne gravimetry.
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Introduction
The gravity is one of the primary forces on the earth, which 

affects all the physical events of the earth and it’s near space. Gravity 
survey is significant in many fields, such as geology, seismology, 
geophysics, navigation technology, military science, and resource 
investigation, etc. Airborne gravimetry is an important measuring 
technology of acquiring the earth gravity. Compared to traditional 
terrestrial gravimetry and shipborne gravimetry, airborne gravimetry 
uses the measuring instruments taken on an aircraft, so which can get 
extensively and precisely well-distributed information of the earth 
gravity field economically and rapidly [1]. Meanwhile, some special 
terrains are difficult to access by terrestrial gravimetry and shipborne 
gravimetry, such as desert, marsh, glacier, mountain and forest, but 
airborne gravimetry can measure gravity in these areas effectively [2]. 
Just because of this, airborne gravimetry has become one of the hot 
research fields in geophysics.

Gravity anomaly data reconstruction is an important research topic 
in airborne gravimetry. Nyquist and Shannon showed that signals can 
be exactly recovered from a set of uniformly spaced samples taken at 
the Nyquist rate of twice the highest frequency present in the signal of 
interest [3,4]. Essentially, airborne gravimetry is a sub-Nyquist sampling 
method, and then, the precise gravity anomaly data reconstruction 
becomes a difficult work. In 2006, Candès, Romberg, Tao and Donoho 
presented a new theory named as CS, which offers the opportunity 
to perform the gravity anomaly data reconstruction precisely. The 
theory showed that a signal having a sparse representation can be 
reconstructed exactly from a small set of linear measurements [5-8]. 
Taking into account the sparsity of airborne gravimetry by the Discrete 
Fourier Transform (DFT), the gravity anomaly data reconstruction 
can be transformed into the one-norm convex quadratic program, 
which can be solved by standard convex optimization methods such 
as IPM algorithms. The recently developed computational methods for 
one-norm convex quadratic program include path-following methods 
[9,10], bound optimization methods, iterated shrinkage methods [11], 
and gradient projection algorithms. This paper mainly describes the 
PCG-IPM algorithm for performing the large scale gravity anomaly 
data reconstruction precisely. The method uses the PCG algorithm to 
compute the search direction [12].

Mathematical Model
Compressed sensing is a rapidly growing field that has attracted 

considerable attention in geophysics, seismology, applied mathematics, 
and computer science. Especially, reducing the sampling rate and 
increasing resolution in airborne gravimetry can reduce economic cost, 
improve survey efficiency, and improve data quality. Let nz R∈  be an 
unknown original gravity anomaly, my R∈  is the sampling gravity 
anomaly, and 1 2[ , , , ]T m n

m RΦ φ φ φ ×= ∈
 is the compressed sensing 

matrix. If z is sparse in a transform matrix n nRΨ ×∈  and the vectors 
ɸi are well chosen, the original gravity anomaly can be recovered from 
a amazingly small number of linear measurements m. And then, based 
on the theory of CS, the gravity anomaly data reconstruction can be 
studied by solving a problem of the form:

2

2 1
min .z y xΦ λ− +         (1)

Where 0λ >  is the regularization parameter, x is the sparse 
coefficient matrix, and 1 1i

n
ix x== ∑  is the one-norm of x. When Ψ 

is invertible, and let 1 m nA RΦΨ − ×= ∈ , Equation (1) can be rewritten as:
2

2 1
min .Ax y xλ− + (2)

This is the one-norm regularized least squares problem. By 
associating the linear inequality constraints, Equation (2) can be 
transformed to the convex quadratic program:
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s. t.     , 1,2, , .
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(3)

The convex quadratic program can be solved by the PCG-IPM 
algorithm. This paper mainly studies the application of PCG-IPM 
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algorithm in precise gravity anomaly data reconstruction. The method 
uses the PCG method to compute the search step, therefore, which can 
reduce the computation time for large scale problems with modest 
accuracy. Compared with the IPM that uses conjugate gradient 
methods to compute the search step, the PCG-IPM algorithm is able to 
solve the gravity anomaly data reconstruction with higher accuracy and 
smaller computational cost.

By associating the dual variable mRν ∈ , the Lagrange dual of 
Equation (2) can be formulated as:

max ( ) (1 4)

s. t.     .

T T

T

G y

A

ν ν ν ν

ν λ
∞

= − −

≤
                                                           (4)

This dual problem is a convex optimization problem. Let v* is 
the solution of Equation (4), then we can say that v* is dual feasible 
[13]. Meanwhile, if P* is the optimal value of Equation (2), the dual 
feasible point v* supplies a lower bound of P*, i.e., ( )G Pν ∗ ∗≤ . For 
an arbitrary x of the one-norm regularized least squares problem, an 
simply computed bound of the sub-optimality x* can be obtained by 
constructing a dual feasible point:

{ }
2 ( ) ,

min 1, .T

k Ax y

k A

ν

λ ν

∗

∗

∞

= −

=                                                                       (5)

Because the point v* is dual feasible, ( )G ν ∗  is a lower bound of P*. 
The difference between ( )G ν ∗  and P* is named the duality gap denoted 
with η :

2

2 1
( ) ( ) .P G Ax y x Gη ν λ ν∗ ∗ ∗ ∗ ∗= − = − + −                                                      (6)

where 0η ≥ . When x* is the optimal solution of Equation (2), the 
duality gap 0η = .

For the bound constraints i i iu x u− ≤ ≤  in Equation (3), we can 
define the logarithmic barrier:

{ }
1 1

( , ) log( ) log( ) ,

dom ( , ) , 1,2, , .
= =

Ω = − + − −

Ω = ∈ × < =

∑ ∑n n
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n n
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x u u x u x

x u R R x u i n

                 (7)

And then, Equation (3) can be reformulated to the convex function as:

2

2 1
min ( , ) ( , ) .ω λ

=
= − + +Ω∑n

t ii
x u t Ax y t u x u                      (8)

As the parameter t varies from 0 to ∞, we can obtain a series of 
the unique solution ( ), ( )( )x t u t∗ ∗  of Equation (8). With each point

( ), ( )( )x t u t∗ ∗ , we can construct the dual feasible variable v* shown in 
Equation (5). And then, the series of the point ( ), ( )( )x t u t∗ ∗  leads to 
an optimal solution of Equation (2).

Generally, the solution of Equation (8) can be obtained with the 
Newton’s method:

2 ( , ) ( , ) .t t

x
x u x u

u
ω ω

∆ 
∇ = −∇ ∆ 

                                                                  (9)

The solution of Equation (9) exactly is the search direction
( , )x u∆ ∆ . For the gravity anomaly data reconstruction, the PCG 
algorithm computes the search direction as an approximate solution 
of Equation (9) [14-16], so it gives a good tradeoff of computational 
complexity versus the data recovery precision.

In Equation (9), 2 ( , ), ( , )t tx u x uω ω∇ ∇  can be formulated as:
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With the PCG algorithm, the search direction ( , )x u∆ ∆  can be 
computed approximately [17-19], with a preconditioner:

1 2

2 1

2 22 2
1 1

1 2 2 2 2 2 2
1 1

1 1
2 2 2 2 2 2 2

1 1

2 diag( ) 0
,

0 0

2( )2( )diag , , ,
( ) ( )

44diag , , .
( ) ( )

T

n nn n

n n

n nn n

n n

D Dt A A
H

D D

u xu xD R
u x u x

u xu xD R
u x u x

×

×

   
= +   

  
 ++

= ∈ − − 
 −−

= ∈ − − 





                       (12)

where 2 2n nH R ×∈  is symmetric and positive definite. We can see that 
Equation (12) is the approximation of Equation (10), so the cost of 
computing the search direction can be reduced.

After obtaining the search direction ( , )x u∆ ∆  by using the PCG 
algorithm, the new point is ( , ) ( , )x u s x u+ ∆ ∆ , where s>0 is the step 
size, which can be taken with the backtracking line search method as:

[ ]( , ) ( , ) ( , ) .r r r T
t t tx x u u x u x u x uω β β ω αβ ω+ ∆ + ∆ ≤ + ∇ ∆ ∆          (13)

If r ≥ 0 is the smallest integer that satisfies Equation (13), the 
step size is s=βr. Meanwhile, the stopping criterion of the PCG-IPM 
algorithm can be expressed as:

PCG-IPM.
( )G
η ε
ν

≤                                                                                     (14)

Where PCG-IPM 0ε >  is the relative tolerance parameter for the 
PCG-IPM algorithm.

In conclusion, the procedure of PCG-IMP can be carried out by 
means of the basic steps as follows:

Step 1: Initialize the algorithm parameters: : 1t λ= , : 0x = , 
: (1, ,1) nu R= = ∈1 

.

Step 2: Compute the approximate solution of Equation (9) to 
obtain the search direction ( , )x u∆ ∆ , by using the PCG algorithm.

Step 3: Evaluate the step size s  with the backtracking line search 
method, and update the new point ( , ) ( , )x u s x u+ ∆ ∆ .

Step 4: Construct the dual feasible variable v* shown in Equation 
(5), and compute the dual gap η shown in Equation (6).

Step 5: Update the parameter t.

Step 6: If the stopping criterion shown in Equation (14) is met, the 
PCG-IPM algorithm will come to the end. Else, return to Step 2.

Step 7: Obtain the estimate for the unknown gravity anomaly:
1z xΨ∗ − ∗= .

Test Results and Discussions
From April 2010 to May 2010, the flight test was carried out in 

China. Among the eight flights in the whole flight test, the first and 
second flights were repeated lines. The other six flights were grid flights 
consisting of three flights of survey lines and three flights of control 
lines. In the test, we used the strap-down airborne gravimetry system, 
the core of which is strap-down airborne gravimeter. Because the strap-
down airborne gravimeter has so many advantages of high reliability, 
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low cost, unattended operation, and so on, it attracts broad attention of 
the researchers and develops rapidly [20]. In this paper, the Laboratory 
of Inertial Technology of the National University of Defense Technology 
has developed a strap-down airborne scalar gravimeter independently, 
as Figure 1 shows, which is the first home-grown system in China 
called SGA-WZ. In this paper, the SGA-WZ can be divided into two 
main components: the strap-down inertial navigation system [21,22] 
and the triad of accelerometers (Figure 2). The strap-down inertial 
navigation system is used mainly for measuring the specific force and 
the attiude of the aircraft. The accelerometers have a stability of ± 0.2 
mGal, scale factor uncertainty of ± 3 ppm and random noise of ± 5 
mGal. The gyroscopes have a stability of ± 0.004°/h and random noise 
of ± 0.002°/ h .To evaluate the PCG-IPM algorithm performance and 
the gravity anomaly data reconstruction precision, this study defines 
the performance indices with the standard deviation and SNR. SNR 
can be calculated by:

10 2 2
SNR 20log ( ) .z z z∗= −                                                                (15)

Due to space limitations, this paper mainly analyzes the first flight 
denoted by F401, which consists of 6 lines. In this study, the algorithm 
parameters of PCG-IPM were set as:

PCG-IPM0.01, 0.5, 0.01, 0.05 .α β λ ε= = = =                                                        (16)

And the compressed measurement number was set as m=1618.

Figure 3 shows the reconstruction results of line 1 in F401 by the 
PCG-IPM algorithm. The comparisons between the original gravity 
anomaly and reconstruction gravity anomaly of line 1 in F401 are 
shown in Figure 3a. In this subgraph, the red dashed denotes the 
reconstruction gravity anomaly, the blue solid denotes the original 
gravity anomaly, and the two curves almost overlap each other if it 
doesn’t take the boundary effect into account. The reconstruction 
error of line 1 in F401 is shown in Figure 3b. Without regard to the 
boundary effect, the maximum reconstruction error of line 1 in F401 
is 0.108 mGal, the minimum reconstruction error of line 1 in F401 
is -0.132 mGal, and the standard deviation of reconstruction error 
of line 1 in F401 is 0.023 mGal. In practice, if the boundary data can 
be abandoned in the post-mission analysis, the boundary effect can 
also be ignored.As a consequence, Figure 3 demonstrates that the 
reconstruction results from the PCG-IPM algorithm approximate 
the original gravity anomaly very well and the reconstruction error is 
also very small. As mentioned above, the compressed measurement 
number was set as 1618m = , i.e., the compressed sampling rate was 
approximately 52%. These results convincingly show that the PCG-
IPM algorithm can reconstruct the gravity anomaly data with higher 
accuracy and fewer measurements. To contrast the gravity anomaly 
data reconstruction precision of the PCG-IPM algorithm, the paper 
also made the gravity anomaly data reconstruction with the existing 
Nearest Interpolation Method (NIP), which is one of the commonly 
used methodologies for data reconstruction in airborne gravimetry. 
Figure 4 shows the reconstruction results of line 1 in F401 by the NIP 
algorithm. The comparisons between the original gravity anomaly and 
reconstruction gravity anomaly of line 1 in F401 are shown in Figure 
4a. Be similar to Figure 3a, the red dashed denotes the reconstruction 
gravity anomaly, and the blue solid denotes the original gravity 
anomaly. The reconstruction error of line 1 in F401 is shown in Figure 
4b. The maximum reconstruction error of line 1 in F401 is 0.289 mGal, 
the minimum reconstruction error of line 1 in F401 is -0.293 mGal, 
and the standard deviation of reconstruction error of line 1 in F401 is 
0.11 mGal. As a consequence, Figures 4 demonstrates that there is not 
the boundary effect existing in the reconstruction results of the NIP 
algorithm, but the gravity anomaly data reconstruction precision of the 
NIP algorithm is inferior to the corresponding one of the PCG-IPM 
algorithm. The comparisons of the algorithm performance between 
the PCG-IPM and NIP algorithm for F401 are shown in Table 1. In 
Table 1, taking an average, the standard deviation of reconstruction 
error and SNR of the PCG-IPM algorithm in F401 are 0.024 mGal and 
58.277 dB, respectively. Correspondingly, the standard deviation of 
reconstruction error and SNR of the NIP algorithm are 0.109 mGal 
and 45.283 dB, respectively.

Conclusions
Strap-down airborne gravimeter is the core sensor of strap-down 

 

Figure 1: The SGA-WZ installed in the aircraft.

 

Figure 2: The main components of SGA-WZ. (a) Strap-down inertial 
navigation system; (b) Triad of accelerometers.
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Figure 3: Reconstruction results of line 1 in F401 by the PCG-IPM algorithm. 
(a) Comparisons between the original gravity anomaly and reconstruction 
gravity anomaly; (b) Reconstruction error.
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Figure 4: Reconstruction results of line 1 in F401 by the NIP algorithm. (a) 
Comparisons between the original gravity anomaly and reconstruction gravity 
anomaly; (b) Reconstruction error.
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gravimetry system. This paper explores a method for large scale precise 
gravity anomaly data reconstruction based on the strap-down airborne 
gravimeter. Precise gravity anomaly data reconstruction is the key 
technology in airborne gravimetry. In this paper, our work can be 
summarized as follows:

(1) The strap-down airborne gravimeter (SGA-WZ) mentioned in
this paper is the first system with this type in China. The system is an 
inexpensive, robust, flexible tool to carry out airborne gravimetry.

(2) Based on the theory of CS, the paper presents the PCG-IPM
algorithm applied to perform the large scale gravity anomaly data 
reconstruction precisely.

(3) A flight test was carried out in China. By the comparison
between the PCG-IPM algorithm and the NIP algorithm, the each 
performance index from the PCG-IPM algorithm is superior to the 
corresponding one from the NIP algorithm. These results convincingly 
show that the PCG-IPM algorithm can reconstruct the gravity anomaly 
data with higher accuracy and fewer measurements.

However, the boundary effect exists in the result of gravity anomaly 
data reconstruction with the PCG-IPM algorithm. Although we can 
abandon the boundary data, that will result in the waste of data and 
increase the survey costs. This problem should be solved in the future 
researchers.
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