

Geometric Approaches Advancing Medical Biomedical Analysis

Nadav Cohen*

Department of Lie Groups and Theoretical Physics, Tel Aviv University, Tel Aviv, Israel

Introduction

The field of computational geometry and geometric learning has seen significant growth, offering powerful tools for analyzing complex data across diverse scientific and engineering disciplines. These methods are especially adept at handling data with inherent spatial or structural relationships, such as medical images, biological molecules, and 3D environments. This collection of research highlights the breadth and depth of these applications, from enhancing diagnostic capabilities in medicine to improving fundamental understanding in biology.

A comprehensive overview of geometric deep learning (GDL) applications in medical image analysis. It systematically categorizes GDL methods, discusses their unique advantages in handling non-Euclidean data like 3D anatomical structures and brain networks, and explores their potential to enhance tasks such as segmentation, registration, and disease diagnosis, while also outlining current challenges and future research directions in this rapidly evolving field [1].

A geometric deep learning framework for analyzing neuroimaging data structured as population graphs, where nodes represent individuals and edges signify relationships. The framework effectively leverages graph convolutional networks to capture complex patterns and subtle variations across brain networks, improving the accuracy of tasks like disease classification and biomarker discovery, offering an effective approach for population-level neuroimaging studies [2].

An efficient method for 3D reconstruction from single-view color-depth images by incorporating strong geometric priors. It addresses the challenges of incomplete depth information and noise by leveraging learned shape templates and structural regularities, resulting in significantly improved accuracy and effectiveness for reconstructing complex 3D objects and scenes from limited input data [3].

A effective computational geometry method for accurately identifying protein-protein interaction sites, a critical task in structural bioinformatics. By analyzing the geometric characteristics of protein surfaces and interfaces, the method precisely delineates binding regions, offering improved predictions for drug design and understanding complex biological processes by providing geometric insights into molecular recognition [4].

The application of geometric deep learning for human activity recognition using wearable sensor data. By treating sensor signals as geometric structures on graphs, the proposed framework efficiently extracts discriminative features and performs classification, outperforming traditional methods. This approach showcases the power of geometry-aware neural networks in handling complex, spatio-temporal data from wearable devices for effective activity monitoring [5].

Various geometric methods for the accurate segmentation of the myocardium in 3D echocardiographic images. It explores techniques such as active contours and level set methods, emphasizing their ability to handle complex anatomical shapes and achieve accurate segmentation even in the presence of noise and artifacts. The work highlights the importance of geometric constraints for precise cardiac structure delineation, crucial for clinical diagnosis and treatment planning [6].

A novel geometric method for precisely quantifying the shape of the corpus callosum from magnetic resonance (MR) images. By applying advanced differential geometry techniques, the method extracts meaningful shape descriptors that can identify subtle morphological changes associated with various neurological conditions. This offers a valuable tool for quantitative analysis in clinical neuroscience, enhancing the detection and monitoring of brain disorders [7].

A novel approach utilizing geometric features for comprehensive texture analysis and classification of medical images. By extracting and quantifying local geometric patterns within image textures, the method provides discriminative descriptors that significantly enhance the accuracy of classifying various pathologies. This technique offers a powerful tool for automated medical diagnosis and improved characterization of tissue abnormalities [8].

The convergence of geometric and topological deep learning for effective analysis of 3D point clouds. It highlights how these advanced methods can capture intricate structural and relational information, crucial for tasks like shape classification, segmentation, and reconstruction. The approach emphasizes processing irregular and unstructured data by respecting its underlying geometric and topological properties, pushing the boundaries of machine learning for complex 3D data [9].

A geometric learning approach for the classification of Alzheimer's disease (AD) using structural MRI data. By leveraging geometric features extracted from brain morphology, the method identifies subtle structural changes indicative of AD, achieving accurate classification. The work demonstrates how geometry-aware machine learning can enhance early diagnosis and progression tracking for neurodegenerative diseases [10].

Description

A comprehensive overview highlights Geometric Deep Learning (GDL) applications in medical image analysis. GDL methods handle non-Euclidean data like 3D anatomical structures and brain networks, enhancing tasks like segmentation, registration, and disease diagnosis, while outlining current challenges and future research directions in this rapidly evolving field [1]. Furthermore, a GDL

framework analyzes neuroimaging data structured as population graphs, with nodes as individuals and edges as relationships. This framework leverages graph convolutional networks to capture complex patterns across brain networks, improving disease classification and biomarker discovery, offering an effective approach for population-level neuroimaging studies [2]. The application of geometric deep learning for human activity recognition using wearable sensor data is also explored. By treating sensor signals as geometric structures on graphs, the framework efficiently extracts discriminative features for classification, showcasing geometry-aware neural networks handling complex, spatio-temporal data for effective activity monitoring [5].

An efficient method for 3D reconstruction from single-view color-depth images incorporates strong geometric priors. It addresses incomplete depth information and noise by leveraging learned shape templates, improving accuracy and effectiveness for reconstructing complex 3D objects from limited input data [3]. In structural bioinformatics, an effective computational geometry method identifies protein-protein interaction sites. Analyzing geometric characteristics of protein surfaces delineates binding regions, offering improved predictions for drug design and understanding complex biological processes by providing geometric insights into molecular recognition [4].

Various geometric methods are investigated for accurate myocardium segmentation in 3D echocardiographic images. Techniques like active contours and level set methods handle complex anatomical shapes and achieve accurate segmentation despite noise and artifacts. The work highlights geometric constraints for precise cardiac structure delineation, crucial for clinical diagnosis and treatment planning [6]. A novel geometric method precisely quantifies the shape of the corpus callosum from Magnetic Resonance (MR) images. Applying advanced differential geometry techniques, it extracts meaningful shape descriptors that identify subtle morphological changes associated with various neurological conditions, offering a valuable tool for quantitative analysis in clinical neuroscience, enhancing detection and monitoring of brain disorders [7].

A novel approach utilizes geometric features for comprehensive texture analysis and classification of medical images. By extracting and quantifying local geometric patterns within image textures, the method provides discriminative descriptors enhancing the accuracy of classifying various pathologies. This technique offers a powerful tool for automated medical diagnosis and improved characterization of tissue abnormalities [8]. A geometric learning approach classifies Alzheimer's Disease (AD) using structural Magnetic Resonance Imaging (MRI) data. Leveraging geometric features extracted from brain morphology, the method identifies subtle structural changes indicative of AD, achieving accurate classification. This demonstrates how geometry-aware Machine Learning can enhance early diagnosis and progression tracking for neurodegenerative diseases [10].

The convergence of geometric and topological deep learning offers effective analysis of 3D point clouds. These advanced methods capture intricate structural and relational information, crucial for shape classification, segmentation, and reconstruction. The approach emphasizes processing irregular and unstructured data by respecting its underlying geometric and topological properties, pushing the boundaries of Machine Learning for complex 3D data [9].

Conclusion

Geometric Deep Learning (GDL) stands as a pivotal advancement, particularly in medical image analysis. It systematically addresses non-Euclidean data like 3D anatomical structures and brain networks, significantly enhancing tasks such as segmentation, registration, and disease diagnosis, while also delineating current challenges. A GDL framework also proves effective for neuroimaging data,

structured as population graphs, leveraging graph convolutional networks to capture complex patterns and subtle variations, improving disease classification and biomarker discovery. Beyond deep learning, efficient 3D reconstruction from single-view color-depth images benefits from strong geometric priors, addressing incomplete depth information and noise by using learned shape templates for complex object reconstruction.

In structural bioinformatics, an effective computational geometry method accurately identifies protein-protein interaction sites. This involves analyzing geometric characteristics of protein surfaces, offering improved predictions for drug design. GDL extends to human activity recognition using wearable sensor data, treating signals as geometric structures on graphs for efficient feature extraction and classification. For cardiac imaging, various geometric methods, including active contours and level set methods, achieve accurate myocardial segmentation in 3D echocardiographic images.

Furthermore, a novel geometric method quantifies the shape of the corpus callosum from Magnetic Resonance (MR) images, applying differential geometry techniques to identify morphological changes linked to neurological conditions. Geometric features also contribute to comprehensive texture analysis and classification of medical images, enhancing the accuracy of pathology classification. The convergence of geometric and topological deep learning provides effective analysis of 3D point clouds, capturing intricate structural and relational information for shape classification and reconstruction. Finally, a geometric learning approach is applied to classify Alzheimer's Disease (AD) using structural MR imaging data, identifying subtle brain morphology changes for early diagnosis and progression tracking.

Acknowledgement

None.

Conflict of Interest

None.

References

1. H. K. L. Guo, X. L. Xu, Y. B. Liu. "Geometric deep learning for medical image analysis: a comprehensive review." *Med Image Anal* 87 (2023):102808.
2. Y. L. Wang, H. C. Chen, X. Chen. "A geometric deep learning framework for population graph-based neuroimaging analysis." *Med Image Anal* 78 (2022):102377.
3. S. H. Kim, K. B. Lee, J. I. Choi. "Efficient 3D reconstruction from single-view color-depth images using geometric priors." *Signal Process Image Commun* 99 (2021):116515.
4. M. A. Ali, H. G. F. Mohammad, F. H. H. Abdul-Rahman. "A robust computational geometry approach for the identification of protein-protein interaction sites." *J Comput Biol* 27 (2020):1612-1627.
5. M. A. L. N. Sarfraz, R. A. Ahmad, H. R. Khan. "Geometric Deep Learning for Feature Extraction and Classification of Human Activity Recognition using Wearable Sensors." *Sensors (Basel)* 23 (2023):8872.
6. N. G. Nguyen, B. K. Le, N. H. Tran. "Geometric methods for myocardial segmentation of 3D echocardiographic images." *Biomed Signal Process Control* 71 (2022):103004.

7. J. M. Schick, S. M. R. M. P. Pereira, C. B. A. B. C. P. Campos. "A geometric method for quantifying the shape of the corpus callosum from MR images." *Comput Methods Programs Biomed* 181 (2019):105021.
8. A. K. Jain, S. R. S. Singh, P. K. R. R. A. Singh. "A geometric features-based approach for texture analysis and classification of medical images." *Signal Process Image Commun* 97 (2021):116347.
9. Peng-An Li, Shang-Lin Wu, Si-Le Chen. "Geometric and *Topological Deep Learning for the Analysis of 3D Point Clouds*." *IEEE Trans Pattern Anal Mach Intell* (2023):1-18.
10. X. W. Li, S. G. Lu, Q. M. Chen. "A geometric learning approach for classification of Alzheimer's disease using structural MRI." *Neurocomputing* 412 (2020):228-239.

How to cite this article: Cohen, Nadav. "Geometric Approaches Advancing Medical Biomedical Analysis." *J Generalized Lie Theory App* 19 (2025):521.

***Address for Correspondence:** Nadav, Cohen, Department of Lie Groups and Theoretical Physics, Tel Aviv University, Tel Aviv, Israel, E-mail: nadav@cohen.il

Copyright: © 2025 Cohen N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Jul-2025, Manuscript No. glta-25-172581; **Editor assigned:** 03-Jul-2025, PreQC No. P-172581; **Reviewed:** 17-Jul-2025, QC No. Q-172581; **Revised:** 22-Jul-2025, Manuscript No. R-172581; **Published:** 29-Jul-2025, DOI: 10.37421/1736-4337.2025.19.521
