

Genetic Polymorphisms: Drivers of Human Biology

Farah El-Sharif*

Department of Human Genome Research, Cairo Institute for Medical Innovation, Cairo, Egypt

Introduction

This review highlights how genetic polymorphisms influence an individual's susceptibility to systemic lupus erythematosus (SLE), discussing various genes involved in immune regulation and their variants associated with increased risk or altered disease progression. Understanding these genetic variations can help in predicting disease outcomes and developing personalized therapeutic strategies for SLE patients[1].

This systematic review explores the pharmacogenomics of warfarin in African populations, focusing on how VKORC1 and CYP2C9 genetic polymorphisms impact drug response, dosage requirements, and the risk of adverse events. It emphasizes the need for ethnicity-specific genetic profiling to optimize warfarin therapy[2].

This meta-analysis investigates the association between genetic polymorphisms in DNA repair genes and pancreatic cancer risk, identifying specific variants that may contribute to an individual's susceptibility. The findings underscore the role of genetic variations in DNA repair pathways in cancer development[3].

This article provides insights into how genetic polymorphisms shape human populations, revealing patterns of ancestry, migration, and adaptation to diverse environments. It explains how these variations are crucial for understanding human evolution and population-specific disease predispositions[4].

This systematic review summarizes the genetic polymorphisms implicated in Alzheimer's disease, exploring how variations in genes like APOE, TREM2, and APP contribute to disease risk, onset, and progression. It emphasizes the complexity of genetic influence on neurodegenerative disorders[5].

This meta-analysis investigates the role of various genetic polymorphisms in modulating an individual's susceptibility to coronary artery disease, identifying key genetic markers that could serve as predictors for risk assessment and guide preventive strategies[6].

This review discusses how genetic polymorphisms within host genes influence the immune response to various viral infections, affecting susceptibility, disease severity, and vaccine efficacy. Understanding these variations is vital for developing targeted antiviral therapies and vaccines[7].

This systematic review and meta-analysis identifies various genetic polymorphisms significantly associated with an increased risk of Type 2 Diabetes Mellitus. It highlights the complex genetic architecture underlying the disease and the potential for genetic markers in early risk prediction and personalized prevention strategies[8].

This article reviews the current state and future prospects of using genetic poly-

morphisms in forensic human identification, covering techniques like STRs, SNPs, and mitochondrial DNA. It discusses how these genetic markers enhance precision in forensic investigations and overcome challenges in complex cases[9].

This paper discusses the critical role of genetic polymorphisms in advancing personalized medicine, highlighting both the immense potential for tailoring treatments based on an individual's genetic makeup and the significant challenges in translating these insights into routine clinical practice[10].

Description

Genetic polymorphisms are fundamental in shaping an individual's susceptibility to a spectrum of diseases. For instance, variations in genes involved in immune regulation can profoundly influence one's predisposition to Systemic Lupus Erythematosus (SLE) and even alter the disease's progression once it manifests. Understanding these specific genetic differences is pivotal for forecasting how SLE might develop and for crafting highly individualized therapeutic strategies for patients affected by this complex autoimmune condition [1]. Moving to cancer, meta-analyses consistently reveal strong associations between genetic polymorphisms in DNA repair genes and the risk of developing pancreatic cancer. These findings underscore a critical role for genetic variations within DNA repair pathways, suggesting they are not merely minor contributors but rather significant factors in the broader landscape of cancer development and risk assessment [3].

In the realm of pharmacogenomics, genetic polymorphisms are transforming how medications are prescribed, particularly for drugs like warfarin. Systematic reviews have thoroughly explored how genetic variations in VKORC1 and CYP2C9 genes impact drug response, the required dosage, and the potential for adverse events, especially within diverse African populations. This highlights an urgent need for ethnicity-specific genetic profiling to fine-tune warfarin therapy, moving away from a one-size-fits-all approach to more precise, safer treatments [2]. Beyond drug metabolism, these polymorphisms also modulate an individual's vulnerability to major chronic conditions. For example, extensive meta-analyses have identified various genetic markers that act as strong predictors for the susceptibility to coronary artery disease, providing valuable tools for early risk assessment and guiding tailored preventive strategies to mitigate cardiac health issues [6]. Furthermore, the intricate genetic architecture underlying Type 2 Diabetes Mellitus is being unraveled, with systematic reviews and meta-analyses pinpointing numerous genetic polymorphisms significantly associated with an elevated risk of the disease. These markers hold substantial promise for early prediction and the development of personalized prevention protocols [8].

The complexity of neurodegenerative disorders, such as Alzheimer's Disease, is increasingly understood through the lens of genetic polymorphisms. Systematic

reviews extensively summarize how variations in key genes, including APOE, TREM2, and APP, are implicated in disease risk, the age of onset, and the overall progression of this devastating condition. This research collectively emphasizes the profound and often multifaceted genetic influence on the development and trajectory of neurodegenerative pathologies [5]. Separately, but equally significant, genetic polymorphisms within host genes exert a considerable influence on the body's immune response to various viral infections. These variations can affect an individual's susceptibility to infection, the severity of the disease experienced, and even the effectiveness of vaccines. A deeper comprehension of these specific genetic differences is therefore paramount for designing more effective, targeted antiviral therapies and vaccines that can account for individual genetic variability [7].

Genetic polymorphisms are not confined to individual health; they also offer profound insights into the broader tapestry of human populations. These genetic variations serve as critical indicators, revealing ancient patterns of ancestry, complex migration routes across continents, and the sophisticated ways human groups have adapted to diverse environmental pressures over millennia. Such understandings are indispensable for tracing human evolution and for explaining population-specific predispositions to certain diseases, thereby connecting individual genetics to the grand narrative of humanity [4]. Moreover, the practical utility of genetic polymorphisms extends powerfully into the field of forensic science. Modern forensic human identification techniques heavily rely on these genetic markers, encompassing methods like Short Tandem Repeats (STRs), Single Nucleotide Polymorphisms (SNPs), and mitochondrial Deoxyribonucleic Acid (DNA). These advanced genetic tools dramatically enhance the precision of forensic investigations, proving invaluable in resolving complex cases where traditional methods might fall short [9].

Ultimately, the comprehensive study of genetic polymorphisms underpins the entire paradigm of personalized medicine. Recent papers extensively discuss the transformative, critical role these genetic variations play in enabling tailored treatments based precisely on an individual's unique genetic makeup. The potential for optimizing therapeutic outcomes by aligning medical interventions with specific genetic profiles is immense, promising a future where medicine is truly bespoke. However, this promising future comes with significant hurdles. Translating these complex genetic insights from research laboratories into routine, accessible clinical practice remains a considerable challenge, requiring robust infrastructure, ethical considerations, and ongoing scientific advancements to bridge the gap between genomic discovery and patient care [10].

Conclusion

Genetic polymorphisms significantly influence various aspects of human health and biology. These variations play a crucial role in determining an individual's susceptibility to numerous diseases, ranging from autoimmune conditions like Systemic Lupus Erythematosus to cancers such as pancreatic cancer. They also impact the risk and progression of neurodegenerative disorders like Alzheimer's Disease and metabolic diseases like Type 2 Diabetes Mellitus. Understanding these genetic differences helps in predicting disease outcomes and developing targeted preventive strategies for conditions like coronary artery disease. Beyond disease, genetic polymorphisms are fundamental to pharmacogenomics, where they guide personalized drug dosages, such as for warfarin, based on ethnic-specific genetic profiles, thereby optimizing therapy and reducing adverse events. They also shed light on human evolution, ancestry, migration patterns, and adaptation to diverse environments. Furthermore, genetic variations dictate host immune responses to viral infections, affecting susceptibility and vaccine efficacy. In practical appli-

cations, these polymorphisms are vital for forensic human identification, utilizing markers like STRs and SNPs for enhanced precision in investigations. Ultimately, the comprehensive study of genetic polymorphisms is central to the promise of personalized medicine, enabling treatments tailored to an individual's unique genetic blueprint, despite ongoing challenges in clinical implementation.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Xiaomeng Hu, Congcong Yang, Wen Deng, Shuo Li, Shanshan Zhang, Lin Sun. "The impact of genetic polymorphisms on susceptibility to systemic lupus erythematosus." *J Autoimmun* 113 (2020):102506.
2. Elvis K Mbadu, Abidemi T Abegunde, Olukayode A Owolabi, Amos M Oyeniran. "Pharmacogenomics of Warfarin: A Systematic Review of VKORC1 and CYP2C9 Polymorphisms in African Populations." *Front Pharmacol* 12 (2021):669532.
3. Yuanbo Zhang, Qi Liu, Xiaofei Zhang, Yang Li, Chongbo Yang, Xu Fu. "Associations of genetic polymorphisms in DNA repair genes with pancreatic cancer risk: A systematic review and meta-analysis." *J Cancer Res Clin Oncol* 147 (2021):1675-1688.
4. Chong Chen, Hong Li, Yang Wang, Lin Zhang. "Genetic Polymorphisms in Human Populations: Insights into Ancestry and Adaptation." *Trends Genet* 38 (2022):20-33.
5. Sakshi Sharma, Satyapal Singh, Shailja Sharma, Amrita Singh, Preeti Singh, Bhanu Gupta. "Genetic polymorphisms and their implications in Alzheimer's disease: A systematic review." *Ageing Res Rev* 84 (2023):101804.
6. Xu Wang, Min Li, Yi Zhang, Hui Liu, Chunhong Chen. "Role of genetic polymorphisms in the susceptibility to coronary artery disease: a systematic review and meta-analysis." *J Thorac Dis* 12 (2020):3672-3684.
7. Swagatika Sahoo, Satyapriya Sarangi, Subhashree Routray, Priyabrat Das, Sukant Satapathy. "Impact of genetic polymorphisms on immune responses to viral infections: A review." *Virus Res* 322 (2022):198944.
8. Riyaz Ahmad, Md I Hassan, Rubina A Naqvi, Iqbal A Ansari, Farheen Khan, Khursheed Alam. "Genetic Polymorphisms Associated with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis." *J Diabetes Res* 2020 (2020):8424169.
9. Chuan Liu, Zhigang Wang, Qing Zhang, Shuai Guo, Shuyuan Li, Hongtao He. "Genetic polymorphisms in forensic human identification: Current status and future perspectives." *Forensic Sci Int Genet* 50 (2021):102425.
10. Peng Wu, Shuyuan Li, Yuan Zhang, Li Wang, Cheng Chen. "Genetic Polymorphisms in Personalized Medicine: Promises and Challenges." *Trends Mol Med* 29 (2023):211-224.

How to cite this article: El-Sharif, Farah. "Genetic Polymorphisms: Drivers of Human Biology." *Human Genet Embryol* 16 (2025):286.

***Address for Correspondence:** Farah, El-Sharif, Department of Human Genome Research, Cairo Institute for Medical Innovation, Cairo, Egypt, E-mail: f.elsharif@ciersmi.eg

Copyright: © 2025 El-Sharif F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-May-2025, Manuscript No. hgec-25-174731; **Editor assigned:** 05-May-2025, PreQC No. P-174731; **Reviewed:** 19-May-2025, QC No. Q-174731; **Revised:** 22-May-2025, Manuscript No. R-174731; **Published:** 29-May-2025, DOI: 10.37421/2161-0436.2025.16.286
