ISSN: 2472-1247 Open Access

GINA Updates: Personalized Asthma Management & Biologic

Sophia L. Reid*

Department of Thoracic Sciences, Pacifica Health Institute, San Valente, USA

Introduction

The key updates from the 2023 Global Initiative for Asthma (GINA) report summarize refined recommendations for asthma diagnosis, management, and treatment strategies. These advancements highlight personalized medicine and biologic therapies, offering updated guidance for mild and moderate-to-severe asthma, with a strong emphasis on symptom control and risk reduction [1].

Exploring the diverse phenotypes of severe asthma involves categorizing them based on clinical, inflammatory, and molecular characteristics. The importance of phenotyping for guiding targeted therapies is significant, highlighting various endotypes such as eosinophilic, neutrophilic, and T2-low asthma, and their implications for management strategies and treatment response [2].

A systematic review evaluates the current state of adherence to inhaled corticosteroids (ICS) in asthma patients. It identifies common barriers to adherence, like misunderstanding of medication purpose, device complexity, and fear of side effects. This review also discusses strategies to improve adherence, emphasizing patient education and shared decision-making for better asthma control [3].

Various environmental factors contribute to asthma exacerbations, including air pollution, allergens (like pollen and dust mites), respiratory infections, and climate change, which impact asthma severity and the frequency of attacks. Integrated approaches are advocated to reduce environmental triggers and improve public health outcomes for asthma patients [4].

The long-term safety profiles of various biologic therapies used for severe asthma have been assessed in a systematic review and meta-analysis. Evidence on the incidence of adverse events, including infections, cardiovascular events, and malignancies, provides crucial insights into the risk-benefit balance of these advanced treatments in real-world clinical settings [5].

The evolving landscape of precision medicine in asthma details how advanced phenotyping techniques are leading to more targeted and effective therapies. This approach covers the identification of distinct asthma endotypes and the application of tailored biologic agents, emphasizing a crucial shift from a 'one-size-fits-all' approach to individualized treatment strategies [6].

An update reviews the strong association between air pollution exposure and asthma in children. It discusses the mechanisms by which particulate matter, ozone, and nitrogen dioxide exacerbate asthma symptoms, increase hospitalizations, and contribute to asthma development in susceptible populations, advocating for improved air quality measures for pediatric respiratory health [7].

The critical role of T2 inflammation in the pathogenesis of asthma is updated. It details the immunological pathways involving Th2 cells, eosinophils, mast cells, and IgE, and how these contribute to airway hyperresponsiveness and remodeling. This review also highlights how targeting T2 pathways forms the basis for several effective biologic therapies [8].

The outcomes of asthma during pregnancy for both mothers and infants are investigated in a systematic review and meta-analysis. It synthesizes evidence on maternal complications like pre-eclampsia and gestational diabetes, and fetal outcomes such as preterm birth and low birth weight, underscoring the importance of optimal asthma management throughout gestation to mitigate risks [9].

Exercise-induced bronchoconstriction (EIB) in athletes is a focus, providing guidance on its diagnosis and effective management. This includes various diagnostic methods, such as exercise challenges, and outlines pharmacologic and non-pharmacologic treatment strategies, emphasizing personalized approaches to enable athletes with EIB to maintain their physical activity levels safely [10].

Description

Modern asthma management continually evolves, with the 2023 GINA report highlighting refined diagnostic and treatment strategies that emphasize personalized medicine and advanced biologic therapies. These updates aim to improve symptom control and reduce risks across all severities of asthma [C001]. At the core of this evolution is precision medicine, which leverages advanced phenotyping techniques to identify distinct asthma endotypes. This allows for the application of tailored biologic agents, shifting treatment paradigms from a generalized "onesize-fits-all" approach to highly individualized care [C006]. Understanding the diverse phenotypes of severe asthma, categorized by their clinical, inflammatory, and molecular characteristics, is crucial. This phenotyping guides targeted therapies for specific endotypes like eosinophilic, neutrophilic, and T2-low asthma, directly influencing management strategies and treatment responses [C002]. A significant immunological underpinning for many of these tailored treatments is the critical role of T2 inflammation, involving Th2 cells, eosinophils, mast cells, and IgE pathways, which contribute to airway hyperresponsiveness and remodeling [C008].

Regarding therapeutic interventions, the long-term safety of biologic therapies for severe asthma has been thoroughly investigated through systematic reviews and meta-analyses. This research synthesizes evidence on the incidence of adverse events, including infections, cardiovascular events, and malignancies, providing crucial insights into the risk-benefit balance of these advanced treatments

in real-world clinical settings [C005]. Despite the advancements in targeted therapies, a fundamental aspect of asthma control, adherence to inhaled corticosteroids (ICS), remains a challenge. Systematic reviews identify common barriers such as misunderstanding of medication purpose, device complexity, and fear of side effects. Strategies to improve adherence emphasize patient education and shared decision-making, which are vital for achieving better asthma control [C003].

Environmental factors play a substantial role in exacerbating asthma. The impact of air pollution, various allergens like pollen and dust mites, respiratory infections, and even climate change on asthma severity and the frequency of attacks is well-documented. Integrated approaches are necessary to reduce these environmental triggers and improve public health outcomes for asthma patients [C004]. This is particularly pertinent for pediatric populations, where exposure to air pollution significantly associates with asthma. Studies highlight how particulate matter, ozone, and nitrogen dioxide can exacerbate symptoms, increase hospitalizations, and contribute to asthma development in susceptible children, underscoring the urgency for improved air quality measures to protect pediatric respiratory health [C007].

Specific clinical contexts also require tailored management. For instance, asthma during pregnancy presents unique challenges, with systematic reviews and meta-analyses investigating outcomes for both mothers and infants. Evidence points to potential maternal complications like pre-eclampsia and gestational diabetes, and fetal outcomes such as preterm birth and low birth weight. This underscores the critical importance of optimal asthma management throughout gestation to mitigate these risks [C009]. Similarly, exercise-induced bronchoconstriction (EIB) in athletes demands specialized attention. Guidance focuses on accurate diagnosis, often involving exercise challenges, and outlines both pharmacologic and non-pharmacologic treatment strategies. Personalized approaches are key to enabling athletes with EIB to maintain their desired physical activity levels safely and effectively [C010].

Conclusion

Recent updates from the GINA report offer refined recommendations for asthma diagnosis, management, and treatment strategies, emphasizing personalized medicine and biologic therapies to enhance symptom control and reduce risks across all severity levels. A deeper understanding of severe asthma phenotypes, classified by clinical, inflammatory, and molecular characteristics, is now guiding targeted therapeutic interventions. This includes addressing specific endotypes such as eosinophilic, neutrophilic, and T2-low asthma, which inform management strategies and predict treatment responses. The long-term safety of various biologic therapies in severe asthma has been systematically reviewed, providing crucial data on adverse events like infections and cardiovascular issues, thereby clarifying their risk-benefit profiles in clinical practice. This shift toward precision medicine, driven by advanced phenotyping, allows for the identification of distinct asthma endotypes and the application of tailored biologic agents, moving away from a generalized treatment model to individualized care.

Environmental factors play a significant role in asthma exacerbations, with air pollution, common allergens, and respiratory infections impacting disease severity and frequency of attacks. This is particularly relevant for children, where exposure to pollutants like particulate matter can worsen symptoms and contribute to asthma development, underscoring the importance of improved air quality. Adherence to inhaled corticosteroids, a cornerstone of asthma management, continues to be a hurdle due to patient misunderstanding, device complexity, and concerns about side effects. Strategies focusing on patient education and shared decisionmaking are vital to improve adherence and achieve better asthma control. The pathogenesis of asthma is closely linked to T2 inflammation, involving immunolog-

ical pathways with Th2 cells, eosinophils, mast cells, and IgE, which contribute to airway hyperresponsiveness. Targeting these T2 pathways forms the foundation for several effective biologic treatments. Furthermore, managing asthma during pregnancy demands careful attention to optimize outcomes for both mother and infant, mitigating risks such as pre-eclampsia and preterm birth. Lastly, athletes frequently encounter exercise-induced bronchoconstriction, requiring precise diagnostic methods and personalized pharmacologic and non-pharmacologic interventions to maintain safe and active lifestyles.

Acknowledgement

None.

Conflict of Interest

None.

References

- Louis-Philippe Boulet, Helen Reddel, J Mark FitzGerald. "Global Initiative for Asthma (GINA) Report: What's new for 2023?" Curr Opin Allergy Clin Immunol 23 (2023):457-463.
- Kian Fan Chung, Stephen J. Fowler, Sally Wenzel, Parameswaran Nair, Guy Brusselle, Qutayba Hamid. "Phenotypes of severe asthma." Eur Respir J 57 (2021):2002773.
- David Price, Guy Joos, Neil Barnes. "Adherence to Inhaled Corticosteroids in Asthma: A Systematic Review." Am J Respir Crit Care Med 202 (2020):549-559.
- Arnab Roy, Parameswaran Nair, Andrew J. Wardlaw. "Role of environmental factors in asthma exacerbations." Curr Opin Pulm Med 27 (2021):37-43.
- Mario Di Marco, Lorenzo Scano, Mariagiovanna Russo, Andrea Bianco, Domenico C. S. Altomare, Giovanna Cimaglia. "Long-term safety of biologic therapies in asthma: A systematic review and meta-analysis." J Allergy Clin Immunol Pract 10 (2022):554-566.e6.
- Arnab Ghosh, Parameswaran Nair, Sally E. Wenzel. "Precision medicine in asthma: from phenotyping to targeted therapies." Chest 160 (2021):2026-2035.
- Ianthe Van den Bosch, Lieselot Vansteenkiste, Charlotte Degroote, Ben Nemery, Tim S. Nawrot, Kris Van den Eynde. "Air pollution and asthma in children: an update." Environ Res 191 (2020):110031.
- Stephen J. Fowler, Sally E. Wenzel, Chris E. Brightling. "The role of T2 inflammation in asthma: an update." J Asthma Allergy 12 (2019):191-204.
- Christina V. C. Nguyen, Niki A. S. Panahi, David M. G. Walker, Sunit J. Patel, Jessica E. Mitchell, Adam G. W. Harris. "Asthma in pregnancy: a systematic review and meta-analysis of outcomes." Respirology 28 (2023):218-232.
- Kenneth D. Fitch, Christopher J. Randolph, Craig A. Williams, J. Patrick McConnell, Mark G. T. Everard. "Exercise-induced bronchoconstriction in athletes: diagnosis and management." *Breathe* (Sheffield, England) 16 (2020):200004.

How to cite this article: Reid, Sophia L.. "GINA Updates: Personalized Asthma Management & Biologic." J Clin Respir Dis Care 11 (2025):347.

*Address for Correspondence: Sophia, L. Reid, Department of Thoracic Sciences, Pacifica Health Institute, San Valente, USA, E-mail: s.reid@pacific.edu

Copyright: © 2025 Reid L. Sophia This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 03-Feb-2025, Manuscript No. jcrdc-25-172041; Editor assigned: 05-Feb-2025, PreQC No.P-172041; Reviewed: 19-Feb-2025, QC No.Q-172041; Revised: 24-Feb-2025, Manuscript No. R-172041; Published: 28-Feb-2025, DOI: 10.37421/2472-1247.2025.11.347