
Volume 1 • Issue 3 • 1000116J Phylogen Evolution Biol
ISSN: 2329-9002 JPGEB, an open access journal

Som, J Phylogen Evolution Biol 2013, 1:3 
DOI: 10.4172/2329-9002.1000116

Research Article Open Access

Genome-Scale Approach and the Performance of Phylogenetic Methods
Anup Som*
Center of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad-211002, India

Abstract
The use of genome-scale approach in phylogenetic analysis is imperative in order to resolve evolutionary 

relationships over large taxon sets and deep phylogenetic divergences. But yet it is not clear what are the strengths and 
weaknesses of the various phylogenetic methods or which one should be preferred under genome-scale approach. 
In this article, the performance of five major phylogenetic methods is evaluated under genome-scale approach 
using biologically realistic simulated data. The following phylogenetic methods are considered; Bayesian, maximum 
likelihood (ML), neighbor joining (NJ), NJ maximum composite likelihood (NJ-MCL), and maximum parsimony (MP). 
Simulation results show that probabilistic methods (i.e., Bayesian and ML methods) are much more accurate than the 
NJ-MCL, MP and NJ methods. Concerning the consistency of methods, ML is consistent than other methods. This 
analysis shows that the NJ-MCL, MP, and NJ methods are fast (i.e., computationally efficient), but their accuracy and 
consistency are very poor compared to Bayesian and ML methods. On the other hand, the Bayesian method is an 
accurate one, but less consistent than the ML method, and it takes much longer execution time. Therefore, based on 
the accuracy, consistency and computational efficiency the ML method is the preferred algorithm under genome-scale 
approach. In addition to the methods performance, this study has investigated several important aspects of genome-
scale phylogeny; such as how concatenations of longest and smallest genes make effect on the method’s performance, 
how much datasets are needed to recover the true tree (i.e. true evolutionary history of a group of species or genes), 
and whether more genes or more characters are important. These are explained in the result section.
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Introduction
Reconstruction of evolutionary history from multiple genes is 

routinely conducted using genome-scale approach where individual 
gene sequences are concatenated head-to-tail to form a super gene 
alignment. Improved accuracy of phylogenetic inference through the 
concatenation of multiple sequences from the same taxon is expected 
on theoretical grounds [1,2] and has been found in many studies [3-
9]. The use of genome-scale approach in phylogenetic analysis is 
widely applied in order to resolve evolutionary relationships over 
large taxon sets and deep phylogenetic divergences with greater 
resolution [10,11]. It has been proposed that a well-resolved Tree of 
life can be achieved through concatenation of genes [12]. Judging 
by recent phylogenetic analyses using concatenated genes, the 
tendency is to combine data by default, in the hope that weight of 
corroborative evidence will resolve any kind of conflicts [4-6,10]. 
However, multigene datasets suffer from systematic errors such as 
within-site-rate variation [13] and long-branch attraction artifacts 
[14], and statistical methods for extracting information from such 
data remains limited [15-18]. In this case, analysis of individual 
partitions (phylogenies are inferred separately for each data set and a 
consensus tree determined from these separate trees), in addition to 
combined analysis, is also necessary [19].

A number of studies have been conducted to investigate what the 
strengths and weaknesses of each method are, or which should be 
preferred in given situation [20-25]. But, despite of the extensive use 
of the genome-scale approach, studies comparing the performance of 
phylogenetic methods under a genome-scale approach are lacking. 
Advances in both computer and algorithm speed have allowed us 
to simulate and analyze several thousand data sets, and provided a 
thorough look at the performance of the various methods.

The study reported here has several purposes: first, to evalthe 
performance of Bayesian, ML, NJ-MCL, MP, and NJ methods under 
the genome-scale approach and to find out the most accurate method; 
second, to examine the effect of addition of a single gene to an existing 
concatenation on the methods performance; third, to investigate how 

many datasets are needed to recover the true tree; fourth, to check 
whether the number of genes or the nsumber of characters is more 
important. 

Here performance of the methods is measured based on three 
criteria; accuracy1, consistency2 and computational efficiency [26,27], 
and the problem is studied using biologically realistic simulated DNA 
datasets.

Materials and Methods
Phylogeny reconstruction methods

The performance of five phylogenetic tree reconstruction methods 
was examined in a genome-scale approach; Bayesian, ML, NJ-MCL, MP, 
and NJ. Beside NJ-MCL, the other four methods are very well known 
and therefore do not need any further introduction about them [28]. 
NJ-MCL method in brief; a new method has been developed which is 
a balance algorithm based on maximum likelihood (ML) and neighbor 
joining (NJ) algorithms. Algorithm of NJ-MCL method is based on 
the simultaneous estimation of all pairwise distances by maximizing 
a likelihood function and then NJ method is used to infer phylogeny 
[29]. The method of simultaneous estimation of pairwise distances 
called maximum composite likelihood (MCL) method. The NJ tree 
1 Accuracy: a phylogenetic method has high accuracy if it quickly converges on 

the true tree as more data are applied to the problem.

2 Consistency: a phylogenetic method is consistent for an evolutionary model, 
if the method converges on the true tree as the data becomes infinite.
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reconstruction using MCL method of distance estimation is referred as 
NJ-MCL method [30]. 

To search for MP trees,  the  Subtree-Pruning-Regrafting (SPR) 
search algorithm was used. In an extensive computer simulation, 
Takahashi and Nei [31] showed that the SPR search algorithm as 
efficient as the extensive search algorithms such as max-mini branch-
and-bound search,  min-mini heuristic search, and  close-neighbor-
interchange  heuristic search. However, only the branch-and-bound 
search is guaranteed to find all the MP trees, but it takes prohibitive 
amount of time if the number of sequences is large (>15) [32].

Computer simulations to generate datasets

Figure 1 shows the model tree topology selected for computer 
simulations. This phylogeny is based on an independent analysis of 
16,397 aligned nucleotide positions which included 19 nuclear and 
three mitochondrial genes (a total of 20 individual genes; three mt-
genes making one alignment) for 42 placental mammals [33]. To 
conduct a biologically realistic simulation, gene-specific evolutionary 
parameters were estimated from each gene sequence of 42 mammals 
using the TN93 model [34] of sequence evolution, allowing for a 
gamma-distribution of rates. The TN93 model was selected the best-
fit model of nucleotide substitution using the MODELTEST program 
[35,36]. The evolutionary parameters (i.e. branch length, transition/
transversion ratio and gamma parameter) of each gene dataset were 
calculated using PhyML [37,38]. Gene sequences were simulated 
using model topology (Figure 1) along with gene-specific evolutionary 

parameters which are extracted from real data. For each set of gene-
specific evolutionary parameters 100 replicate datasets were generated 
using the Dawg program [39] under the TN93 model of nucleotide 
substitution with a gamma distribution of rates. 

Phylogenetic analysis

Five methods of tree reconstruction were used in this study. 
Phylogenetic analyses were carried out using MEGA5 [30] for NJ-MCL, 
MP, and NJ methods, PhyML [38] for the ML method, and BAMBE [40] 
for the Bayesian method. The TN93 model of sequence evolution with 
gamma rate heterogeneity was used for Bayesian, ML and NJ methods. 
The MP trees were reconstructed using the (SPR) search algorithm 
[32]. The algorithm of NJ-MCL method was developed based on the 
TN93 model of sequence evolution. Therefore, for NJ-MCL method the 
TN93 model of sequence evolution (the default choice) with gamma 
rate heterogeneity was used. For a given simulated gene (whether 
containing an alignment of one simulated gene or the concatenation 
of multiple genes), Bayesian, ML, NJ-MCL, MP, and NJ trees were 
reconstructed and in each case the topological distances between the 
reconstructed trees and the model tree were estimated. 

Accuracy of the inferred phylogeny

The accuracy of each method was calculated by the percentage of 
clades reconstructed correctly (PC). This was obtained by PC = 100[1-dT/
(2m-6)], where dT is the topological distance between the reconstructed 
and model trees and m is the number of sequences in the phylogeny 
[41,42]. All comparisons were made between the reconstructed trees 
and the model tree (Figure 1). For example, for a given simulated 
dataset, the Bayesian tree was reconstructed and then dT was estimated 
between the reconstructed Bayesian tree and the model tree, and finally 
PC was calculated from dT value. A similar analysis is done for all five 
methods and also for each multigene dataset.

Construction of multigene datasets 

 For comparing the performance of the five different phylogenetic 
methods, 100 simulated datasets for each of 20 genes were generated. 
In construction of multigene datasets, one replicate should be selected 
out of the 100 replicates for each gene. To keep the replicate selection 
unbiased and realistic, the distribution pattern of dT for 100 replicates 
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Figure 1:  The model topology used in the computer simulations based on the 
42-taxa tree from Springer et al. [33].
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Figure 2:  Distributions of the topological distances (dT’s) from the 100 
replicates of EDG1 gene is plotted (978 bp). It shows that within replicates 
topological distances varied widely even when a unique set of evolutionary 
parameters are used in the computer simulation to generate replicates of 
EDG1 gene.
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realistic computer simulation to examine the performance of the 
five major phylogenetic methods. Simulation results indicate that 
probabilistic methods (i.e., Bayesian and ML methods) are much more 
accurate than the NJ-MCL, MP and NJ methods and these results hold 
for each replicate scenario and for all three concatenation scenarios 
(Table 1). In general, the two probabilistic methods show more or less 
the same performance, but in a fine comparison ML is better than the 
Bayesian method (ML is more accurate and consistent than the Bayesian 
method). This analysis shows that the NJ-MCL, MP, and NJ methods are 
fast (i.e., computationally efficient), but their accuracy and consistency 
are very poor compared to the Bayesian and ML methods. Among NJ-
MCL, MP and NJ methods, NJ-MCL is more accurate than MP and 
NJ with one exception; for the best replicate scenario, MP outperforms 
NJ-MCL and NJ methods (Figure 3a). In a further investigation, it was 
found that, for all three replication scenarios, Bayesian and ML methods 
take concatenation of few genes to recover the true tree (i.e., model 
tree) whereas other three methods take concatenation of considerably 
large number of genes (three to six times more number of genes were 
required by the NJ-MCL, MP and NJ methods) to recover the true tree. 
These results established the fact that the probabilistic methods (i.e., 
ML and Bayesian methods) are much more consistent and efficient 
than the NJ-MCL, MP and NJ methods. For example, under random-
replicate scenario and for LS gene concatenation scenario Bayesian and 
ML methods take concatenation of 4 and 2 genes respectively to recover 
the true tree, whereas NJ-MCL, MP and NJ take concatenation of 7, 
20, and 12 genes respectively to recover the true tree. These results are 
shown in Table 1.

More genes or more characters

In this study it was investigated how many characters are needed 
to recover the true tree and are they correlated with number of 
concatenated genes (i.e., more genes and also more characters or vice 
versa). Results in Table 1 show that, for best-replicate scenario, shortest 
to longest (SL) concatenation takes the less number of characters 
(with more genes) followed by LS and RC scenarios to recover the 
true tree, which is true for all five methods. For ML method under 
best-replicate scenario, it was found that LS concatenation takes 5812 
characters (concatenation of 3 genes) whereas SL scenario takes only 
1934 characters (concatenation of 6 genes) to recover the true tree. 
Similarly, for Bayesian method LS concatenation takes 5812 characters 
and SL concatenation takes 4042 (concatenation of 3 and 10 genes 
respectively). This result indicates that it is not always useful to consider 
longer genes; rather concatenation of smaller gene sequences, may be 
more number of genes with less number of characters, is more effective 
for reconstructing multigene phylogenies. Particularly, it should reduce 
the computational time. Moreover, this finding violates the theoretical 
expectation; concatenation of longer genes will converge first because 
longer genes get enough nucleotide substitutions and make it possible 
to infer them with greater accuracy. Although no one can guarantee 

of each simulated gene were plotted, and it was found that topological 
distances among the trees based on the replicates varied widely (Figure 
2). Considering the nature of topological-distance distribution, the 
multigene datasets were reconstructed in three ways. These are (i) 
the best-replicate (BS) scenario where the simulated replicate for a 
given gene was selected that produced a phylogeny with the highest 
PC (i.e., with the lowest topological difference when compared to the 
model tree); (ii) the worst-replicate scenario (WS) where the simulated 
replicate for a given gene was selected that produced a phylogeny with 
the lowest PC; and (iii) the random-replicate (RS) scenario where all 
analyses were conducted using randomly chosen replicates to represent 
individual genes.

Progressive concatenation of genes

In this study relative performances of five different phylogenetic 
methods are investigated under the genome-scale approach. It is well 
known that adding a single gene to an existing set of genes improves 
the accuracy of phylogenetic reconstruction [9,43] and it is also 
obvious that more accurate method will converge first (i.e. will need 
a smaller number of genes to recover the true tree). The question is 
in which order the genes should be concatenated, because genes 
length vary widely and moreover they contain different levels of 
phylogenetic signal. Theoretically it is expected that concatenation 
of longer genes will converge first because longer genes get enough 
nucleotide substitutions and make it possible to infer them with greater 
accuracy. Moreover, an overall increase in sequence length would 
lead to reduce stochastic errors for evolutionary distances and other 
parameters in model based methods (i.e., Bayesian, ML, NJ-MCL, and 
NJ) [32]. Therefore, based on the variable length of genes along with 
different levels of phylogenetic signal three concatenation scenarios 
are considered: (i) longest to shortest (LS) genes concatenation where 
genes should be concatenated in the descending order of their length; 
(ii) shortest to longest (SL) genes concatenation where genes should 
be concatenated in the ascending order of their length; and (iii) 
random concatenation (RC) where genes have been selected randomly. 
The reasons for choosing these three concatenation scenarios are to 
examine the performance of the methods in a wide frame and examine 
which method takes a lower number of datasets to recover the model 
tree, to investigate whether concatenation of longest and smallest genes 
makes any effect on the methods performance, and to check if all three 
scenarios take almost same number of characters. Therefore, this study 
included all three concatenation scenarios (i.e., LS, SL and RC) under 
each of the three replicate selection scenarios (i.e., best-replicate, worst-
replicate and random-replicate scenarios) [Supplementary data].

Results
Comparison of the efficiencies of phylogenetic methods

In this study genome-scale approach has been used in a biologically 

Method
Best replicate scenario Random replicate scenario Worst replicate scenario

LS SL RC LS SL RC LS SL RC
Gene Char Gene Char Gene Char Gene Char Gene Char Gene Char Gene Char Gene Char Gene Char

Bayesian 3 5812 10 4042 9 8440 4 6988 14 7318 15 13301 5 8077 17 10585 12 11002
ML 3 5812 6 1934 8 7438 2 4564 14 7318 13 12649 2 4564 17 10585 12 11002

MCL 17 15548 17 10585 18 14945 7 10057 20 16397 18 14945 9 11665 19 13480 13 12649
MP 11 13032 16 9409 14 12986 20 16397 16 9409 20 16397 >20 -- >20 -- >20 --
NJ 17 15548 17 10585 19 16193 12 13593 20 16397 20 16397 7 10057 19 13480 19 16397

Table 1:  The number of genes and characters required to recover the true tree for each concatenation scenario and for the Bayesian, ML, MP, NJ-MCL, and NJ methods. 
Columns “Gene” and “Char” stand for total number of genes and corresponding total number of characters used in a single concatenation to infer the true tree. LS, SL and 
RC concatenation scenarios represent longest to shortest, shortest to longest and random concatenation of genes respectively.
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that the concatenation of smaller genes will produce better phylogeny 
because the levels of phylogenetic signals present in the sequences are 
most important factors for reconstructing true evolutionary history 
of the species or genes. For other replicate scenarios (i.e., WS and 
RS) show SL case takes more gene and also more characters than LS 
concatenation. This contradiction is due to the quality of the gene 
replications.

Effect of addition of a single gene to an existing concatenation 

It was also investigated how addition of a single gene to an existing 
concatenation (that generates a new concatenated dataset) improves 
the accuracy of the methods. Figure 3 shows the concatenated gene 
versus PC plots for all three concatenation scenarios (i.e., for LS, SL and 
RC scenarios) and for best-replicate and random-replicate scenarios. 
In overall, progressive addition of genes improved the accuracy of the 
phylogenetic reconstruction for all five methods. However for NJ-MCL, 
MP, and NJ methods, in several cases (Figure 3), addition of a single 
gene to an existing concatenation decreases the PC value obtained from 
initial dataset (i.e., addition of a gene produce more incorrect tree than 
that from initial dataset). This is due to different phylogenetic signal 

of the individual genes, either because of real differences in their 
evolutionary history, or because of different statistical biases, and NJ-
MCL, MP, and NJ methods failed to accommodate such properties. In 
this situation concatenation may obscure the underlining species tree 
[44]. Interestingly, in spite of rigorous statistical properties Bayesian 
method also suffers from similar problem, but the performance is 
comparatively better than the NJ-MCL, MP, and NJ methods. On the 
other hand, in case of ML method addition of a single gene to an existing 
concatenation mostly improves the phylogenetic reconstruction or 
keeps its accuracy (PC) as obtained from previous data (i. e., PC value is 
increased with the addition of a gene or remain unchanged). This result 
states that the ML method is more consistent than all other methods. 

How many datasets are needed to recover the true tree?

Another investigation was performed to find out how much 
datasets are needed to recover the true tree. The results showed that 
each different method takes different number of genes depending on 
their statistical power to resolve branches. Even for a particular method 
numbers of genes are varied among different replicate scenarios. Table 
1 shows the results of such variations. For example, for the Bayesian 

 

 

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22

Concatenation of genes

Pc
 (%

)

BI
ML
MP
MCL
NJ

Best replicate: LS

 

 

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22

Concatenation of genes

Pc
 (%

)

BI
ML
MP
MCL
NJ

Best replicate: SL

 

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22

Concatenation of genes

Pc
 (%

)

BI
ML
MP
MCL
NJ

Best replicate: RC

 

 

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22

Concatenation of genes

Pc
 (%

)

BI
ML
MP
MCL
NJ

Random replicate: LS 

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22

Concatenation of genes

Pc
 (%

)

BI
ML
MP
MCL
NJ

Random replicate: SL 

 

                                   

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22

Concatenation of genes

Pc
 (%

)

BI
ML
MP
MCL
NJ

Random replicate: RC 

Figure 3: Percentage of branches inferred correctly (PC) is plotted against concatenated genes for three concatenation approaches (i.e., longest to shortest (LS), 
shortest to longest (SL), and random concatenation (RC) approaches) and for (a) best-replicate and (b) random-replicate scenarios. Plots show that probabilistic 
methods (i.e., Bayesian & ML) converge (i.e., PC=100%) much faster than the other methods (i.e., NJ-MCL, MP, & NJ). Furthermore in case of the ML method PC value 
is increased (or remains unchanged) with the addition of a single gene to an existing concatenation, whereas for other methods, in several cases, addition of a gene 
produce more incorrect tree than that from initial dataset (see text).



Volume 1 • Issue 3 • 1000116J Phylogen Evolution Biol
ISSN: 2329-9002 JPGEB, an open access journal

Citation: Som A (2013) Genome-Scale Approach and the Performance of Phylogenetic Methods. J Phylogen Evolution Biol 1: 116. doi:10.4172/2329-
9002.1000116

Page 5 of 6

method under LS concatenation, the best, worst, and random replicates 
take three, four, and five genes respectively. These results imply that the 
quality of replication is a primary factor and in a simulation study it is 
possible to distinguish the best and worst replicates, but in reality it is 
not possible. This simulation experiments show the number of genes 
sufficient to recover the true tree ranged from a minimum of 4 to 20. 
This result completely agreed with Rokas et al. [43].

Discussion
In this article, relative performance of five major phylogenetic 

methods were evaluated under the genome-scale approach using 
biologically realistic simulated nucleotide data and simulation, and 
results show that the Bayesian and ML methods are much more accurate 
than the NJ-MCL, MP and NJ methods. These results agreed with other 
studies with an exception [20-25]. In Hall’s study [22], Bayesian method 
is more accurate than the ML method. By contrast, this study shows 
ML method is slightly better than Bayesian method. This is apparently 
due to a difference of our simulations strategy and methodologies of 
the experiment. Beside comparison of the performance of methods this 
study has revealed several important aspects of genome-scale approach 
such as how concatenations of longest and smallest genes make effect 
on the methods performance, how much dataset are needed to recover 
the true tree, and whether more genes or more characters are important. 
These have been explained in the results section.

Concerning the accuracy of methods, the results showed that 
probabilistic methods (i.e., Bayesian and ML methods) are much more 
accurate than the NJ-MCL, MP and NJ methods. In overall, ML is more 
accurate, followed by the Bayesian, NJ-MCL, NJ, and MP methods. 
Furthermore, it has been shown that the ML method is much more 
consistent than other methods (even superior to the Bayesian method). 
An accurate algorithm may be useless if it is too slow. Therefore, for 
comparison proposes, the run time of each algorithm was measured 
which is shown in Table 2. Although NJ-MCL, MP, and NJ methods 
are very much computational efficient, but their accuracies and 
consistencies are very poor compared to the Bayesian and ML methods. 
On the other hand, Bayesian is very efficient, but less consistent and 
takes much longer execution time; whereas ML is very accurate, 
consistent, and computational efficient. Therefore, in conclusion, 
the continued preference of the ML method is recommended when 
genome-scale approach is used for phylogenetic reconstructions.
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