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Abstract
There are many fermentation variables which can influence fermentation product during fermentation process, 

including fermentation time, temperature, pH, oxygen uptake rate (OUR), carbon dioxide evolution rate (CER), 
dissolved oxygen (DO) and stirring speed. For understanding the relationship between fermentation product and 
associated fermentation variables, one current interest is the investigation of significant fermentation variables to 
construct an interpretable and stable fermentation model. In this study, the significant variables in the fermentation 
process of glutamate were selected based on the generalized additive models through a shrinkage approach. The 
GAM2 which is based on less fermentation variables after variable selection has the same value of adjusted R-
square (0.972) and deviance explained (97.6%) as GAM1 which includes all the measuring fermentation variables. 
Results showed that the proposed approach not only can identify the significant variables in the fermentation 
process of glutamate, but also can improve the performance of the fermentation model.

Keywords: Variables selection; Fermentation process; Glutamate;
Generalized additive models

Introduction
Fermentation process is a complicated process that includes many

variables such as fermentation time, temperature, pH, oxygen uptake
rate (OUR), carbon dioxide evolution rate (CER), dissolved oxygen
(DO) and stirring speed [1]. Such variables can influence the yield of
fermentation product. For example, different DO levels influenced the
yield of glutamate and lactate dehydrogenase activities in the
fermentation process of glutamate [2]; the yield of glutamate was
influenced by chosen fermentation variables such as DO, OUR and
CER [3]; and a tight control on the fermentation temperature was
needed to get an industrial standard production of glutamate [4].
Moreover, the fermentation time was suggested as an important
variable among the process variables [1].

Due to the influences of different variables in fermentation process,
it is essential to conduct variables selection to get the significant
variables that influence the fermentation process first before
constructing an effective model. From a pragmatic point of view, it
aims at determining which variables have the strongest influences on
the yield of fermentation production, whereas from a statistical
perspective it represents a means to achieve a balance between
goodness of fit and parsimony.

Several statistical methods have been used for variable selection,
including interactive variable selection [5], uninformative variable
elimination [6], interval partial least squares (PLS) [7], iterative PLS
[8], genetic algorithms (GA) [9] and PLS-bootstrap [10]. However,
these algorithms are developed for specific applications and are based
on different principles that are impossible to know in advance which
algorithm will be the best suited one for a particular data set. One

problem for variable selection is the possibility of over fitting (i.e.,
removing an excessively high number of variables will cause the model
to perform well on calibration but not on external validation). Another
problem might be the inclusion of noisy and irrelevant variables. When
one or both of these situations occurring, less robust models will be
obtained [11,12]. The multi-way partial least-squares modeling
approach can provide an accurate inference of the quality variables in
the fermentation process that is difficult to measure online [13]. This
approach enables the prediction of the final yield of product and the
detection of faults that influence the fermentation productivity, but like
artificial neural network models, it requires a huge amount of
experimental data, which are often hard to define and access, and lack
of data often leads to a reduction of the process behavior estimation.

This study applied the generalized additive models (GAM) [14-16]
to select the significant variables in the fermentation process of
glutamate. Within the class of GAM, the proposals avoid having to use
nonparametric testing methods for which there is no general reliable
distributional theory. In addition, the selection of significant
fermentation variables and modeling in glutamate fermentation
process can be carried out in one step as opposed to the selection
procedures that involve an exhaustive search of all possible models.

Materials and Methods

Strain and fermentation conditions

The strain Corynebacterium glutamicum S9114 was used in this
study. The seed medium consisted of K2HPO4 1.5, glucose 25, MnSO4
0.005, FeSO4 0.005, MgSO4 0.6, corn slurry 25 and urea 2.5 (in g/L).
The initial fermentation medium consisted of glucose 140, K2HPO4
1.0, FeSO4 0.002, MgSO4 0.6, MnSO4 0.002, thiamine 5.0 × 10-5, corn
slurry 15 and urea 3.0 (in g/L). Initial pH of all the above media was set
at 7.0 to 7.2. During the fermentation process, 25% (w/w) ammonia
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water was added to the liquid medium to maintain the pH at ~7.1 the
added ammonia water also provided the nitrogen source required by
glutamate synthesis during the fermentation process [3]. To ensure
glucose concentration above 15 g/L during the fermentation process, it
was added to the fermenter according to the requirement of substrate.

Generalized additive models with double penalty approach

A GAM is a generalized linear model (GLM) [17,18], with a linear
predictor involving smooth functions of covariates:

� � �� = ��*�+∑�� �� ��� , � = 1, ..,�....................... 1
Where � is a specific link function, Yj is a univariate response that

follows an exponential family distribution, ��* is the row of X* , which
is the model matrix for any strictly parametric model components,
with the corresponding parameter vector ө*, and fj being smooth
functions of the covariates xj, which may be vector covariates (so xji
denotes the Ith observation of the jth covariate). fj are subject to
Identifiability constraints such as∑��� ≥ ��� = 0 ∨ �

Equation (1) can be estimated as a GLM, but to avoid over fitting it
is necessary to estimate such a model by penalized maximum
likelihood estimation, in which roughness measures are used to control
over fit. In practice, the penalized likelihood is maximized by penalized
iteratively reweighted least squares (P-IRLS), where the GAM is fitted
by iterative minimization of the problem:� � � � − �� +∑�������� . � . � .�......... 2

Where � is the iteration index,� � = �� � + � � � − � � , ���  , is the current model estimate of� �� , � � is a diagonal matrix such that ���� = � ��� , � � is a

diagonal matrix given by ���� = ���� 2� ��� −1where � ��� gives

the variance of Yi to within a response distribution scale parameter, ɸ, 
X includes the columns of X* and columns representing the spline 
bases for the fj, while β contains ө and all the smooth coefficient 
vectors, βj. Sj are matrices of known coefficients such that the terms in 
the summation measure the roughness of the smooth functions. λj are 
smoothing parameters that control the trade-off between fit and 
smoothness. The generic smoothing penalty matrix Sj associated with a 
smooth term of a GAM can be decomposed as:�� ∧����.................... 3

Where Wj is an eigenvector matrix associated with the jth smooth
function, and ∧� the corresponding diagonal eigenvalue matrix? The
fact that a part of the spline basis space deals with the penalty null
space implies that ∧� contains zero eigenvalues. This may be
problematic if variable selection has to be carried out. For instance,
assuming that the jth smooth component is a nuisance function and
that we use a penalty matrix as defined above during the model fitting
process. Even if λj goes to infinity there will not be any guarantee that
the smooth term will be suppressed completely (i.e., estimated as zero).
In order to circumvent this difficulty, an extra penalty can be produced
that penalizes only functions in the null space of the penalty so that a
smooth component can be completely removed. Specifically, by
decomposition of equation (3), an extra penalty can be formed as
follows:��* =��*��*�............... 4

Where ��* is the matrix of eigenvectors corresponding to the zero
eigenvalues of∧�A GAM can be fitted subjecting each component
function to a double penalty of the form:�������+ ��*����*�............... 5

Where both λj and λj will now have to be estimated. By introducing
a penalty for the null space, smoothing parameter estimation (that is
part of GAM fitting) can completely remove terms from the model.
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Parameter Parameter estimate Standard error T value Pr >

Intercept 42.6837 0.2975 143.5 < 2e-16***

Source Degrees of freedom estimate Ref. df F P-value

s(Time) 5.8602 7.0166 274.119 < 2e-16***

s(Temp) 1.0663 1.5667 0.985 0.35854

s(pH) 0.4778 0.8159 0.076 0.72982

s(OUR) 4.5602 5.6267 7.057 2.29e-06***

s(CER) 1.9393 2.4429 3.665 0.02041 *

s(DO) 4.6654 5.6903 3.482 0.00358**

R-square (adjusted) Deviance explained

Value 0.972 97.60%

Table 1: Smoothing model 1 (GAM1) analysis using generalized additive models (GAMs) according to double penalty approach. *P<0.05;
**P<0.01; ***P<0.001.



To reiterate the basic idea, any spline type smoother can be
decomposed into two component functions: a component in the null
space of the penalty, and a component in the range space of the
penalty. The first term in equation (5) penalizes only function
components in the range space, but can shrink these to zero, while the
second term in equation (5) penalizes only function components in the
null space, but can shrink these too to zero. For example, in the case of
the usual cubic spline penalty, the second term in equation (5) would
penalize straight line components to zero, while the first term would
penalize (towards zero) function components representing departure
from straight line behavior [19,20].

As a special case of GAMs, considering the continuous predicant Y
and X1,…,Xp covariates Xk, we formulate Y as a sum of unspecified
smooth functions of the individual covariates by an additive model

Y=c+s(X1,m1)+s(X2,m2)+…+s(Xp,mp)+Ɛ (6)

Where Ɛ is assumed to be normally distributed random errors
having constant feature and its mean value is zero; s(Xi,mi) (i=1,…,p)
are smooth functions with efficient degree of freedom mi ≥ 1 to be
estimated from data.

Results
This study performed variable selection in the fersmentation process

of glutamate using the GAM approach. GAMs allow the relationship
between the predicant and smooth functions of covariates to be
modelled in an additive framework. Table 1 shows the model GAM1
according to double penalty approach in fermentation variables
selection. From Table 1, the glutamate fermentation model GAM1 can
be defined as

Glutamate=42.68+s(Time,5.86)+s(Temp,1.07)+s(pH,0.48)+s(OUR,
4.56)+ S(CER,1.94)+S(DO,4.67) (7)

To confirm the validity of GAM1 defined by equation (6), the
diagnostic examination of the model was conducted (Figure 1). Results
showed that the sampled data and residuals generated by GAM1 were
close to normally distributed data (Figures 1a and 1b), hence GAM1
followed the generalized additive model assumption. The residuals
randomly scattered around zero with no particular trend and pattern

(Figure 1c), suggesting GAM1 can describe the in luences of different 
fermentation variables on glutamate production (Figure 1d). No 
serious in luential outliers existed between responses and itted values 
(Figure 1d).
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Figure 1: The diagnostics of GAM1 model: (a) normal Q-Q plot; (b)
histogram of residuals. (c) residuals versus fitted values. (d)
responses against fitted values.

To understand the individual influence of fermentation variables on
the production of glutamate using GAM1, the influence of individual
fermentation variable was predicted by conditioning the other
variables constant at their mean values (Figure 2). Smooth function
estimates were obtained by applying.

Citation: Liu C, Fang X (2018) Glutamate Fermentation Process Model Based on Gams with Double Penalty Approach. J Bioprocess Biotech 8: 
326. doi: 10.4172/2155-9821.1000326

Page 3 of 6

J Bioprocess Biotech, an open access journal
ISSN: 2155-9821

Volume 8 • Issue 3 • 1000326

Parameter Parameter estimate Standard error T value Pr >

Intercept 42.6837 0.2996 142.5 <2e-16***

Source Degrees of freedom estimate Ref.df F P-value

s(Time) 5.843 7.01 556.237 < 2e-16***

s(OUR) 4.472 5.537 6.932 3.33e-06***

s(CER) 1.997 2.515 3.828 0.01613*

s(DO) 4.824 5.862 3.828 0.00154**

R-square (adjusted) Deviance explained

Value 0.972 97.60%

Table 2: Smoothing model 2 (GAM2) analysis using generalized additive models (GAMs) according to double penalty approach. *P<0.05;
**P<0.01; ***P<0.001.



The double penalty approach with restricted maximum likelihood
(REML) to fit a GAM on the glutamate fermentation dataset. The
predicted results revealed the presence of non-linear relationships
between the production of glutamate and the selected variable while
which cannot be observed using a parametric approach. For example, a
non-linear influence of time on the production of glutamate
throughout the fermentation process was observed when the other
fermentation variables are kept constant (Figure 2a). The production of
glutamate increased rapidly during the first 20 h, and then increased
slowly during the period of 20 to 34 h, and then became stable or even
decreased (Figure 2a). The smoothest of time, OUR, CER and DO
exhibited a strong non-linear behavior (Figures 2a, 2d, 2e and 2f), and
hence these terms cannot be entered the model in a parametric
manner.

While constructing the model GAM1, the influence of each
fermentation variable was indicated as P-value. The P-values of Time,
OUR, CER and DO were less than 0.05 and the P-values of the other
variables were greater than 0.05 (Table 1). Thus, it was reasonable to
exclude the non-significant variables to construct a more reliable
fermentation mode [16]. The model GAM2 was constructed by only
including the significant fermentation variables (Time, DO, OUR and
CER) according to double penalty approach (Table 2), and can be
defined as

Glutamate=42.68+s(Times,5.84)+s(OUR,4.47)+s(CER,2.00)+s(DO,
4.82) (7)

Figure 2: The individual influence of different fermentation
variables on the production of glutamate predicted using GAM1.
The predicted influence of (a) time, (b) temperature (Temp), (c) pH,
(d) oxygen uptake rate (OUR), (e) carbon dioxide evolution rate
(CER) and (f) dissolved oxygen (DO) on the production of
glutamate when the other fermentation variables were kept constant
at their mean values. Numbers in parentheses indicate the
equivalent degrees of freedom for the smooth curves of
fermentation variables. The black curve represents the predicted
smooth functions of fermentation variables. The usual 95%
Bayesian confidence intervals for glutamate production are shaded
in green. The rug plot at the bottom of each graph indicates the
value of fermentation variable.

To confirm the validity of GAM2 defined by equation (7), the
diagnostic examination was conducted (Figure 3). The quintile-to-
quintile plot and the histogram of residuals showed the sampled data
and residuals generated by GAM2 were close to normally distributed
data (Figures 3a and 3b), hence GAM2 followed the GAM assumption.
The residuals appeared randomly scattering around zero with no
particular trend and pattern (Figure 3c), implying GAM2 has
capability to describe the effects of different variables on glutamate
production, and = no obvious influential outliers were observed
between responses and fitted values (Figure 3d).

The individual influence of the significant fermentation variables
(Time, OUR, CER and DO) on the production of glutamate using
GAM2 was then determined (Figure 4). The influence of individual
variable was estimated by conditioning the other fermentation
variables constants at their mean values. There were obvious non-
linear influences between the selected fermentation variables and the
production of glutamate. For example, there were nonlinear influences
of DO on the production of glutamate (Figure 4d). A minimal
production of glutamate was observed when DO was maintained
around 40%, indicating that keeping the DO at this level may result in
a low production of glutamate, which is consistent with the previous
report that glutamate production was at a low level when the DO
concentration was low [3].
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Figure 3: The diagnostics of GAM1 model: (a) normal Q-Q plot; (b)
Histogram of residuals. (c) residuals versus fitted values. (d)
responses against fitted values.



Figure 4: The individual influence of different fermentation
variables on the production of glutamate predicted using GAM2.
The predicted influence of (a) time, (b) temperature (Temp), (c) pH,
(d) oxygen uptake rate (OUR), (e) carbon dioxide evolution rate
(CER) and (f) dissolved oxygen (DO) on the production of
glutamate when the other fermentation variables were kept constant
at their mean values. Numbers in parentheses indicate the
equivalent degrees of freedom for the smooth curves of
fermentation variables. The black curve represents the predicted
smooth functions of fermentation variables. The usual 95%
Bayesian confidence intervals for glutamate production is shaded in
green. The rug plot at the bottom of each graph indicates the value
of fermentation variable.

Discussion
The comparison between the two models showed that GAM2 had

the same value of adjusted R-square (0.972) and deviance explained
(97.6%) as GAM1 (Tables 1 and 2), even GAM2 was based on less
fermentation variables after variable selection. The comparison of two
model check results showed that GAM2 had the same modeling
capacity as GAM1 (Figures 1-4). To further check the performance of
GAM2 constructed by only including the significant fermentation
variables, following comparisons between the observed production
and predicted production of glutamate using GAM1 and GAM2 were
conducted by using online recorded data of fermentation variables
from two different fermentation batches (Figure 5).

For the first fermentation batch, there was a highly significant
correlation (P<0.01) between the observed production and predicted
production of glutamate based on GAM2, with a correlation coefficient
(CC) of 0.990 and a root-mean-square error (RMSE) of 3.41 g/L
(Figure 5a). The correlation between the observed production and
predicted production of glutamate based on GAM1 was also highly
significant (P<0.01), with a CC of 0.986 and a RMSE of 4.32 g/L
(Figure 5b). In terms of the second batch, the observed production and
predicted production of glutamate based on GAM2 was highly
(P<0.01) correlated, with a CC of 0.994 and a RMSE of 4.84 g/L (Figure
5c). There was also a highly significant correlation (P<0.01) between
the observed production and predicted production of glutamate based
on GAM1, with a CC of 0.993 and a RMSE of 4.94 g/L (Figure 5d).
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Figure 5: The observed and predicted production of glutamate from
two different fermentation batches. Predicted production of
glutamate based on (a) GAM2 and (b) GAM1 based on GAM2 and
GAM1 using online recorded data of fermentation variables from
the first fermentation batch. Predicted production of glutamate
based on (c) GAM2 and (d) GAM1 using online recorded data of
fermentation variables from the second fermentation batch.

For both fermentation batches, the observed production and
predicted production of glutamate based on GAM2 exhibited a higher
CC and also a smaller RMSE than that based on GAM1. And thus, the
performance of the GAM2 was better than GAM1, suggesting the
proposed approach not only can identify the significant variables in the
fermentation process of glutamate, but also can improve the
performance of the model.

In conclusion, this study focused on fermentation variable 
selections in the fermentation process of glutamate based on 
generalized additive models. The model conducted after variable 
selection by including only the significant fermentation variables 
exhibited better performance compared with the model constructed by 
including all the fermentation variables. The proposed approach not 
only can identify the significant variables in the fermentation process, 
but also can improve the performance of the model. In fact, this 
approach can be extended to other processes, following Equation (6), 
because the smooth function s(Xi,mi) gives the ability to examine the 
relationship between covariate Xi and the predicant Y, the “data-
driven” estimated s(Xi,mi) is therefore most helpful to describe 
unknown relationship between the covariate Xi and the predicant Y 
when there is no prior knowledge. So this approach is appealing since it 
has the properties of stability and prediction, and variable selection and 
modeling can be carried out in one single step as opposed to the 
selection procedures that involve an exhaustive search of all possible 
models. Furthermore, it avoids having to use testing methods for which 
there is no general distributional theory.
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