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Geometric Formula for Prime form on a Sewn Riemann Surface
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Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic

Abstract

We use the geometric representation for the Szegd kernel on genus g1+g2 Riemann surface obtained in the
frames of the Yamada sewing construction of two Riemann surfaces of genus g1 and genus g2 in order to derive new
formulas expressing prime forms. These formulas can be used in vertex operator algebra and conformal field theory

computation as well as in algebraic geometry.
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Differentials and Kernels on a Riemann Surface

Differentials on a Riemann surface

Consider a compact Riemann surface ¥® of genus g with canonical
homology cycle basis Apeens bp-'-’ b . There exists g holomorphic
one-forms v%, i=1,...., g which may be normalized [1,2] by:

qsa‘vj(.g’ = 27id;. (1)

The genus g period matrix Q® is defined by:
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For i, j=1,..., g. Q® is symmetric with positive imaginary part, i.e.,

Q@eH, the Siegel upper half plane. Next we give the definition of the

theta function with real characteristics [1,3].
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for a®@=(), PO=(B)eR ¢ z=(z)eC¢, and i=1,..., g There

(g)
exists [3,4] a non-singular odd character {7 ( i such that
58
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Then introduce:
4 (g)
é'(g)(x) _ Z@Zi‘g(m |:g(;:|(09(§) )vi(g)(x)’ (3)

1
a holomorphic one-form, and let (g ®(x) )5 denote the form of weight

1 : 1
S on the double cover = of 3. We also refer to (¢¥w) asa

double-valued % -form on X©.

Let us define the prime form £“(x,y) by:

X

g(g)(x’y) = g® |:},(g) j|[‘[v(g) | Q(g)j(é‘(g)(x)); (é/(g)(y))% . (4)
5(3)

I

where Iv‘g) = [Iv,(g)] € C# . The prime form £¥(x,y)=-£%(y,x) isa

¥ y

holomorphic differential form of weight (—%,—%) on 3@, y@ .

(g)
We define the Szegé kernel [4-6] for 9¢ [a ﬁ(g)}(omm);to

by the formula:
g(gl |:a(g) :|[Iv(g) ‘ Q(g)]
S(g) H(g) (x ¥ ‘ Q(g)) — lB(g) g (5)
{ ¢(g)} ’ 9@ [a(") o] Q(g>) S(g)(x,y) >
ﬂ(g)
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where 9© =(8), 4 = (4) eU(1)" for 6,=—¢"", 4=-¢"",j=1,..¢. This

can be written as:
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j|(x,y [ Q(g)) _ @tg[a(m j|(x,y;v(g),0 [ Q(g))(g(gl(x,y))
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with the functional:
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0@ g® (x,y;fl',fz ‘Q(g)) —
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The Szeg6 Kernel in the e-formalism

In Appendix we recall the e-formalism due to Yamada [7] of sewing
of two Riemann surfaces of genuses g, and g, to form a genus g +g,
Riemann surface. In a study [8] we determined the Szeg6 kernel on the

(g1+27)

Riemann surface in terms of data coming from Szeg6 kernel:

S(g")(x,y) _ S(ga)[e(ga) (6)

on the surface '’ for a=1,2. Let us recall that construction here.
We adopt the abbreviated notation of the left hand side of eqn. (6)
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when there is no ambiguity. Similarly, the Szegd kernel on %"’
is denoted by:
S(g] +g2)(x,y) _ S(g1+g2)[€(g] +g) (7)

with periodicities (0.17,¢1"2)) = (9«),¢“’) on the inherited
homology basis. Note that we exclude those Riemann theta
characteristics for which eqn. (7) exists but where either of the lower

genus theta functions vanishes, i.e., we assume that eqn. (6) exists for
a=1,2.

Following a study [8] we define weighted moments for S e1e2) by:

Lksion

2 1
X lie) = X, [04°) =S s IS (x pydiay?, (8)
@) g
for k, [ > 1. It follows that:
Xab [e(g] +85) 9)

We denote by X, =(X,,(k,/,¢)) the infinite matrix indexed by
k,1>1.

We also define various moments for S(ga)(x, y) . These provide
the data used to construct §'1*¢2)(y 1y Define holomorphic 5

-forms on f}<g“) by:
h,(k,x,&) = h [0 (10)

h,(k.y,8) = h,[0" (an
and introduce infinite row vectors h,(x)=(h,(k,x)) ,h,(x) = (h,(k,x)),
indexed by k > 1. It follows that:

h, [0 (12)

Finally, we define the moment matrix:

Lksr-ny
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§ §atys iy
Cﬂ(x)Cu(v) (13)

k1 11

24 L g _ 1
== § U 0d =S— § ',k p)dy.
271 o 27i ¢

F,(k.le)=F,[0" =

E_(k, I, €) obeys a skew-symmetry property similar to eqn. (9).

We are now in a position to express §“*%2’(y,y) in terms of
the lower genus data. From the sewing relation eqn. (23) we have

dz, = —gd—zzﬁ so that:

a

1
1 ) 14
dz? = (17 s 2 (a9)
ZE

where e {i\/——l} determines the square root branch chosen. We
then find:

Proposition 1: §172) (y, y) is given by:

—. . algy)
590 () + b, (DX Gh! (), for x,yeE

ST (x,yy = ey (15

h(ECT-X)B (), for xe£™, y s,

Where I denotes the infinite identity matrix and T denotes the
transpose.

In a study [8] we computed the explicit form of the moment matrix

(g,

X, in terms of the moments F, of §'“«’(x, y). It is useful to introduce

infinite block matrices:

e = U PR T

X, X, _EF, 0
Then one finds:
Proposition 2: X is given by:
X=(I-Q)"'F (17)
where (/-0)" = Z;Q is convergent for | ¢ [<| 1, |.
Propositionsil and 2 imply:

S(g1+g2

Theorem 1: )(x, y) is given by:
S (x,3) = 5,8 (%, ) + B, (D(EU-0)") A (),

ale,) ale)
For xeX ', yex o Equivalently,

ata

SR, (I=FF,) B (),

(g,) T $(&a)
S (3, ) = Sy +h (I -FF) Fhj (), for xyeX ™, (g
’ aleg)

for x ef‘.(g”), yex
Similarly to a study [9] we define the determinant of I-Q as a formal
1

power series in &2 by:

logdet(/—Q)=Trlog(/-Q)= —ZlTr(Q").

nzl
Clearly Tr(Q*)=2Tr((F F,)") for k > 0 whereas Tr(Q")=0 or n odd.
Furthermore, from eqn. (13) the diagonal terms (F F,)* have integral
power series in &. Thus it follows that [8]:

Lemma 1: det(I - Q)=det (I- F,F,) and is a formal power series in &.
The determinant has the following holomorphic properties:

Theorem 2: det(I-Q) is non-vanishing and holomorphic in € or
el<rr,

Geometric Formulas for Prime Forms

In this section we derive formulas for the prime form on a Reimann
surface of genus g, +g, sewn of two Reimann surfaces of genuses g, and
g, Let us denote:

algz)

B ECT-X)B (), for xe£, e,

aa

h(O)X_ R (), for x,yes .

aa'‘a

Then we obtain:

Proposition 3

+8) - +85) +8y)
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(g,)
ﬂ a

or, equivalently,

g<g| +g2)(x y) _ ®(g|+g2> a(g, +g)
9
ﬂ(g1+g2)
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Proof. In a study [9] it was proved that:

x_bT

1
5(g1+g2)(x,y) _ E(g”)(x,y)e_gb” a’a
Using eqn. (22) we obtain:
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-1

(x,y;v(glﬂh),() | Qe +g2))(8<gl+g2)(x,y)) @1)
ﬂ(gl +g)

aa aa’®

_ )| (g,) (g (g,) (g+25) -1 ’%”axﬁbl
=00 a X, yvoe,0]Q & (x,¥) e +J -
ﬂ(gu)

and therefore:
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Thus we get eqns. (19) and (20) using and the definition eqn. (4).

Remark 1: Note that in eqns. (19) and (20), J . can be expressed
asin eqn. (18), i.e.,

h, (x)(I_FEEl )71 Fﬁljlj(y): Jor x,y e i(é’a)’ (22)

aleg)

I h()(I-EEY R (), for xes™ yes ™,

where I denotes the infinite identity matrix and T the transpose.
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