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Abstract

This paper introduces a Generalized Neural Network (GNN) based voltage control strategy for a Voltage Source Converter (VSC) fed
Synchronous Reluctance Motor (SyRM) drive system with reduced torque ripples. The aim is to provide an economical, concise, and reliable
control method for VSC-controlled SyRM applications. The algorithm utilizes a Generalized Neuron (GN) model created with fuzzy
compensatory operators to handle the dynamic capabilities of the drive, thus improving training time. Furthermore, the neuron is decomposed
in the synchronous reference frame currents to generate a more accurate set of reference inputs for the active currents component for converter
switching. Additionally, the approach avoids conventional pulse-width modulation, resulting in less computational burden on the control. This
enables the regulation of converter voltage within a specified time frame to minimize torque ripples. A simulation model of the drive system was
developed and evaluated to assess the effectiveness of the proposed method. Both experimental and simulation results demonstrate that the
drive system offers rapid speed response and effective disturbance rejection while minimizing torque ripple. The results indicate that the
suggested GNN algorithm is efficient and offers technical advantages.
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application of this motor type, which has convinced the leading

Introduction

The interest in Synchronous Reluctance Motors (SyRM) in the
industry is growing due to the intrinsic high efficiency of the motor
[1-4]. VSC-driven SyRMs are an excellent choice for a wide range of
variable-speed drive systems. While most variable-speed industrial
drives currently rely on standard two or four-pole induction motors,
they are also compatible with synchronous reluctance motors. The first
rotating magnetic-field synchronous motor was introduced by Kostko
in 1923 [5]. Traditionally, synchronous reluctance motors are operated
directly with a rotor cage, as pure synchronous reluctance motors lack
starting torque characteristics [6,7]. However, with advanced inverter
technology, appropriate field-oriented control, and Pulse Width
Modulation (PWM) techniques, machines without a rotor cage can still
be initiated. With the simple structure of the rotor, SyRM can offer high
reliability, high overload ability, and high dynamic and high-power
density [8-11]. The variable speed drives have provided the efficient

manufacturers to introduce their SyRM motor-drive package to the
market [12]. On the other hand, the high torque ripples of SyRM have
become a challenge for researchers to overcome [13-15]. Many
research works are carried out on the design of SyRM to cover this
drawback such as in Mostafa A [16]. Moreover, suppressing the
torque ripple is viable with a proper control method in the variable
speed drives [17,18].

The Field-Oriented Control (FOC) strategy offers an interesting
choice for researchers in terms of the control of SyRM with low torque
ripple. This is due to the decoupled control of the currents in the
synchronous reference frame, which proposes a high-performance
control in the steady-state. However, their low dynamic and high
computation burdens direct some research work to the other control
methods [19,20]. Direct Torque Control (DTC) is one of the
alternatives for control of SyRM. The direct control of the torque and
flux in the stationary reference frame with the hysteresis controllers and
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the application of the command voltages by a simple lookup table
provides a highly dynamic and straightforward control strategy.
However, the high torque ripple and the variable switching frequency
of DTC are the undeniable shortcomings of this method. To take
SyRM’s high torque ripples into account, the conventional DTC of
these motors causes severe torque ripples in the motor. Lack of
current controller in DTC's block diagram leads to high torque ripples.
Multilevel inverters have recently been a proper solution for torque
ripples, which are studied for DTC in Rashad EM. Another solution
that amends the shortcoming of the high torque ripple of DTC is the
over-modulation scheme for DTC of SyRM, presented by Zhang et al.
This method keeps the simplicity of DTC, and in the meanwhile,
decreases the torque ripples and provides constant switching
frequency. One more viable approach is the duty ratio regulation-
based DTC, which is also known as dead-beat DTC. Basically, the
method tries to apply the active voltages not for the whole sampling
period, as so the motors’ torque and similarly the flux do not
considerably pass the hysteresis limit. This results in a notable
reduction in torque ripple with the cost of a little bit of imposing
complexity to the method, besides a notably higher switching
frequency. A more sophisticated and more robust version of this
method is applied by Foo et al. in Michele Degano for the DTC of
SyRM. In the rest of this paper, the proposed method is investigated.
It presents the simulation results for DTC and the proposed method
for the SyRM control.

Materials and Methods

The SyRM model d-q equivalent circuits, including iron losses and
saturation in the synchronous reference frame, are presented in
Figure 1. An extra resistor RC connected in parallel with the
maghnetizing branch in both d and q axes is used to take into account
the iron loss effect. The effect of magnetic saturation was also
considered in the SyRM model by modeling the d and q axes
inductances as dependent on the supply current. It is worth noting
that the saturation effect in the d-axis will be distinct from the one in
the g-axis since the magnetic paths around the rotor present different
reluctances. For this reason, d-q axes saturation behavior will be
different with the current variation.

Rs Wu/.qjxhn

Figure 1. SyRM (a) d equivalent and (b) q equivalent model
circuits, which include iron losses and saturation in the synchronous
reference frame.

With the growing technologies, the performance of the
conventional control algorithms is dissatisfied with the increase of
complex and dynamic systems of power electronics in distribution
systems and necessitates the use of neural networks as intelligent
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control algorithms. Figure 1. shows a three-level architecture of
intelligent control to operate the switching of power devices of Voltage
Source Converter (VSC) in a three-phase system. The three levels are
organized as decision making and learning, learning algorithm, and
hardware with interface software. Out of the three, the decision-
making and learning, and learning algorithm levels are the areas of
research for the compatibility and efficient control of a nonlinear
function system. In the recent trends Artificial Neural Networks (ANN)
were used in these levels to overcome the issues of poor power
quality in systems under dynamic load conditions [6-9]. However, the
performance efficiency of an ANN-based algorithm is bounded in
multilayer supervised learning, as it depends on the optimal size of
the network and its training. ANN applications are used due to its
parallel computing nature and high learning capability in the
estimation and regression of the control signals [10-12]. In ANN,
generally, summation or multiplication is the aggregation function with
linear or non-linear as the threshold function is used by the neuron.
ANN algorithms are used to perform nonlinear statistical modelling
and provide logistic regression for signal processing in electrical
engineering. In back propagation, the Multilayer Perceptron (MLP)
neuron uses more aggregation and activation functions which
increases the complexity and training time of the algorithm. To reduce
this complexity and computation training time both summation and
product aggregation functions together output result of the neuron is
the function of the output of all activation functions obtained is the
Generalized Neuron (GN).

This paper presents a Generalized Neural Network (GNN) structure
of MLP to extract the fundamental power current components from the
nonlinear load currents required for the estimation of the fundamental
reference source currents to generate the switching pulses of an
IGBT-based 3-phase inverter. The sigmoid threshold function and
ordinary summation or product as aggregation functions in the
existing models of ANN neuron structure fail to cope with the non-
linearities involved with the increasing complexity of dynamical
systems in real-time monitoring of power quality at the utility end of
the distribution system. The existing ANN neuron structure of
aggregation function has been modified to obtain a Generalized
Neuron (GN) model using fuzzy compensatory operators. Due to this
the training time and the dynamic capabilities of the GNN algorithm is
better. The impact of unknown nonlinearity on the distribution system
has been approximated using GNN to exhibit more accuracy in the
improvement of the power quality of the distribution system. Moreover,
this paper aims at the performance of intermediate signals to cover
different aspects of compensations in power quality improvement.

Concept of generalized neural network

The GNN neuron structure has both summation and product as an
aggregation function with linear or nonlinear as the sigmoid threshold
function. The combinations of summation(Z) neurons and product (')
summation neurons or product neurons in the whole network [2].
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A generalized neuron model has been developed that uses the
fuzzy compensatory operators [4]. The neuron has both X and m
aggregation functions. The X aggregation function has been used
with the sigmoid characteristic function while the m aggregation
function has been used with the Gaussian function as a characteristic
function. The final output of the neuron is function of the two outputs
0z and Oy with the weights W and (1-W) respectively.

Figure 2 shows the representation of the summation type GNN
neuron structure model. The inputs X; weighted vector summed by an
aggregation function 2;. The output of %; is proceed through an
activation function 1. Similarly, weighted inputs are multiplied by the
 aggregation function. Again, the output of mis proceeds through an
activation function f,. Summed up these two weighted outputs units.
Here two different aggregation and activation functions provide
flexibility in the GNN while in the case of ANN regular MLPs single
activation and aggregation functions are possible [4].

Organisation level

{

Co-ordination level

L

Execution level

{

Actuators | Sensors

Figure 2. A three-level architecture of intelligent control.

Decision making and
learning

Learning algorithms

Hardware and software

Architecture of a test system model

There is a series connected load impedance (R. and X.) as a
nonlinear load is shown in Figure 3. For power quality improvement a
Voltage Source Converter (VSC) with a GNN algorithm is used as a
shunt compensator. The SEMIKRON make VSC of IGBT used as a
power device is connected across the load using interfacing inductor
Lt in each phase at the Point of Common Interface (PCI).

Output,Opk

Figure 3. Representation of summation type GNN neuron
structure model.
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A reference DC link voltage Vg, DC link capacitance Cqc. Analog
filter bank consists of ripple components of series combination of
resistance R, and capacitance C; respectively, can be seen at PCI for
the elimination of high frequency switching noise of power devices as
well as low order harmonics of the source (Figure 4).

Analog filer bank
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W& Lot
impedance
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inductors L LS
3 f
Vi L.

Developed GNN
algorithm

Figure 4. Architecture of three-phase inverter system controlled
through GNN algorithm.

Control GNN algorithm

The GNN control algorithm for the operation of the VSC is
proposed to extract the weighted power current components from the
load current to estimate the reference source current. The model uses
summation (1) and product () neurons with unknown weights
(Ws1) and (W)

The total number of weights needed is twice the number of inputs
plus one, obtained through online training.

Develop a GNN control algorithm for the extraction of Active
current components from load current to generate reference source
current for the switching of an Active Power Filter known as
DSTATCOM.

Part 1: Analysis at the input stage

Inputs are sensed load currents at PCC: I, Ipp, lic.
Input weights are calculated templates: wap, upp, Ucp-

% Alzmj(PLILa*ﬂ"‘tazfrll.b*ubp:ﬂL ILc*ucp €Y

Sigmoidal function of summation;

1

Opa~fi B4 = T (2)

Th, = VV(PLI.L&*t"lafaJrILb*ul:rgﬁL ILC*uCp 3)

Gaussian function of product;

Ona=fa(ma, )=e (~Ap*may2) €))

Weights associated with > [11;

Ugp + Upy + U,
WAl — ( ap ;p CP) (5)

GNN output of input stage,
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Opka = ILap = War * Oga + (1 — Wyy) * Ona (6)

Part 2: Learning at the input stage
Error to the desired output of GNN,

€rpa = (1 - OpkA) @]
The sum squared error for the convergence of all patterns is,

Epy = 05(eppq + erppipe) (8)
where ey, €y are e, phase ‘a’ phase ‘b’ and phase ‘¢’

errors.

Reverse pass for modifying the connection strength, i.e., to
update weights

Weight associated with > A1, is given by
Wy = Wy (k — 1) + AW, )
where AW,y = 198y (0ga — Ona)lia + aWay (k — 1),
and §, = Epy,
where a: momentum factor, 5: learning rate.
(b) Weight associated with the inputs > A1 part of the summation
GNN,
Usapy (k) = Wy (k — 1) + dugg, (10)
where Aug, = 16yjl1q + Cligy:

and 85 = 8 (1 — Opgea)War (k — 1)05.4
Weight associated with the input of the tta; part of the summation
GNN,

Unap1 (k) = Wai(k — 1) + ditrgp (1)

where  Auggy, =18l + Aty

and 8nj = 84 (1 — Opiea)Was (k — 1)Ors.

Part 3: Analysis at intermediate (Hidden layer) stage
Inputs are the GNN outputs of the input stage, I p, lLbp and Iy cp.

Weights associated with the intermediate stage > Ay are u3 ap1,
u hp1 and u cp1 respectively.

2 A2 = Igpuyapr + Lpptisppr + leptyepr (12)
Osa2 = 2 (2 4;) :m (13)
Ta, = lapUnapr + libpUabpr + LicpUnep (14)
Oz = fulltgy) = e Ao a22) (15)

Weights associated with > A2;
W,, = {(uzaps + tnaps) + (ugops + Umppr) + (Ugep + Unpp1)} (16)

3
GNN output of input stage,
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Z A2 = Opjear = Irapt = Waz * Ogaz + (1 — Wap) * Opg 17

Part 4: Learning at the intermediate stage

Error to the desired output of GNN,
€Lpa1l = (1 - OpkAl) (18)

The sum squared error for the convergence of all patterns is,

EpZ = D'S(QL:DHI + eLpbl + eLp(‘l) (19)

where €jpa1, €pp1 are eypc; phase ‘@’ phase ‘b’ and phase ‘c’
errors at the intermediate stage.

Reverse pass for modifying the connection strength, i.e., to
update weights at the intermediate stage:

(a) Weight associated with > A2, is given by
Waa(k) = Wyp(k — 1) + AWy, (20)
where AWy, = Wlsm(n)j,qz - OrrAz)ILup +aWy,(k—1),
and Oy = Epa.
where a: momentum factor, 5: learning rate.
(b) Weight associated with the inputs > A, part of the summation
GNN,
Usapa(k) = Wap(k — 1) + Auggp (21)
where  Auyapy = N8yj1liap + QUapr;

and 81 = 64 (1 — Oppeas )Wz (k — 1)Og sz

(c) Weight associated with the input of the ma; part of the
summation GNN,

Unapz (k) = Wap (k = 1) + Attrgp (22)
where  Augqp, = N05il1ap + Qllgy;

and 8zj; = 5k1(1 - OpkAl)WAZ(k =10z -

Weights associated with > A2;

W, = {(uzap2+unap2)+(usz2:unbp2J+(uEL’p2+unbp2)} (23)

By applying all these equations in the GNN algorithm we can
generate a gate pulse that controls the IGBT-based voltage source
converter output which is given as input of the synchronous
reluctance motor and so on controls the torque as per reference
signal.

Following the creation of the simulation plot, we analyze the torque
of the SyRM and subsequently calculate the torque ripple. This
assessment helps in understanding the motor's performance
characteristics and identifying potential areas for improvement in its
design and operation.

Torque Ripple = T’"“;‘ﬁ x 100 (24)

avg
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o

The study is performed on the simulation of a 3-phase SyRM 2 i
which is controlled through IGBT-based three-phase converter J A M
(Figure 5). In this the Machine specification is given as machine is of g :f/vf V/\/\J /\/\/u
2 poles in which the stator d-axis and g-axis inductance is 0.05 and B

0.0051 Henry, stator resistance is of 0.33 ohm. Its control parameter
is given such that we get results as: ! “

Results and Discussion /MWW\

Figure 7. Torque control through DTC method.

e ==

Phase Current

effectively mitigating this ripple (Figure 9).

Figure 5. Current waveform of GNN control.

The control of systems by the Direct Torque Control (DTC) method
has an undesirable chattering phenomenon. The GNN-based control
method has been chosen, and this is a Generalized Neural Network
(GNN) based algorithm for voltage source converter controlled
reduced ripple torque. The GNN algorithm is modified to obtain a
Generalized Neuron (GN) model using fuzzy compensatory
operators. This modification improves the training time and dynamic
capabilities of the GNN algorithm. In addition, it ensures that the
desired performance is maintained and that there is a better
convergence accuracy (Figure 6).

Figure 7 depicts the reference torque applied to the control system
of the SRM. The forthcoming analysis will focus on evaluating the
response of the SRM under both direct torque control and the control
method based on Generalized Neural Networks (GNN). This analysis
will be based on the data obtained from simulation results.

A Ay
uf of MY

LY H

10 Time

Figure 9. Combine torque control through DTC and GNN method.

— The algorithm for controlling reduced ripple torque in voltage
w source converters is based on the Generalized Neural Network

(GNN) (Table 1). The simulation result illustrating the GNN-based
| torque control is presented in Figure 7.

Figure 6. Reference torque.

Method of control Thax Thin Tavg Torque ripple
MTPA 64.27 N-m 40.17 N-m 52.2 N-m 46.17%

DTC 55.16 N-m 4446656 N-m £49.813278 N-m 21.47%
GNN-control 51.1835 N-m 49.50121 N-m 51.14 N-m 3.29%

Table 1. Torque ripple calculation for 0.5-0.52 sec for both DTC and GNN control.
In Figure 10, the simulation results combine both torque control ~ Furthermore, a separate analysis was conducted using a different

techniques for comparison. It is evident from these results that the  reference signal, as depicted in the subsequent Figures 11-14.
GNN control approach closely approximates the reference signal.

Page 5 of 7
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Figure 11. Output of torque control through DTC method based
on 2" reference torque.

Torque Controlled by GNN method

0 05 1 15
Time

Figure 12. Output of torque control through GNN method based
on 2" reference torque.

@

Figure 13. Combine torque control through DTC and GNN method
based on 2" reference signal.
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Figure 14. Output current on the base of 2" reference torque.

Conclusion

In this work, we addressed the problem of torque ripple reduction
in a synchronous reluctance machine. We have based our approach
on control-based solutions. In a cascade velocity/currents control
strategy, we first proposed a new reference current. To examine the
contribution of this method on torque ripple reduction, we compared it
to two methods used in the literature, namely the direct torque control
and GNN-based algorithm for voltage source converter control. The
simulation results clearly show the effectiveness and superiority of
this proposed method in reducing the torque ripple of the machine.

In this paper, our focus is on the reduction of torque ripple through
the application of a sophisticated Generalized Neural Network (GNN)
based algorithm. This advanced algorithm is specifically engineered
to intricately control the gate pulse of the voltage source converter,
resulting in a significant reduction in torque ripple.

References

1. Boudjelida, Loubna, Cagdas Hisar, and Ibrahim Sefa. “Design and control of
a permanent magnet assisted synchronous reluctance motor.” Int J Automot
Sci Technol 7 (2023): 332-339.

2. Zahraoui, Yassine, Mohamed Moutchou, Souad Tayane, and Chaymae
Fahassa, et al. “Synchronous reluctance motor performance improvement
using MTPA control strategy and five-level inverter topology.” J Robot
Control 3 (2022): 725-734.

3. Ozdil, Ali, and Yunus Uzun. “Design and analysis of a rotor for a 22 kW
transversally laminated anisotropic synchronous reluctance motor.” (2021).

4. Pereira, Manuel, and Rui Esteves Aradjo. “Model predictive current control of
switched reluctance motor drive: An initial study.” In Technological Innovation
for Life Improvement: 11" IFIP WG 5.5/SOCOLNET Advanced Doctoral
Conference on Computing, Electrical and Industrial Systems, DoCEIS 2020,
Costa de Caparica, Portugal, July 1-3, 2020, Proceedings 11, pp. 256-264.
Springer International Publishing, 2020.


https://dergipark.org.tr/en/pub/ijastech/issue/80278/1366882
https://dergipark.org.tr/en/pub/ijastech/issue/80278/1366882
https://journal.umy.ac.id/index.php/jrc/article/view/15326
https://journal.umy.ac.id/index.php/jrc/article/view/15326
https://openaccess.ahievran.edu.tr/xmlui/handle/20.500.12513/5245
https://openaccess.ahievran.edu.tr/xmlui/handle/20.500.12513/5245
https://link.springer.com/chapter/10.1007/978-3-030-45124-0_24
https://link.springer.com/chapter/10.1007/978-3-030-45124-0_24

Ahmad T, et al. ] Electr Electron Syst, Volume 14:2, 2025

5. Kostko JK. “Polyphase reaction synchronous motors.” J Ame Institute Electr  14. Mahmoudi, Abdelkader, Imed Jlassi, and Antonio J. Marques Cardoso, and
Eng 42 (1923): 1162-1168. Khaled Yahia. “Model free predictive current control based on a grey wolf

6. Tang, Feigiu, Yaonan Tong, and Chunlai Li. “A controller for chaotic optimizer for synchronous reluctance motors.” Electronics 11 (2022): 4166.
synchronous reluctance motor drives system.” In 2011 IEEE 2™ International ~ 15.  Uddin, M Nasir, Tawfik S Radwan, and M Azizur Rahman. “Fuzzy-logic-
Conference on Computing, Control and Industrial Engineering, vol. 2, pp. controller-based cost-effective four-switch three-phase inverter-fed IPM
316-319. IEEE, 2011. synchronous motor drive system.” IEEE Trans Ind Appl 42 (2006): 21-30.

7. Neti, Prabhakar, and Subhasis Nandi. “Performance analysis of a reluctance ~ 16. Nasim, Usman, Abdul Rauf Bhatti, Muhammad Farhan, and Akhtar Rasool, et
synchronous motor under abnormal operating conditions.” Can J Electr al. “Finite-time robust speed control of synchronous reluctance motor using
Comput Eng 33 (2008): 55-61. disturbance rejection sliding mode control with advanced reaching law.” PloS

8.  Boztas, Giilli, Omiir Aydogmus, and Hanifi Giildemir. “A control of SynRM One 18 (2023): e0291042.
using MPPT Algorithm and effects of advance angle on motor performance.”  17. Boussouar, Mohamed Essalih, Abdelghani Chelihi, Khaled Yahia, and
Turk J Sci Technol 15 (2020): 49-60. Antonio J Marques Cardoso. “Model-free predictive current control of Syn-RM

9. Aladetola, Olaoluwa Demola, Mondher Ouari, Yakoub Saadi, and Tedjani based on time delay estimation approach.” J Electr Eng 74 (2023): 344-356.
Mesbahi, et al. “Advanced torque ripple minimization of synchronous  18. Rashad EM, TS Radwan, and MA Rahman. “A maximum torque per ampere
reluctance machine for electric vehicle application.” Energies 16 (2023): vector control strategy for synchronous reluctance motors considering
2701. saturation and iron losses.” In Conference Record of the 2004 IEEE Industry

10. Saravanasundaram S, and K Thanushkodi. “Compound active clamping Applications Conference, 2004. 39" IAS Annual Meeting., vol. 4, pp. 2411-
boost converter-three phase four switch inverter fed induction motor.” Int J 2417. |EEE, 2004.

Comput Sci Netw Secur 8 (2008): 358-361. 19. Nasir, Uddin M, TS Radwan, and MA Rahman. “Performance analysis of a

11. Heidari, Hamidreza, Anton Rassdlkin, Ants Kallaste, and Toomas Vaimann, cost effective 4-switch 3-phase inverter fed IM drive.” (2006): 97-102.
et al. “A review of synchronous reluctance motor-drive advancements.”  20. Degano, Michele, Hanafy Mahmoud, Nicola Bianchi, and Chris Gerada.
Sustainability 13 (2021): 729. “Synchronous reluctance machine analytical model optimization and

12. Xu, Longya, Xingyi Xu, Thomas A. Lipo, and Donald W. Novotny. “Vector validation through f_|n|te element analysis.” In 2016 XXII International
control of a synchronous reluctance motor including saturation and iron loss.” Conference on Electrical Machines (ICEM), pp. 585-591. IEEE, 2016.

IEEE Trans Ind Appl 27 (1991): 977-985. — - -
13. Fellani, Mostafa A, and Dawo E. Abaid. “Sliding-mode control of synchronous Howto cite this article: Ahmad, Tausif, Juhi Chaudhary, and Chandra Bhushan

reluctance motor.” Int J Electron Circuits Syst 3 (2009): 91-95.

Page 7 of 7

Mahto. "GNN-Based Voltage Source Converter Controlled Synchronous
Reluctance Motor with Reduced Torque Ripple." J Electr Electron Syst 14
(2025): 162.



https://ieeexplore.ieee.org/abstract/document/6591529
https://ieeexplore.ieee.org/abstract/document/6008128
https://ieeexplore.ieee.org/abstract/document/6008128
https://ieeexplore.ieee.org/abstract/document/4621830
https://ieeexplore.ieee.org/abstract/document/4621830
https://dergipark.org.tr/en/pub/tjst/issue/56881/709717
https://dergipark.org.tr/en/pub/tjst/issue/56881/709717
https://www.mdpi.com/1996-1073/16/6/2701
https://www.mdpi.com/1996-1073/16/6/2701
https://www.mdpi.com/2071-1050/13/2/729
https://ieeexplore.ieee.org/abstract/document/90356
https://ieeexplore.ieee.org/abstract/document/90356
https://www.mdpi.com/2079-9292/11/24/4166
https://www.mdpi.com/2079-9292/11/24/4166
https://ieeexplore.ieee.org/abstract/document/1583826
https://ieeexplore.ieee.org/abstract/document/1583826
https://ieeexplore.ieee.org/abstract/document/1583826
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291042
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291042
https://www.proquest.com/openview/1f99dccd57cccf722b01c04e4bf5e660/1?pq-origsite=gscholar&cbl=2026551
https://www.proquest.com/openview/1f99dccd57cccf722b01c04e4bf5e660/1?pq-origsite=gscholar&cbl=2026551
https://ieeexplore.ieee.org/abstract/document/1348813
https://ieeexplore.ieee.org/abstract/document/1348813
https://ieeexplore.ieee.org/abstract/document/1348813

	Contents
	GNN-Based Voltage Source Converter Controlled Synchronous Reluctance Motor with Reduced Torque Ripple
	Abstract
	Introduction
	Materials and Methods
	Concept of generalized neural network
	Architecture of a test system model
	Control GNN algorithm

	Results and Discussion
	Conclusion
	Reference




